Data Structures in Java

Lecture 16: Introduction to Graphs.

11/16/2015

Daniel Bauer
Graphs

• A **Graph** is a pair of two sets $G=(V,E)$:

 • V: the set of **vertices** (or **nodes**)

 • E: the set of **edges**.

 • each edge is a pair (v,w) where $v,w \in V$
Graphs

• A **Graph** is a pair of two sets $G=(V,E)$:

 • V: the set of **vertices** (or **nodes**)

 • E: the set of **edges**.
 - each edge is a pair (v,w) where $v,w \in V$
A Graph is a pair of two sets \(G=(V,E) \):

- \(V \): the set of vertices (or nodes)
- \(E \): the set of edges.
 - each edge is a pair \((v,w) \) where \(v,w \in V \)
Graphs

- A **Graph** is a pair of two sets $G=(V,E)$:
 - V: the set of **vertices** (or **nodes**)
 - E: the set of **edges**.
 - each edge is a pair (v,w) where $v,w \in V$

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$$
$$E = \{(v_1, v_2), (v_1, v_3), (v_2, v_3), (v_2, v_5), (v_3, v_4), (v_3, v_6), (v_4, v_5), (v_4, v_6), (v_5, v_6)\}$$
Graphs in Computer Science

- Graphs are used to model all kinds of relational data.
- General purpose algorithms make it possible to solve problems on these models.
- Shortest Paths, Spanning Tree, Finding Cliques, Strongly Connected Components, Network Flow, Graph Coloring, Minimum Edge/Vertex Cover, Graph Partitioning, …
Social Networks
Interaction Networks
Extracted from Text

http://www.cs.columbia.edu/~apoorv/SINNET/
Rail Network

Source: Days of Wonder Video Games
US Power Grid

United States transmission grid
Source: FEMA
Human Disease Network

Source: Goh et al, PNAS 2007
Graph-Based Representation of Sentence Meaning

“Pascale was charged with public intoxication and resisting arrest.”

Source: Kevin Knight
Graphical Models

- rush hour
- bad weather
- accident
- traffic jam
- sirens
Edges

• Graphs may be **directed** or **undirected**.
 • In directed graphs, the edge pairs are ordered.

• Edges often have some weight or cost associated with them (**weighted** graphs).

\[V = \{ v_1, v_2, v_3, v_4, v_5, v_6 \} \]

\[E = \{(v_1, v_3), (v_2, v_1), (v_2, v_3), (v_3, v_4), (v_3, v_5), (v_4, v_6), (v_5, v_6)\} \]
Edges

- Graphs may be **directed** or **undirected**.
 - In directed graphs, the edge pairs are ordered.
- Edges often have some weight or cost associated with them (**weighted** graphs).

\[V = \{v_1, v_2, v_3, v_4, v_5, v_6 \} \]
\[E = \{(v_1, v_3), (v_2, v_1),(v_2, v_3), (v_3, v_4), (v_3, v_5), (v_4, v_6), (v_5, v_6)\} \]
Paths

- Vertex w is **adjacent** to vertex v iff $(w,v) \in E$.
- A **path** is a sequence of vertices w_1, w_2, \ldots, w_k such that $(w_i, w_{i+1}) \in E$.

![Graph Diagram]
Paths

- Vertex \(w \) is **adjacent** to vertex \(v \) iff \((w,v) \in E \).
- A **path** is a sequence of vertices \(w_1, w_2, \ldots, w_k \) such that \((w_i, w_{i+1}) \in E \).
- **length** of a path: \(k-1 = \) number of edges on path
- **cost** of a path: Sum of all edge costs.

Path from \(v_1 \) to \(v_6 \), length 3, cost 8
\((v_1, v_3), (v_3, v_5), (v_5, v_6)\)
Simple Paths
Simple Paths

- A **simple path** is a path that contains every node only once (except possibly the first and last node).
Simple Paths

• A **simple path** is a path that contains every node only once (except possibly the first and last node).

• \((v_2, v_3, v_4, v_6, v_5, v_3, v_1)\) is a path but not a simple path.
Simple Paths

• A **simple path** is a path that contains every node only once (except possibly the first and last node).

•

$(v_2, v_3, v_4, v_6, v_5, v_3, v_1)$ is a path but not a simple path.

• There are only two simple paths between v_2 and v_1: (v_2, v_1) and (v_2, v_3, v_1)
Simple Paths

• A **simple path** is a path that contains every node only once (except possibly the first and last node).

• \((v_2, v_3, v_4, v_6, v_5, v_3, v_1)\) is a path but not a simple path.

