Data Structures in Java

Lecture 16: Introduction to Graphs.

11/16/2015

Daniel Bauer

Graphs

A Graph is a pair of two sets G=(V.E):
* V: the set of vertices (or nodes)

* E:the set of edges.

* each edge is a pair (v,w) where
vw eV

Graphs

A Graph is a pair of two sets G=(V.E):
* V: the set of vertices (or nodes)

* E:the set of edges.

* each edge is a pair (v,w) where
vw eV

()

ORONO
&) ©

Graphs

A Graph is a pair of two sets G=(V.E):
* V: the set of vertices (or nodes)

* E:the set of edges.

* each edge is a pair (v,w) where
vw eV

Graphs

A Graph is a pair of two sets G=(V.E):
* V: the set of vertices (or nodes)

* E:the set of edges.

* each edge is a pair (v,w) where
vw eV

V = {Vv1i Vo V3 Va4, V5, Ve }
E = {(v1, v2), (Vi Vva), (V2. v3),(Va V5),(V3 Va),

(Va, V6),(V4, V5), (V4, Ve), (Vs, Ve)]

Graphs in Computer
Science

* (Graphs are used to model all kinds of relational data.

* (General purpose algorithms make it possible to solve
problems on these models.

o Shortest Paths, Spanning Tree, Finding Cligues,
Strongly Connected Components, Network Flow,
Graph Coloring, Minimum Edge/Vertex Cover, Graph
Partitioning, ...

Social Networks

facebook

INnteraction Networks
Extracted from Text

OR.’ RS

RECEPTIONIST

DANCER

http://www.cs.columbia.edu/~apoorv/SINNET/ -

http://www.cs.columbia.edu/~apoorv/SINNET/

Rall Network

Source: Days of WonderVideo Games

United States
transmission grid
Source: FEMA

US Power Grid

115
138
AN/ 161

345

W

10

Human Disease Network

Graph-Based Representation
of Sentence Meaning

"Pascale was
charged with
public intoxication =
and resisting
arrest.”

Source: Kevin Knight 12

Graphical Models

bad accldent
weat her

—dges

 Graphs may be directed or undirected.
* |n directed graphs, the edge pairs are ordered.

* Edges often have some weight or cost associated
with them (weighted graphs).

V = {Vv1, V2 V3 V4 V5 Vg }

E = {(v1, v3), (V2, v1),(V2, Vv3), (V3, Va), @ @

(V3, V5), (V4, Ve), (Vs, Ve)}
directed graph

14

—dges

 Graphs may be directed or undirected.
* |n directed graphs, the edge pairs are ordered.

* Edges often have some weight or cost associated
with them (weighted graphs).

V = {Vv1, V2 V3 V4 V5 Vg }

E = {(v1 v3), (V2 v1),(V2 V3), (V3 Va),
(Va, Vvs), (V4, V), (Vs5, Ve)}

. directed and weighted graph

Paths

* Vertex w is adjacent to vertex v iff (w,v) € E.

* A path is a sequence of vertices w1, Wo, ..., Wk
such that (wi wis1) € E.

16

Paths

* Vertex w is adjacent to vertex v iff (w,v) € E.

* A path is a sequence of vertices w1, Wo, ..., Wk
such that (wi wis1) € E.

* length of a path:
k-1 = number of edges on path .

e cost of a path:
Sum of all edge costs.

Path from v+ to ve, length 3, cost 8
17 (V1, va), (V3, V5), (V5, Ve)

Simple Paths

@‘@@
O

Simple Paths

* A simple path is a path that contains every node only
once (except possibly the first and last node).

18

Simple Paths

* A simple path is a path that contains every node only
once (except possibly the first and last node).

* (V2, V3, V4, Ve, V5,V3, V1) IS @ path
but not a simple path.

18

Simple Paths

* A simple path is a path that contains every node only
once (except possibly the first and last node).

* (V2, V3, V4, Ve, V5,V3, V1) IS @ path
but not a simple path.

 [here are only two simple paths between vo and vs:
(V2, v1) and (v, vs, V1)

18

Simple Paths

A simple path is a path that contains every node only
once (except possibly the first and last node).

(V2, V3, V4, Ve, V5,V3, V1) IS @ path
but not a simple path.

There are only two simple paths between v, and vi:
(V2, v1) and (vg, va, V1)

(V1, V3, V2, V1) IS a simple path.

