Data Structures in Java

Lecture 16: Introduction to Graphs.

Graphs

- A Graph is a pair of two sets $G=(V, E)$:
- V : the set of vertices (or nodes)
- E: the set of edges.
- each edge is a pair (v, w) where $v, w \in V$

Graphs

- A Graph is a pair of two sets $G=(V, E)$:
- V : the set of vertices (or nodes)
- E: the set of edges.
- each edge is a pair (v, w) where $v, w \in V$

Graphs

- A Graph is a pair of two sets $G=(V, E)$:
- V : the set of vertices (or nodes)
- E : the set of edges.
- each edge is a pair (v, w) where $v, w \in V$

Graphs

- A Graph is a pair of two sets $G=(V, E)$:
- V : the set of vertices (or nodes)
- E : the set of edges.
- each edge is a pair (v, w) where $v, w \in V$

$$
\begin{aligned}
\mathrm{V}= & \left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{5}, \mathrm{~V}_{6}\right\} \\
\mathrm{E}= & \left\{\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right),\left(\mathrm{V}_{1}, \mathrm{~V}_{3}\right),\left(\mathrm{V}_{2}, \mathrm{~V}_{3}\right),\left(\mathrm{V}_{2}, \mathrm{~V}_{5}\right),\left(\mathrm{V}_{3}, \mathrm{~V}_{4}\right),\right. \\
& \left.\left(\mathrm{V}_{3}, \mathrm{~V}_{6}\right),\left(\mathrm{V}_{4}, \mathrm{~V}_{5}\right),\left(\mathrm{V}_{4}, \mathrm{~V}_{6}\right),\left(\mathrm{V}_{5}, \mathrm{~V}_{6}\right)\right\}
\end{aligned}
$$

Graphs in Computer Science

- Graphs are used to model all kinds of relational data.
- General purpose algorithms make it possible to solve problems on these models.
- Shortest Paths, Spanning Tree, Finding Cliques, Strongly Connected Components, Network Flow, Graph Coloring, Minimum Edge/Vertex Cover, Graph Partitioning, ...

Social Networks

facebook

Interaction Networks Extracted from Text

http://www.cs.columbia.edu/~apoorv/SINNET/

Rail Network

Source: Days of WonderVideo Games

US Power Grid

Human Disease Network

Graph-Based Representation of Sentence Meaning

Graphical Models

Edges

- Graphs may be directed or undirected.
- In directed graphs, the edge pairs are ordered.
- Edges often have some weight or cost associated with them (weighted graphs).

$$
\begin{aligned}
V= & \left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\} \\
E= & \left\{\left(v_{1}, v_{3}\right),\left(v_{2}, v_{1}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, v_{4}\right),\right. \\
& \left.\left(v_{3}, v_{5}\right),\left(v_{4}, v_{6}\right),\left(v_{5}, v_{6}\right)\right\}
\end{aligned}
$$

directed graph

Edges

- Graphs may be directed or undirected.
- In directed graphs, the edge pairs are ordered.
- Edges often have some weight or cost associated with them (weighted graphs).

$$
\begin{aligned}
V= & \left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\} \\
E= & \left\{\left(v_{1}, v_{3}\right),\left(v_{2}, v_{1}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, v_{4}\right),\right. \\
& \left.\left(v_{3}, v_{5}\right),\left(v_{4}, v_{6}\right),\left(v_{5}, v_{6}\right)\right\}
\end{aligned}
$$

Paths

- Vertex w is adjacent to vertex v iff $(w, v) \in E$.
- A path is a sequence of vertices $w_{1}, w_{2}, \ldots, w_{k}$ such that $\left(w_{i}, w_{i+1}\right) \in E$.

Paths

- Vertex w is adjacent to vertex v iff $(w, v) \in E$.
- A path is a sequence of vertices $w_{1}, w_{2}, \ldots, w_{k}$ such that $\left(w_{i}, w_{i+1}\right) \in E$.
- length of a path:
$\mathrm{k}-1$ = number of edges on path
- cost of a path:

Sum of all edge costs.

Path from v_{1} to v_{6}, length 3 , cost 8
${ }_{17} \quad\left(v_{1}, v_{3}\right),\left(v_{3}, v_{5}\right),\left(v_{5}, v_{6}\right)$

Simple Paths

Simple Paths

- A simple path is a path that contains every node only once (except possibly the first and last node).

Simple Paths

- A simple path is a path that contains every node only once (except possibly the first and last node).
- $\left(v_{2}, v_{3}, v_{4}, v_{6}, v_{5}, v_{3}, v_{1}\right)$ is a path but not a simple path.

Simple Paths

- A simple path is a path that contains every node only once (except possibly the first and last node).
- $\left(\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{v}_{5}, \mathrm{v}_{3}, \mathrm{v}_{1}\right)$ is a path but not a simple path.
- There are only two simple paths between v_{2} and v_{1} : $\left(\mathrm{v}_{2}, \mathrm{v}_{1}\right)$ and $\left(\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{1}\right)$

Simple Paths

- A simple path is a path that contains every node only once (except possibly the first and last node).
- $\left(\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{v}_{5}, \mathrm{v}_{3}, \mathrm{v}_{1}\right)$ is a path but not a simple path.

- There are only two simple paths between v_{2} and v_{1} : $\left(v_{2}, v_{1}\right)$ and $\left(v_{2}, v_{3}, v_{1}\right)$
- $\left(v_{1}, v_{3}, v_{2}, v_{1}\right)$ is a simple path.

