
Data Structures in Java
Lecture 16: Introduction to Graphs.

11/16/2015

Daniel Bauer

1

• A Graph is a pair of two sets G=(V,E):

• V: the set of vertices (or nodes)

• E: the set of edges.
• each edge is a pair (v,w) where

v,w ∈ V 

Graphs

2

• A Graph is a pair of two sets G=(V,E):

• V: the set of vertices (or nodes)

• E: the set of edges.
• each edge is a pair (v,w) where

v,w ∈ V 

Graphs
v1

v3 v4

v5

v2

v6

3

• A Graph is a pair of two sets G=(V,E):

• V: the set of vertices (or nodes)

• E: the set of edges.
• each edge is a pair (v,w) where

v,w ∈ V 

Graphs
v1

v3 v4

v5

v2

v6

4

• A Graph is a pair of two sets G=(V,E):

• V: the set of vertices (or nodes)

• E: the set of edges.
• each edge is a pair (v,w) where

v,w ∈ V 

Graphs
v1

v3 v4

v5

v2

v6

V = {v1, v2, v3, v4, v5, v6 }
E = {(v1, v2), (v1, v3), (v2, v3),(v2, v5),(v3, v4),  
 (v3, v6),(v4, v5), (v4, v6), (v5, v6)}

5

• Graphs are used to model all kinds of relational data.

• General purpose algorithms make it possible to solve
problems on these models.

• Shortest Paths, Spanning Tree, Finding Cliques,
Strongly Connected Components, Network Flow,
Graph Coloring, Minimum Edge/Vertex Cover, Graph
Partitioning, …

Graphs in Computer
Science

6

Social Networks

7

Interaction Networks
Extracted from Text

http://www.cs.columbia.edu/~apoorv/SINNET/8

http://www.cs.columbia.edu/~apoorv/SINNET/

Rail Network

Source: Days of WonderVideo Games 9

US Power Grid

10

Human Disease Network

Source: Goh et al, PNAS 2007 11

Graph-Based Representation
of Sentence Meaning

Source: Kevin Knight

“Pascale was
charged with

public intoxication
and resisting

arrest.”

12

Graphical Models

rush hour bad
weather accident

sirenstraffic jam

13

Edges
• Graphs may be directed or undirected.

• In directed graphs, the edge pairs are ordered.

• Edges often have some weight or cost associated
with them (weighted graphs).

v1

v3 v4

v5

v2

v6
E = {(v1, v3), (v2, v1),(v2, v3), (v3, v4),  
 (v3, v5), (v4, v6), (v5, v6)}

V = {v1, v2, v3, v4, v5, v6 }

directed graph
14

Edges
• Graphs may be directed or undirected.

• In directed graphs, the edge pairs are ordered.

• Edges often have some weight or cost associated
with them (weighted graphs).

v1

v3 v4

v5

v2

v6
E = {(v1, v3), (v2, v1),(v2, v3), (v3, v4),  
 (v3, v5), (v4, v6), (v5, v6)}

V = {v1, v2, v3, v4, v5, v6 }

directed and weighted graph

1 3

5 6
2

3

1

15

Paths
• Vertex w is adjacent to vertex v iff (w,v) ∈ E.

• A path is a sequence of vertices w1, w2, …, wk 
such that (wi, wi+1) ∈ E.

v1

v3 v4

v5

v2

v6

1 3

5 6
2

3

1

16

Paths

v1

v3 v4

v5

v2

v6

1 3

5 6
2

3

1

Path from v1 to v6, length 3, cost 8
(v1, v3), (v3, v5), (v5, v6)

• Vertex w is adjacent to vertex v iff (w,v) ∈ E.

• A path is a sequence of vertices w1, w2, …, wk 
such that (wi, wi+1) ∈ E.

• length of a path:  
 k-1 = number of edges on path

• cost of a path:  
 Sum of all edge costs.  

17

Simple Paths
v1

v3 v4

v5

v2

v6

18

Simple Paths
v1

v3 v4

v5

v2

v6

• A simple path is a path that contains every node only
once (except possibly the first and last node).

18

Simple Paths
v1

v3 v4

v5

v2

v6

• A simple path is a path that contains every node only
once (except possibly the first and last node).

• (v2, v3, v4, v6, v5,v3, v1) is a path 
but not a simple path.

18

Simple Paths
v1

v3 v4

v5

v2

v6

• A simple path is a path that contains every node only
once (except possibly the first and last node).

• (v2, v3, v4, v6, v5,v3, v1) is a path 
but not a simple path.

• There are only two simple paths between v2 and v1:
(v2, v1) and (v2, v3, v1)

18

Simple Paths
v1

v3 v4

v5

v2

v6

• A simple path is a path that contains every node only
once (except possibly the first and last node).

• (v2, v3, v4, v6, v5,v3, v1) is a path 
but not a simple path.

• There are only two simple paths between v2 and v1:
(v2, v1) and (v2, v3, v1)

• (v1, v3, v2, v1) is a simple path.

18

• A cycle is a path (of length > 1) such that  
w1 = wk

• (v3, v4, v6, v3) is a cycle.

Cycles in Directed Graphs

v1

v3 v4

v5

v2

v6

19

• A cycle is a path (of length > 1) such that  
w1 = wk

• (v3, v4, v6, v3) is a cycle.

Cycles in Directed Graphs

v1

v3 v4

v5

v2

v6

• A Directed Acyclic Graph (DAG) is a directed graph that
contains no cycles.