18

Cycles in Directed Graphs

 Acycle is a path (of length > 1) such that
W1 = Wk 0

* (Vv3, V4, Ve, V3) iS a cycle. @‘@ @

19

Cycles in Directed Graphs

 Acycle is a path (of length > 1) such that
W1 = Wk 0

* (Vv3, V4, Ve, V3) iS a cycle. @‘@ @

* A Directed Acyclic Graph (DAG) is a directed graph that
contains no cycles.

20

Cycles in Directed Graphs

 Acycle is a path (of length > 1) such that
W1 = Wk 0

* (Vv3, V4, Ve, V3) iS a cycle. @‘@ @

* A Directed Acyclic Graph (DAG) is a directed graph that
contains no cycles.

20

Columbia CS Course
Prerequisites as a DAG

(s} — @) Gl e
W3137 ‘

Please do not use this figure for program planning! No
guarantee for accuracy. 2

Connectivity

* An undirected graph is connected if there is a
path from every vertex to every other vertex.

connected graph

Connectivity

* An undirected graph is connected if there is a
path from every vertex to every other vertex.

unconnecteq, grapn

Connectivity in Directed
Graphs

* A directed graph is weakly connected if there is
an undirected path from every vertex to every other
vertex.

weakly conngcted graph

Strongly Connected Graphs

* A directed graph is strongly connected if there is
a path from every vertex to every other vertex.

Weakly connected, but not strongly
connected (no other vertex can be
reached from v).

25

Strongly Connected Graphs

* A directed graph is strongly connected if there is
a path from every vertex to every other vertex.

strongly connected

20

Complete Graphs

A complete graph has edges between every pair

of vertices.
% N

27

2

Complete Graphs

A complete graph has edges between every pair

of vertices.
; i N=3

28

Complete Graphs

A complete graph has edges between every pair

of vertices.

29

Complete Graphs

A complete graph has edges between every pair
of vertices.

N=5

How many edges are there in a complete graph of size N7

30

Complete Graphs

A complete graph has edges between every pair
of vertices.

N=5

How many edges are there in a complete graph of size N7

O NC(N=-1
EZ: (2)

1=1 30

Representing Graphs

* Represent graph G = (E,V), option 1:

* N x N Adjacency Matrix represented as 2-
dimensional Boolean[][].

 Alul]lv] = true if (u,v) € E, else talse
1 2 34 @
tf
- e@ o
i (v
fof

0
f
t
f
f
f
f

OOk~ 0ON 20O
—h:—I—:—I——h—h—hCﬂ

f
f
t
f
f
f
1

3

Representing Graphs

* Represent graph G = (E,V), option 1:

* N x N Adjacency Matrix represented as 2-
dimensional Integer[][].
o Alu][v] = cost(u,v) if (u,v) € E, else «

012 345

co oo 2 o0 00 0

OO~ LN —-+0
3
8
8
8
3
o

(G ORRENG O RRNNG O ENENC ORI ORI C.O)

Representing Graphs

* Problem of Adjacency Matrix representation:

* For sparse graphs (that contain much less than
V|2 edges), a lot of array space is wasted.

OO~ LN —-+0
3
8
8
8
3
o

(G ORRENG O RRNNG O ENENC ORI ORI C.O)

Representing Graphs

* Problem of Adjacency Matrix representation:
Space requirement: O(|V]?)
* For sparse graphs (that contain much less than
V|2 edges), a lot of array space is wasted.

OO~ LN —-+0
3
8
8
8
3
W

(G ORRENG O RRNNG O ENENC ORI ORI C.O)

Representing Graphs

 Represent graph G = (E,V), option 2: Adjacency Lists

* For each vertex, keep a list of all adjacent vertices.

Vo —* Vo:2
Vi —f vo:1 V23
Vo —f V3.3 Va:4
V3 4 V5.3
Vq — V54
V5 —
34

Representing Graphs

 Represent graph G = (E,V), option 2: Adjacency Lists

e O

" each vertex, keep a list of all adjacent vertices.

——» V2:2

—>

Vo: T

Vo3

—>

V3:3

V4.4

q V5Z3

—>

V5.4

>

Space requirement: O(

34

Storing Adjacency Lists

* |t we construct a graph (or read it in from some
specification), a LinkedList is better than an
ArrayList because we don't know how many
adjacent vertices there are for each vertex.

e Create an instance of a Vertex class for each vertex
and keep adjacency list in this object.

 Can also keep an index to quickly access vertices
by name.

http://Www.cs.columbia.edu/~bauer/%5831 34/code/week11/BasicGraph.java

http://www.cs.columbia.edu/~bauer/cs3134/code/week11/BasicGraph.java

