Data Structures in Java

Lecture 16: Introduction to Graphs.

11/16/2015

Daniel Bauer

- A **Graph** is a pair of two sets G=(V,E):
 - V: the set of **vertices** (or **nodes**)
 - E: the set of **edges**.
 - each edge is a pair (v,w) where $v,w \in V$

- A **Graph** is a pair of two sets G=(V,E):
 - V: the set of **vertices** (or **nodes**)
 - E: the set of **edges**.
 - each edge is a pair (v,w) where $v,w \in V$

- A **Graph** is a pair of two sets G=(V,E):
 - V: the set of **vertices** (or **nodes**)
 - E: the set of **edges**.
 - each edge is a pair (v,w) where $v,w \in V$

- A **Graph** is a pair of two sets G=(V,E):
 - V: the set of **vertices** (or **nodes**)
 - E: the set of **edges**.
 - each edge is a pair (v,w) where $v,w \in V$

$$V = \{V_{1}, V_{2}, V_{3}, V_{4}, V_{5}, V_{6}\}$$

$$E = \{(V_{1}, V_{2}), (V_{1}, V_{3}), (V_{2}, V_{3}), (V_{2}, V_{5}), (V_{3}, V_{4}), (V_{3}, V_{6}), (V_{3}, V_{6}), (V_{4}, V_{5}), (V_{4}, V_{6}), (V_{5}, V_{6})\}$$

Graphs in Computer Science

- Graphs are used to model all kinds of relational data.
- General purpose algorithms make it possible to solve problems on these models.
 - Shortest Paths, Spanning Tree, Finding Cliques, Strongly Connected Components, Network Flow, Graph Coloring, Minimum Edge/Vertex Cover, Graph Partitioning, ...

Social Networks

Interaction Networks Extracted from Text

Rail Network

Source: Days of WonderVideo Games

US Power Grid

Human Disease Network

Graph-Based Representation of Sentence Meaning

"Pascale was charged with public intoxication and resisting arrest."

Source: Kevin Knight

Graphical Models

- Graphs may be **directed** or **undirected**.
 - In directed graphs, the edge pairs are ordered.
- Edges often have some weight or cost associated with them (weighted graphs).

$$V = \{V_{1}, V_{2}, V_{3}, V_{4}, V_{5}, V_{6}\}$$

$$E = \{(V_{1}, V_{3}), (V_{2}, V_{1}), (V_{2}, V_{3}), (V_{3}, V_{4}), (V_{3}, V_{5}), (V_{4}, V_{6}), (V_{5}, V_{6})\}$$

directed graph

- Graphs may be directed or undirected.
 - In directed graphs, the edge pairs are ordered.
- Edges often have some weight or cost associated with them (weighted graphs).

$$V = \{V_{1, V_{2, V_{3, V_{4, V_{5, V_{6}}}}\}$$

$$E = \{(V_{1, V_{3}}), (V_{2, V_{1}}), (V_{2, V_{3}}), (V_{3, V_{4}}), (V_{3, V_{5}}), (V_{4, V_{6}}), (V_{5, V_{6}})\}$$

15 directed and weighted graph

Paths

- Vertex w is **adjacent** to vertex v iff $(w,v) \in E$.
- A **path** is a sequence of vertices $w_1, w_2, ..., w_k$ such that $(w_{i, w_{i+1}}) \in E$.

Paths

- Vertex w is **adjacent** to vertex v iff $(w,v) \in E$.
- A **path** is a sequence of vertices $w_1, w_2, ..., w_k$ such that $(w_{i, w_{i+1}}) \in E$.
- length of a path:
 k-1 = number of edges on path 1
- cost of a path: Sum of all edge costs.

Path from v₁ to v₆, length 3, cost 8 ¹⁷ (v₁, v₃), (v₃, v₅), (v₅, v₆)

• A **simple path** is a path that contains every node only once (except possibly the first and last node).

• A **simple path** is a path that contains every node only once (except possibly the first and last node). v_1

• $(v_2, v_3, v_4, v_6, v_5, v_3, v_1)$ is a path but not a simple path.