• There are only two simple paths between \(v_2\) and \(v_1\): \((v_2, v_1)\) and \((v_2, v_3, v_1)\)

• \((v_1, v_3, v_2, v_1)\) is a simple path.
Cycles in Directed Graphs

• A **cycle** is a path (of length > 1) such that \(w_1 = w_k \)

• \((v_3, v_4, v_6, v_3)\) is a cycle.
Cycles in Directed Graphs

- **A cycle** is a path (of length > 1) such that $w_1 = w_k$

- (v_3, v_4, v_6, v_3) is a cycle.

- **A Directed Acyclic Graph (DAG)** is a directed graph that contains no cycles.
Cycles in Directed Graphs

- A **cycle** is a path (of length > 1) such that $w_1 = w_k$

- (v_3, v_4, v_6, v_3) is a cycle.

- A **Directed Acyclic Graph (DAG)** is a directed graph that contains no cycles.
Columbia CS Course
Prerequisites as a DAG

Please do not use this figure for program planning! No guarantee for accuracy.
Connectivity

• An undirected graph is connected if there is a path from every vertex to every other vertex.
Connectivity

- An undirected graph is **connected** if there is a path from every vertex to every other vertex.

![Diagram of connected and disconnected graphs](image-url)
Connectivity in Directed Graphs

• A directed graph is \textit{weakly connected} if there is an \textit{undirected} path from every vertex to every other vertex.
Strongly Connected Graphs

• A directed graph is **strongly connected** if there is a path from every vertex to every other vertex.

Weakly connected, but not strongly connected (no other vertex can be reached from v).
A directed graph is **strongly connected** if there is a path from every vertex to every other vertex.

Strongly Connected Graphs

![Diagram of a strongly connected graph]
Complete Graphs

- A **complete graph** has edges between every pair of vertices.
Complete Graphs

• A complete graph has edges between every pair of vertices.
Complete Graphs

- A **complete graph** has edges between every pair of vertices.

![Diagram of a complete graph with 4 vertices](image)

N=4
Complete Graphs

- A **complete graph** has edges between every pair of vertices.

How many edges are there in a complete graph of size N?
Complete Graphs

- A **complete graph** has edges between every pair of vertices.

How many edges are there in a complete graph of size N?

$$\sum_{i=1}^{N-1} i = \frac{N \cdot (N - 1)}{2}$$

$N=5$
Representing Graphs

• Represent graph G = (E, V), option 1:

 • N x N **Adjacency Matrix** represented as 2-dimensional Boolean[][][].

 • $A[u][v] = \text{true}$ if $(u,v) \in E$, else false

```
0 1 2 3 4 5
0 f f t f f f f f
1 t f t f f f f
2 f f f t t f f
3 f f f f f f t
4 f f f f f f t
5 f f f f f f
```
Representing Graphs

• Represent graph \(G = (E, V) \), option 1:

 • \(N \times N \) **Adjacency Matrix** represented as 2-dimensional Integer[][][].

 • \(A[u][v] = \text{cost}(u,v) \) if \((u,v) \in E \), else \(\infty \)

```
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
0 & \infty & \infty & 2 & \infty & \infty & \infty \\
1 & 1 & \infty & 3 & \infty & \infty & \infty \\
2 & \infty & \infty & \infty & 5 & 4 & \infty \\
3 & \infty & \infty & \infty & \infty & \infty & 3 \\
4 & \infty & \infty & \infty & \infty & \infty & 4 \\
5 & \infty & \infty & \infty & \infty & \infty & \infty \\
\end{array}
```
Representing Graphs

- Problem of Adjacency Matrix representation:
 - For **sparse** graphs (that contain much less than $|V|^2$ edges), a lot of array space is wasted.
Representing Graphs

- Problem of Adjacency Matrix representation:
 - For **sparse** graphs (that contain much less than $|V|^2$ edges), a lot of array space is wasted.

![Adjacency Matrix Example](image)

Space requirement: $\Theta(|V|^2)$
Representing Graphs

- Represent graph $G = (E, V)$, option 2: **Adjacency Lists**
 - For each vertex, keep a list of all adjacent vertices.
Representing Graphs

• Represent graph $G = (E,V)$, option 2: **Adjacency Lists**

• For each vertex, keep a list of all adjacent vertices.

\[
\begin{array}{l}
\text{v}_0: 1 \quad \text{v}_2: 3 \\
\text{v}_1: 2 \\
\text{v}_3: 3 \\
\text{v}_4: 4 \\
\text{v}_5: 3 \\
\end{array}
\]

Space requirement: $\Theta(|V| + |E|)$
Storing Adjacency Lists

- If we construct a graph (or read it in from some specification), a LinkedList is better than an ArrayList because we don’t know how many adjacent vertices there are for each vertex.

- Create an instance of a Vertex class for each vertex and keep adjacency list in this object.

- Can also keep an index to quickly access vertices by name.

http://www.cs.columbia.edu/~bauer/cs3134/code/week11/BasicGraph.java