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• A Graph is a pair of two sets G=(V,E):  

• V: the set of vertices (or nodes) 

• E: the set of edges. 
• each edge is a pair (v,w) where 

v,w ∈ V 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• A Graph is a pair of two sets G=(V,E):  

• V: the set of vertices (or nodes) 

• E: the set of edges. 
• each edge is a pair (v,w) where 

v,w ∈ V 

Graphs
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V = {v1, v2, v3, v4, v5, v6 }
E = {(v1, v2), (v1, v3), (v2, v3),(v2, v5),(v3, v4),  
        (v3, v6),(v4, v5), (v4, v6), (v5, v6)}
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• Graphs are used to model all kinds of relational data.  

• General purpose algorithms make it possible to solve 
problems on these models. 

• Shortest Paths, Spanning Tree, Finding Cliques, 
Strongly Connected Components, Network Flow, 
Graph Coloring, Minimum Edge/Vertex Cover, Graph 
Partitioning, … 

Graphs in Computer 
Science
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Social Networks
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Interaction Networks 
Extracted from Text

http://www.cs.columbia.edu/~apoorv/SINNET/8

http://www.cs.columbia.edu/~apoorv/SINNET/


Rail Network

Source: Days of WonderVideo Games 9



US Power Grid
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Human Disease Network

Source: Goh et al, PNAS 2007 11



Graph-Based Representation 
of Sentence Meaning

Source: Kevin Knight

“Pascale was 
charged with 

public intoxication 
and resisting 

arrest.”
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Graphical Models

rush hour bad 
weather accident

sirenstraffic jam
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Edges
• Graphs may be directed or undirected. 

• In directed graphs, the edge pairs are ordered.  

• Edges often have some weight or cost associated 
with them (weighted graphs).

v1

v3 v4

v5

v2

v6
E = {(v1, v3), (v2, v1),(v2, v3), (v3, v4),  
        (v3, v5), (v4, v6), (v5, v6)}

V = {v1, v2, v3, v4, v5, v6 }

directed graph
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Edges
• Graphs may be directed or undirected. 

• In directed graphs, the edge pairs are ordered.  

• Edges often have some weight or cost associated 
with them (weighted graphs).

v1

v3 v4

v5

v2

v6
E = {(v1, v3), (v2, v1),(v2, v3), (v3, v4),  
        (v3, v5), (v4, v6), (v5, v6)}

V = {v1, v2, v3, v4, v5, v6 }

directed and weighted graph

1 3

5 6
2

3
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Paths
• Vertex w is adjacent to vertex v iff (w,v) ∈ E. 

• A path is a sequence of vertices w1, w2, …, wk 
such that (wi, wi+1) ∈ E. 
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Paths

v1

v3 v4

v5

v2

v6

1 3

5 6
2

3

1

Path from v1 to v6, length 3, cost 8
(v1, v3), (v3, v5), (v5, v6)

• Vertex w is adjacent to vertex v iff (w,v) ∈ E. 

• A path is a sequence of vertices w1, w2, …, wk 
such that (wi, wi+1) ∈ E. 

• length of a path:   
   k-1 = number of edges on path 

• cost of a path:  
   Sum of all edge costs.  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Simple Paths
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• A simple path is a path that contains every node only 
once (except possibly the first and last node).
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• A simple path is a path that contains every node only 
once (except possibly the first and last node).

• (v2, v3, v4, v6, v5,v3, v1) is a path 
but not a simple path.
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• A simple path is a path that contains every node only 
once (except possibly the first and last node).

• (v2, v3, v4, v6, v5,v3, v1) is a path 
but not a simple path.

• There are only two simple paths between v2 and v1:   
(v2, v1) and (v2, v3, v1) 
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Simple Paths
v1

v3 v4

v5

v2

v6

• A simple path is a path that contains every node only 
once (except possibly the first and last node).

• (v2, v3, v4, v6, v5,v3, v1) is a path 
but not a simple path.

• There are only two simple paths between v2 and v1:   
(v2, v1) and (v2, v3, v1) 

• (v1, v3, v2, v1) is a simple path. 
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• A cycle is a path (of length > 1) such that  
w1 = wk 

• (v3, v4, v6, v3) is a cycle.

Cycles in Directed Graphs
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• A cycle is a path (of length > 1) such that  
w1 = wk 

• (v3, v4, v6, v3) is a cycle.

Cycles in Directed Graphs
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• A Directed Acyclic Graph (DAG) is a directed graph that 
contains no cycles.
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Columbia CS Course 
Prerequisites as a DAG

Please do not use this figure for program planning! No 
guarantee for accuracy.

W1004 W3134

W1007 W3137

W3157

W3203

W3261

W4111

W4115 W4156

W4701
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• An undirected graph is connected if there is a  
path from every vertex to every other vertex. 

