Data Structures in Java

Lecture 14: Sorting |

11/9/2015

Daniel Bauer

Sorting Midterm Exams

. -. W

2
!
.

B e

N
»éﬂ

» 2 i ’.&.
S T o
4 ! 4
A %

——

’ .’.
n/_
’nm /

Sorting

Input: | 34| 8 |64|51|32]21

* Array containing unordered Comparables
(duplicates allowed).

Qutput: | 8 | 213234 |51 |64

* A sorted array containing the same items.

Only comparisons between pairs of items allowed
(comparison based sorting).

3

Sorting Applications

Sorting Applications

e Sorting email by date / subject ..., Sorting files by name.

Sorting Applications

e Sorting email by date / subject ..., Sorting files by name.

e Selection problem (find the k-th largest, find the median).

Sorting Applications

e Sorting email by date / subject ..., Sorting files by name.
e Selection problem (find the k-th largest, find the median).

e Efficient search (binary search on sorted data).

Sorting Applications

Sorting email by date / subject ..., Sorting files by name.
Selection problem (find the k-th largest, find the median).
Efficient search (binary search on sorted data).

Finding duplicates.

Sorting Applications

Sorting email by date / subject ..., Sorting files by name.
Selection problem (find the k-th largest, find the median).
Efficient search (binary search on sorted data).
Finding duplicates.

Greedy algorithms (explore k highest scoring paths first).

Sorting Applications

Sorting email by date / subject ..., Sorting files by name.
Selection problem (find the k-th largest, find the median).
Efficient search (binary search on sorted data).
Finding duplicates.

Greedy algorithms (explore k highest scoring paths first).

Sorting Overview

* We will discuss different sorting algorithms and compare their
running time, required space, and stability.

* Insertion sort
e Shell sort

* Heap sort
 Merge sort

* Quick sort

e Radix Sort

INnsertion Sort

5132 21

INnsertion Sort

5132 21

INnsertion Sort

32| 21

INnsertion Sort

32| 21

p=3

INnsertion Sort

32| 21

p=3

INnsertion Sort

INnsertion Sort

INnsertion Sort

INnsertion Sort

INnsertion Sort

INnsertion Sort

INnsertion Sort

INnsertion Sort

INnsertion Sort

INnsertion Sort

void insertionSort(Integer [] a) {
int j;

for(int p = 1; p < a.length; p++) {
Integer x = a[p 1;
' <afj - 1]5 3--)
1

for(j ; && X

INnsertion Sort

void insertionSort(Integer [] a) {
int j;

O(N) for(int p = 1; p < a.length; p++) {
Integer x = a[p 1;

- p; J > 0 & x <alj - 15 3--)
=al J - 11];
X;

Total: O(N?)

INnsertion Sort

void insertionSort(Integer [] a) {
int j;

O(N) for(int p = 1; p < a.length; p++) {
Integer x = a[p 1;

- p; J > 0 & x <alj - 15 3--)
=al J - 11];
X;

Total: O(N?)
Best case input (sorted): O(N)

INnsertion Sort

void insertionSort(Integer [] a) {
int j;

O(N) for(int p = 1; p < a.length; p++) {
Integer x = a[p 1;

- p; J > 0 & x <alj - 15 3--)
=al J - 11];
X;

Total: O(N?)
Best case input (sorted): O(N)

Worst case input (sorted in reverse order):
N

i=2+3+4+---+N=0(N?)

i=2 /

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

3011 2|5

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

.8 041513234 7 |30 1 |2 |5

hs3=5 h>=3 hy{=1

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

2118 |064|51]|32 34.30 11215

hs3=5 h>=3 hy{=1

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

3418 |30 1| 2|5

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

21 7 64|51 |32 34 8.1 2|95

hs3=5 h>=3 hy{=1

10

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

34 8 |64 1 | 2| S

10

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

211 7 |30181]132|34| 8 64.2 5

hs3=5 h>=3 hy{=1

11

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

34| 8 [64 |81]| 2 | S

11

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

21 7301323486451E

hs3=5 h>=3 hy{=1

12

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

12

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

21| 7 |30 T 2348645132.