20

• A cycle is a path (of length > 1) such that  
w1 = wk

• (v3, v4, v6, v3) is a cycle.

Cycles in Directed Graphs

v1

v3 v4

v5

v2

v6

• A Directed Acyclic Graph (DAG) is a directed graph that
contains no cycles.

20

Columbia CS Course
Prerequisites as a DAG

Please do not use this figure for program planning! No
guarantee for accuracy.

W1004 W3134

W1007 W3137

W3157

W3203

W3261

W4111

W4115 W4156

W4701

21

• An undirected graph is connected if there is a  
path from every vertex to every other vertex.

Connectivity

connected graph22

• An undirected graph is connected if there is a  
path from every vertex to every other vertex.

Connectivity

unconnected graph23

• A directed graph is weakly connected if there is
an undirected path from every vertex to every other
vertex.

Connectivity in Directed
Graphs

weakly connected graph 24

• A directed graph is strongly connected if there is
a path from every vertex to every other vertex.

Strongly Connected Graphs

v

Weakly connected, but not strongly
connected (no other vertex can be

reached from v).
25

• A directed graph is strongly connected if there is
a path from every vertex to every other vertex.

Strongly Connected Graphs

strongly connected

26

• A complete graph has edges between every pair
of vertices.

Complete Graphs

N=2

27

• A complete graph has edges between every pair
of vertices.

Complete Graphs

N=3

28

• A complete graph has edges between every pair
of vertices.

Complete Graphs

N=4

29

Complete Graphs

N=5

• A complete graph has edges between every pair
of vertices.

How many edges are there in a complete graph of size N?

30

Complete Graphs

N=5

• A complete graph has edges between every pair
of vertices.

How many edges are there in a complete graph of size N?

30

Representing Graphs
• Represent graph G = (E,V), option 1:

• N x N Adjacency Matrix represented as 2-
dimensional Boolean[][].

• A[u][v] = true if (u,v) ∈ E, else false
v0

v2 v3

v4

v1

v5

f f t f f f
t f t f f f
f f f t t f
f f f f f t
f f f f f t
f f f f f f

0 1 2 3 4 5
0
1
2
3
4
5

31

Representing Graphs
• Represent graph G = (E,V), option 1:

• N x N Adjacency Matrix represented as 2-
dimensional Integer[][].

• A[u][v] = cost(u,v) if (u,v) ∈ E, else ∞
v0

v2 v3

v4

v1

v5

∞ ∞ 2 ∞ ∞ ∞
1 ∞ 3 ∞ ∞ ∞
∞ ∞ ∞ 5 4 ∞
∞ ∞ ∞ ∞ ∞ 3
∞ ∞ ∞ ∞ ∞ 4
∞ ∞ ∞ ∞ ∞ ∞

0 1 2 3 4 5
0
1
2
3
4
5

1 2

3 5
4

4

3

32

Representing Graphs
• Problem of Adjacency Matrix representation:

• For sparse graphs (that contain much less than  
|V|2 edges), a lot of array space is wasted.

v0

v2 v3

v4

v1

v5

0 1 2 3 4 5
0
1
2
3
4
5

1 2

3 5
4

4

3

∞ ∞ 2 ∞ ∞ ∞
1 ∞ 3 ∞ ∞ ∞
∞ ∞ ∞ 5 4 ∞
∞ ∞ ∞ ∞ ∞ 3
∞ ∞ ∞ ∞ ∞ 4
∞ ∞ ∞ ∞ ∞ ∞

33

Representing Graphs
• Problem of Adjacency Matrix representation:

• For sparse graphs (that contain much less than  
|V|2 edges), a lot of array space is wasted.

v0

v2 v3

v4

v1

v5

0 1 2 3 4 5
0
1
2
3
4
5

1 2

3 5
4

4

3

∞ ∞ 2 ∞ ∞ ∞
1 ∞ 3 ∞ ∞ ∞
∞ ∞ ∞ 5 4 ∞
∞ ∞ ∞ ∞ ∞ 3
∞ ∞ ∞ ∞ ∞ 4
∞ ∞ ∞ ∞ ∞ ∞

Space requirement:

33

• Represent graph G = (E,V), option 2: Adjacency Lists

• For each vertex, keep a list of all adjacent vertices.

Representing Graphs

v0

v2 v3

v4

v1

v5

1 2

3 5
4

4

3

v0

v1

v2

v3

v4

v5

v0:1 v2:3

v2:2

v3:3 v4:4
v5:3
v5:4

34

• Represent graph G = (E,V), option 2: Adjacency Lists

• For each vertex, keep a list of all adjacent vertices.

Representing Graphs

v0

v2 v3

v4

v1

v5

1 2

3 5
4

4

3

v0

v1

v2

v3

v4

v5

v0:1 v2:3

v2:2

v3:3 v4:4
v5:3
v5:4

Space requirement:
34

Storing Adjacency Lists
• If we construct a graph (or read it in from some

specification), a LinkedList is better than an
ArrayList because we don’t know how many
adjacent vertices there are for each vertex.

• Create an instance of a Vertex class for each vertex
and keep adjacency list in this object.

• Can also keep an index to quickly access vertices
by name.

http://www.cs.columbia.edu/~bauer/cs3134/code/week11/BasicGraph.java
35

http://www.cs.columbia.edu/~bauer/cs3134/code/week11/BasicGraph.java