 A simple path is a path that contains every node only once (except possibly the first and last node).

• $(v_2, v_3, v_4, v_6, v_5, v_3, v_1)$ is a path but not a simple path.

There are only two simple paths between v₂ and v₁:
 (v₂, v₁) and (v₂, v₃, v₁)

 A simple path is a path that contains every node only once (except possibly the first and last node).

• $(v_2, v_3, v_4, v_6, v_5, v_3, v_1)$ is a path but not a simple path.

- There are only two simple paths between v₂ and v₁:
 (v₂, v₁) and (v₂, v₃, v₁)
- (v_1, v_3, v_2, v_1) is a simple path.

Cycles in Directed Graphs

- A **cycle** is a path (of length > 1) such that $W_1 = W_k$
- (v₃, v₄, v₆, v₃) is a cycle.

Cycles in Directed Graphs

- A **cycle** is a path (of length > 1) such that $W_1 = W_k$
- (v₃, v₄, v₆, v₃) is a cycle.

 A Directed Acyclic Graph (DAG) is a directed graph that contains no cycles.

Cycles in Directed Graphs

- A **cycle** is a path (of length > 1) such that $W_1 = W_k$
- (v₃, v₄, v₆, v₃) is a cycle.

 A Directed Acyclic Graph (DAG) is a directed graph that contains no cycles.

Columbia CS Course Prerequisites as a DAG

Please do not use this figure for program planning! No guarantee for accuracy. ²¹

Connectivity

• An undirected graph is **connected** if there is a path from every vertex to every other vertex.

Connectivity

• An undirected graph is **connected** if there is a path from every vertex to every other vertex.

Connectivity in Directed Graphs

 A directed graph is weakly connected if there is an undirected path from every vertex to every other vertex.

weakly connected graph

Strongly Connected Graphs

• A directed graph is **strongly connected** if there is a path from every vertex to every other vertex.

Weakly connected, but not strongly connected (no other vertex can be reached from v).

Strongly Connected Graphs

• A directed graph is **strongly connected** if there is a path from every vertex to every other vertex.

strongly connected

• A **complete graph** has edges between every pair of vertices.

N=2

• A **complete graph** has edges between every pair of vertices.

• A **complete graph** has edges between every pair of vertices.

• A **complete graph** has edges between every pair of vertices.

How many edges are there in a complete graph of size N?

• A **complete graph** has edges between every pair of vertices.

How many edges are there in a complete graph of size N?

$$\sum_{i=1}^{N-1} i = rac{N \cdot (N-1)}{2}$$

- Represent graph G = (E,V), option 1:
 - N x N Adjacency Matrix represented as 2dimensional Boolean[][].
 - $A[u][v] = true \text{ if } (u,v) \in E$, else false

- Represent graph G = (E,V), option 1:
 - N x N Adjacency Matrix represented as 2dimensional Integer[][].
 - A[u][v] = cost(u,v) if $(u,v) \in E$, else ∞

- Problem of Adjacency Matrix representation:
 - For sparse graphs (that contain much less than |V|² edges), a lot of array space is wasted.

- Problem of Adjacency Matrix representation: Space requirement: $\Theta(|V|^2)$
 - For sparse graphs (that contain much less than |V|² edges), a lot of array space is wasted.

- Represent graph G = (E,V), option 2: Adjacency Lists
 - For each vertex, keep a list of all adjacent vertices.

- Represent graph G = (E,V), option 2: Adjacency Lists
 - For each vertex, keep a list of all adjacent vertices.

Storing Adjacency Lists

- If we construct a graph (or read it in from some specification), a LinkedList is better than an ArrayList because we don't know how many adjacent vertices there are for each vertex.
- Create an instance of a Vertex class for each vertex and keep adjacency list in this object.
- Can also keep an index to quickly access vertices by name.

http://www.cs.columbia.edu/~bauer/cs3134/code/week11/BasicGraph.java