hs3=5 h>=3 hy{=1

13

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

211 7 |30 1 2.8 6451|3234

hs3=5 h>=3 hy{=1

13

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

.7 301 1| 2 |21 8 (6451|3234

hs3=5 h>=3 hy{=1

13

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

5 730.2 211 8 [64]51]32|34

hs=5 h2=3 hi=1

14

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

.7 0o | 2|21 8 (64|51 (3234

hs=5 h2=3 hi=1

14

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

1 17 |30 5.21 8 |64 |51 (32|34

hs=5 h2=3 hi=1

15

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

I-SOS [|21 8 |64|51|32]|34

hs=5 h2=3 hi=1

15

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

112 80| 5 7.8 641513234

hs=5 h2=3 hi=1

16

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

1 2.5 7|30|8 641513234

hs=5 h2=3 hi=1

16

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

112|218 | 7 30.64 5113234

hs=5 h2=3 hi=1

17

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

1121215 | £ |30 8.513234

hs=5 h2=3 hi=1

18

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

112 |21 5 730864.3234

hs=5 h2=3 hi=1

19

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

1] 2 219 73086451E

hs=5 h2=3 hi=1

20

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

112121 95 7308645132.

hs=5 h2=3 hi=1

21

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

1121215 | £ |30 8.513264

hs=5 h2=3 hi=1

21

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

I.Z1 5|7 |30 8 |34|51|32]|064

hs3=5 ho=3 hi=1

22

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

1 2.5 /|30 8 |34 |51 |32]|064

hs3=5 ho=3 hi=1

23

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

1 221.7 30 8 [34|51|32|064

hs3=5 ho=3 hi=1

24

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

1 2-21 /|30 8 |34 |51 |32]|064

hs3=5 ho=3 hi=1

24

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

112195 21.30 8 |34 |51 |32]|064

hs3=5 ho=3 hi=1

25

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

112 5.21 30| 8 [34 51|32 |64

hs3=5 ho=3 hi=1

25

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

112195 721.8 34|51 (32|64

hs3=5 ho=3 hi=1

20

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

1121957 |21 30.34 5132|064

hs3=5 ho=3 hi=1

27

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

112157 21.303451 32 | 64

hs3=5 ho=3 hi=1

27

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

112195 7.21 30|34 5132|064

hs3=5 ho=3 hi=1

27

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

11219 |7 82130.513264

hs3=5 ho=3 hi=1

28

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

 “increment sequence” of steps hi, ho, ... ,h

h3=5 ho=3 hi=1

29

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

 “increment sequence” of steps hi, ho, ... ,h

SIEIEIEATIENEIEIE] [

h3=5 ho=3 hi=1

30

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

 “increment sequence” of steps hi, ho, ... ,h

SIEIEIEARIENEIED Gl

h3=5 ho=3 hi=1

30

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

 “increment sequence” of steps hi, ho, ... ,h

SIEIEIEARIENEY EQCIES

h3=5 ho=3 hi=1

30

Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

 “increment sequence” of steps hi, ho, ... ,h

h3=5 ho=3 hi=1

31

Shell Sort

* The running time analysis for shell sort is complex
and depends on the specific increment seguence.

* With Hibbard’s sequence (1,3,7,15,...,2%-1)
worst case running time Is @(nN?3/2)

32

Sorting Stability

* Assume we put key/value pairs sorted by keys into the
array.

o Shell Sort is unstable: keys will be sorted, but values

for the same key may be in different order than in the
iINput.

348641’4 3130 7|2 |5

vall val233

Sorting Stability

* Assume we put key/value pairs sorted by keys into the
array.

o Shell Sort is unstable: keys will be sorted, but values

for the same key may be in different order than in the
iINput.

FS cd4| 1 |84 4 | 3 |30 7| 2|5

val? val

33

Space Requirements

* Both Insertion Sort and Shell Sort operate in place.

* Only a small amount of memory required to store a
temporary value for swaps.

« Space requirement: O(1)

34

Heap Sort

e First convert an unordered array into a heap In
O(N) time.

 Then perform N deleteMin operations to retrieve
the elements in sorted order.

* each deleteMin is O(log N)

35

Heap Sort

e First convert an unordered array into a heap In
O(N) time.

 Then perform N deleteMin operations to retrieve
the elements in sorted order.

* each deleteMin is O(log N)

 Problem: This algorithm requires a second array to
store the output: O(N) space!

* |dea: re-use the freed space after each deleteMin.