Cycles in Directed Graphs

- A cycle is a path (of length >1) such that $W_{1}=W_{k}$
- $\left(v_{3}, v_{4}, v_{6}, v_{3}\right)$ is a cycle.

Cycles in Directed Graphs

- A cycle is a path (of length >1) such that $W_{1}=W_{k}$
- $\left(v_{3}, v_{4}, v_{6}, v_{3}\right)$ is a cycle.

- A Directed Acyclic Graph (DAG) is a directed graph that contains no cycles.

Cycles in Directed Graphs

- A cycle is a path (of length >1) such that $W_{1}=W_{k}$
- $\left(v_{3}, v_{4}, v_{6}, v_{3}\right)$ is a cycle.

- A Directed Acyclic Graph (DAG) is a directed graph that contains no cycles.

Columbia CS Course Prerequisites as a DAG

Please do not use this figure for program planning! No guarantee for accuracy.

Connectivity

- An undirected graph is connected if there is a path from every vertex to every other vertex.

connected graph

Connectivity

- An undirected graph is connected if there is a path from every vertex to every other vertex.

unconnected ${ }_{3}$ graph

Connectivity in Directed Graphs

- A directed graph is weakly connected if there is an undirected path from every vertex to every other vertex.

weakly conneacted graph

Strongly Connected Graphs

- A directed graph is strongly connected if there is a path from every vertex to every other vertex.

Weakly connected, but not strongly connected (no other vertex can be reached from v).

Strongly Connected Graphs

- A directed graph is strongly connected if there is a path from every vertex to every other vertex.

strongly connected

Complete Graphs

- A complete graph has edges between every pair of vertices.

$$
N=2
$$

Complete Graphs

- A complete graph has edges between every pair of vertices.

$\mathrm{N}=3$

Complete Graphs

- A complete graph has edges between every pair of vertices.

$N=4$

Complete Graphs

- A complete graph has edges between every pair of vertices.

$$
N=5
$$

How many edges are there in a complete graph of size N ?

Complete Graphs

- A complete graph has edges between every pair of vertices.

$$
N=5
$$

How many edges are there in a complete graph of size N ?

$$
\sum_{i=1}^{N-1} i=\frac{N \cdot(N-1)}{2}
$$

Representing Graphs

- Represent graph $G=(E, V)$, option 1 :
- $\mathrm{N} \times \mathrm{N}$ Adjacency Matrix represented as 2dimensional Boolean[][].
- $A[u][v]=$ true if $(u, v) \in E$, else false

	0		2	3	4	
0	f	f	t	f	f	f
1	t	f	t	f	f	f
2	f	f	f	t	t	f
3	f	f	f	f	f	t
4	f	f	f	f	f	t
5	f	f	f	f	f	f

Representing Graphs

- Represent graph $G=(E, V)$, option 1 :
- $\mathrm{N} \times \mathrm{N}$ Adjacency Matrix represented as 2 dimensional Integer[][].
- $A[u][v]=\operatorname{cost}(u, v)$ if $(u, v) \in E$, else ∞

		1	2	3	4	5
0	∞	∞	2	∞	∞	∞
1	1	∞	3	∞	∞	∞
2	∞	∞	∞	5	4	∞
3	∞	∞	∞	∞	∞	3
4	∞	∞	∞	∞	∞	4
5	∞	∞	∞	∞	∞	∞

Representing Graphs

- Problem of Adjacency Matrix representation:
- For sparse graphs (that contain much less than $|\mathrm{V}|^{2}$ edges), a lot of array space is wasted.

0	0	1	2	3	4	5	
0	∞	∞	2	∞	∞	∞	
1	1	∞	3	∞	∞	∞	
2	∞	∞	∞	5	4	∞	
3	∞	∞	∞	∞	∞	3	
4	∞	∞	∞	∞	∞	4	
5	∞	∞	∞	∞	∞	∞	
						33	

Representing Graphs

- Problem of Adjacency Matrix representation: Space requirement: $\Theta\left(|V|^{2}\right)$
- For sparse graphs (that contain much less than $|V|^{2}$ edges), a lot of array space is wasted.

| 0 | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | ∞ | ∞ | 2 | ∞ | ∞ | ∞ |
| 1 | 1 | ∞ | 3 | ∞ | ∞ | ∞ |
| 2 | ∞ | ∞ | ∞ | 5 | 4 | ∞ |
| 3 | ∞ | ∞ | ∞ | ∞ | ∞ | 3 |
| 4 | ∞ | ∞ | ∞ | ∞ | ∞ | 4 |
| | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ |

Representing Graphs

- Represent graph $G=(E, V)$, option 2: Adjacency Lists
- For each vertex, keep a list of all adjacent vertices.

Representing Graphs

- Represent graph $G=(E, V)$, option 2: Adjacency Lists
- For each vertex, keep a list of all adjacent vertices.

V_{0}	$\mathrm{v}_{2}: 2$	
V_{1}	v_{0} : 1	V_{2} : 3
V_{2}	$\mathrm{v}_{3}: 3$	$\mathrm{V}_{4}: 4$
V_{3}	V_{5} :3	
V_{4}	V5:4	

Space requirement: $\Theta(|V|+|E|)$

Storing Adjacency Lists

- If we construct a graph (or read it in from some specification), a LinkedList is better than an ArrayList because we don't know how many adjacent vertices there are for each vertex.
- Create an instance of a Vertex class for each vertex and keep adjacency list in this object.
- Can also keep an index to quickly access vertices by name.