Connectivity

connected graph22



• An undirected graph is connected if there is a  
path from every vertex to every other vertex. 

Connectivity

unconnected graph23



• A directed graph is weakly connected if there is 
an undirected path from every vertex to every other 
vertex. 

Connectivity in Directed 
Graphs

weakly connected graph 24



• A directed graph is strongly connected if there is 
a path from every vertex to every other vertex. 

Strongly Connected Graphs 

v

Weakly connected, but not strongly 
connected (no other vertex can be 

reached from v).
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• A directed graph is strongly connected if there is 
a path from every vertex to every other vertex. 

Strongly Connected Graphs 

strongly connected
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• A complete graph has edges between every pair 
of vertices. 

Complete Graphs 

N=2

27



• A complete graph has edges between every pair 
of vertices. 

Complete Graphs 

N=3
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• A complete graph has edges between every pair 
of vertices. 

Complete Graphs 

N=4
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Complete Graphs 

N=5

• A complete graph has edges between every pair 
of vertices. 

How many edges are there in a complete graph of size N? 
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Complete Graphs 

N=5

• A complete graph has edges between every pair 
of vertices. 

How many edges are there in a complete graph of size N? 
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Representing Graphs
• Represent graph G = (E,V), option 1: 

• N x N Adjacency Matrix represented as 2-
dimensional Boolean[][].  

• A[u][v] = true if (u,v) ∈ E, else false
v0

v2 v3

v4

v1

v5

f f t f f f
t f t f f f
f f f t t f
f f f f f t
f f f f f t
f f f f f f

0 1 2 3 4 5
0
1
2
3
4
5
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Representing Graphs
• Represent graph G = (E,V), option 1: 

• N x N Adjacency Matrix represented as 2-
dimensional Integer[][].  

• A[u][v] = cost(u,v) if (u,v) ∈ E, else ∞
v0

v2 v3

v4

v1

v5

∞ ∞ 2 ∞ ∞ ∞
1 ∞ 3 ∞ ∞ ∞
∞ ∞ ∞ 5 4 ∞
∞ ∞ ∞ ∞ ∞ 3
∞ ∞ ∞ ∞ ∞ 4
∞ ∞ ∞ ∞ ∞ ∞

0 1 2 3 4 5
0
1
2
3
4
5

1 2

3 5
4

4

3
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Representing Graphs
• Problem of Adjacency Matrix representation:  

• For sparse graphs (that contain much less than  
|V|2 edges), a lot of array space is wasted.

v0

v2 v3

v4

v1

v5

0 1 2 3 4 5
0
1
2
3
4
5

1 2

3 5
4

4

3

∞ ∞ 2 ∞ ∞ ∞
1 ∞ 3 ∞ ∞ ∞
∞ ∞ ∞ 5 4 ∞
∞ ∞ ∞ ∞ ∞ 3
∞ ∞ ∞ ∞ ∞ 4
∞ ∞ ∞ ∞ ∞ ∞
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Representing Graphs
• Problem of Adjacency Matrix representation:  

• For sparse graphs (that contain much less than  
|V|2 edges), a lot of array space is wasted.

v0

v2 v3

v4

v1

v5

0 1 2 3 4 5
0
1
2
3
4
5

1 2

3 5
4

4

3

∞ ∞ 2 ∞ ∞ ∞
1 ∞ 3 ∞ ∞ ∞
∞ ∞ ∞ 5 4 ∞
∞ ∞ ∞ ∞ ∞ 3
∞ ∞ ∞ ∞ ∞ 4
∞ ∞ ∞ ∞ ∞ ∞

Space requirement:
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• Represent graph G = (E,V), option 2: Adjacency Lists 

• For each vertex, keep a list of all adjacent vertices. 

Representing Graphs

v0

v2 v3

v4

v1

v5

1 2

3 5
4

4

3

v0

v1

v2

v3

v4

v5

v0:1 v2:3

v2:2

v3:3 v4:4
v5:3
v5:4
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• For each vertex, keep a list of all adjacent vertices. 

Representing Graphs
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v4
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v5
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3 5
4

4

3

v0

v1

v2

v3

v4

v5

v0:1 v2:3

v2:2

v3:3 v4:4
v5:3
v5:4

Space requirement:
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Storing Adjacency Lists
• If we construct a graph (or read it in from some 

specification), a LinkedList is better than an 
ArrayList because we don’t know how many 
adjacent vertices there are for each vertex. 

• Create an instance of a Vertex class for each vertex 
and keep adjacency list in this object.  

• Can also keep an index to quickly access vertices 
by name. 

http://www.cs.columbia.edu/~bauer/cs3134/code/week11/BasicGraph.java
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