35

Heap Sort Example

10

11

Heap Sort Example

Heap Sort Example

Build heap in O(N

) time

112 | 3

o

10

9

11

Heap Sort Example

Build heap in O(N

) time

112 | 3

o

10

9

11

Heap Sort Example

deleteMin, write min element into empty cell

@eﬁ

112] 3 6 |10 9 | 5 |11

38

Heap Sort Example

deleteMin, write min element into empty cell

@eﬁ

1112 | 3 o |10] 9|5 | 1

38

Heap Sort Example

Percolate down

11

Heap Sort Example

deleteMin, write min element into empty cell

@eﬁ

2| 4| 3 6 |10 9 | 11| T

40

Heap Sort Example

deleteMin, write min element into empty cell

M1(4 137|586 ([10]9]2]1

Heap Sort Example

Percolate down

4 d

31416758 (11]10]9 |2 | 1

Heap Sort Example

deleteMin, write min element into empty cell

Heap Sort Example

deleteMin, write min element into empty cell

Heap Sort Example

deleteMin, write min element into empty cell

s

Heap Sort Example

deleteMin, write min element into empty cell

Heap Sort Example

deleteMin, write min element into empty cell

46

Heap Sort Example

deleteMin, write min element into empty cell

47

Heap Sort Example

deleteMin, write min element into empty cell

of

101119876543 [2]1

Heap Sort Example

@

* Can use a max-heap if we want the output in
iIncreasing ordet.

1111019 |87 |6 |54 3|21

49

Merge Sort

* A classic divide-and-conquer algorithm.
o Split the array in half, recursively sort each half.

 Merge the two sorted lists.

34| 8 |64 | 2 |01 32|21 1

50

Merge Sort

* A classic divide-and-conquer algorithm.
o Split the array in half, recursively sort each half.

 Merge the two sorted lists.

341 8 |64 | 2 51132 (21| 1

50

Merge Sort

* A classic divide-and-conquer algorithm.
o Split the array in half, recursively sort each half.

 Merge the two sorted lists.

2| 8 |34 |04 11213251

51

Merge Sort

* A classic divide-and-conquer algorithm.
o Split the array in half, recursively sort each half.

 Merge the two sorted lists.

2

8

34

04

21

32

51

2

32

34

51

o4

51

Merging Sorted Sublists

 Keep a pointers for each sub-list in the array.

* |n each step, compare the elements they point two.
o |f alActr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

o QOtherwise, copy a[Bctr] to the output and advance Bctr.

a 2|18 (34|64 112113251
Altr Bltr
tmp

Cctr o2

Merging Sorted Sublists

 Keep a pointers for each sub-list in the array.

* |n each step, compare the elements they point two.
o |f alActr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

o QOtherwise, copy a[Bctr] to the output and advance Bctr.

a 218 (34|64 1121|3251
Altr Bltr
tmp 1

Cctr o2

Merging Sorted Sublists

 Keep a pointers for each sub-list in the array.

* |n each step, compare the elements they point two.
o |f alActr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

o QOtherwise, copy a[Bctr] to the output and advance Bctr.

a 218 (34|64 1121|3251
Altr Bltr
tmp 112

Cctr o2

Merging Sorted Sublists

 Keep a pointers for each sub-list in the array.

* |n each step, compare the elements they point two.
o |f alActr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

o QOtherwise, copy a[Bctr] to the output and advance Bctr.

a 34 | 64 2113251
AI:tr Bltr
tmp 112

Cc

Merging Sorted Sublists

tmp

Keep a pointers for each sub-list in the array.

n each step, compare the elements they point two.
o |f alActr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

o QOtherwise, copy a[Bctr] to the output and advance Bctr.

2|1 8 |34|64 1 12113251
AI:tr Bltr
112 |8 |21

2 Cetr

Merging Sorted Sublists

tmp

Keep a pointers for each sub-list in the array.

n each step, compare the elements they point two.
o |f alActr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

o QOtherwise, copy a[Bctr] to the output and advance Bctr.

52

34 | 64 21132 |51
AI:tr Bltr
1|2 21132

Merging Sorted Sublists

tmp

Keep a pointers for each sub-list in the array.

n each step, compare the elements they point two.
o |f alActr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

o QOtherwise, copy a[Bctr] to the output and advance Bctr.

34 | 64 1121 32|51
Altr Bltr
2 21132134

Cctr

Merging Sorted Sublists

tmp

Keep a pointers for each sub-list in the array.

n each step, compare the elements they point two.
o |f alActr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

o QOtherwise, copy a[Bctr] to the output and advance Bctr.

2|1 8 (34|04 1121 32|51
/\ltr
1121821321345

) T

Cctr

Merging Sorted Sublists

 Keep a pointers for each sub-list in the array.

* |n each step, compare the elements they point two.
o |f alActr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

o QOtherwise, copy a[Bctr] to the output and advance Bctr.

tmp

34

04

21

32

51

21

32

34

51

64

52

Merging Sorted Sublists

private static <T extends Comparable<T>>
void merge(T[] a, T[] tmpArray, int aCtr, int bCtr, int rightEnd) {

int leftEnd = bCtr - 1;
int tmpPos = aCtr;

int numElements = rightEnd - aCtr + 1;

// Main Loop

while(aCtr <= leftEnd && bCtr <= rightEnd)
if(a[aCtr].compareTo(a[bCtr]) <=

tmpArray[tmpPos++ |

else

tmpArray[tmpPos++ |

while(aCtr <= leftEnd)
tmpArray[tmpPos++ | =

[aCtr++];

49

[bCtr++];

49

// Copy rest of first half
al[aCtr++];

while(bCtr <= rightEnd) // Copy rest of right half

tmpArray[tmpPos++]| =

// Copy tmpArray back

al bCtr++];

for(int i = 0; 1 < numElements; i++, rightEnd--)

al rightEnd] = tmpArray[rightEnd];

Merge Sort

o Split the array in half, recursively sort each half.

 Merge the two sorted lists.

34| 8 |[64] 2 |51 (32|21 1

o4

Merge Sort

o Split the array in half, recursively sort each half.

 Merge the two sorted lists.

34| 8 |64]| 2 5113221 T

95

Merge Sort

o Split the array in half, recursively sort each half.

 Merge the two sorted lists.

34 | 8 04| 2 51132 [21] T

56

Merge Sort

o Split the array in half, recursively sort each half.

 Merge the two sorted lists.

34

8

64

2

34

04

S/

51

32

21

32

51

21

Merge Sort

o Split the array in half, recursively sort each half.

 Merge the two sorted lists.

34 | 8 04| 2 51132 [21] T
38 |34 2 |64 32 | O 1121
8 | 34 | 64 112113251

58

Merge Sort

o Split the array in half, recursively sort each half.

 Merge the two sorted lists.

34 | 8 04| 2 51132 [21] T
38 |34 2 |64 32 | O 1121
8 | 34 | 64 112113251
1121812113234 (51|064

59

Merge Sort - Implementation

private static <T extends Comparable<T>>
void mergeSort(T[] a, T[] tmpArray, int left, int right)

if(left < right) {
int center = (left + right) / 2;
mergeSort(a, tmpArray, left, center);
mergeSort(a, tmpArray, center + 1, right);
merge(a, tmpArray, left, center + 1, right);

60

Merge Sort Running Time

conqguer algorithms.

 Merge sort is a recursive algo
time analysis should be simila

seen for other algorithms of thi

search)

e Recurrence:

Recursively sort each half o

N) = 2 T(N/2) +

This running time analysis is typical for divide and

‘ithm. The running
to what we have
s type (e.g. binary

Base case: N=1 (sort a 1-element list). T(1) = 1

N Merge the two halfs

Merge Sort Running Time

N, N N
=2-2-T(—)+—=—)+N =4.-T(—)+N-+N
4 2 4

k N __
= 2% . T(k) L k.- N assume k = log N
2

= N -T(1) +logN - N

=N+ N-logN =0(NlogN)

62

Merge Sort Properties

 Worst case running time: ©(N log N)

* |s MergeSort stable”

e Space reqguirement?

63

Merge Sort Properties

 Worst case running time: ©(N log N)

* |s MergeSort stable”
Yes. Merging preservers order of elements.

e Space reqguirement?

63

Merge Sort Properties

 Worst case running time: ©(N log N)

* |s MergeSort stable”
Yes. Merging preservers order of elements.

e Space reqguirement?
Need a temporary array. O(N)

63

