Data Structures in Java

Lecture 14: Sorting I

11/9/2015

Daniel Bauer

Sorting Midterm Exams

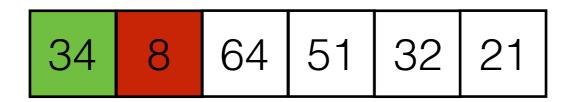
Sorting

- Input: 34 8 64 51 32 21
 - Array containing unordered **Comparables** (duplicates allowed).
- Output: 8 21 32 34 51 64
 - A sorted array containing the same items.
- Only comparisons between pairs of items allowed (comparison based sorting).

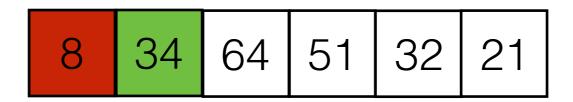
• Sorting email by date / subject ..., Sorting files by name.

- Sorting email by date / subject ..., Sorting files by name.
- Selection problem (find the k-th largest, find the median).

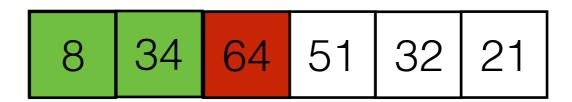
- Sorting email by date / subject ..., Sorting files by name.
- Selection problem (find the k-th largest, find the median).
- Efficient search (binary search on sorted data).


- Sorting email by date / subject ..., Sorting files by name.
- Selection problem (find the k-th largest, find the median).
- Efficient search (binary search on sorted data).
- Finding duplicates.

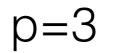
- Sorting email by date / subject ..., Sorting files by name.
- Selection problem (find the k-th largest, find the median).
- Efficient search (binary search on sorted data).
- Finding duplicates.
- Greedy algorithms (explore k highest scoring paths first).


- Sorting email by date / subject ..., Sorting files by name.
- Selection problem (find the k-th largest, find the median).
- Efficient search (binary search on sorted data).
- Finding duplicates.
- Greedy algorithms (explore k highest scoring paths first).

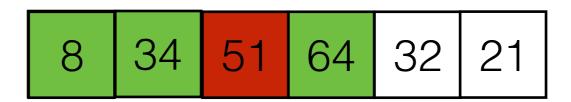
Sorting Overview

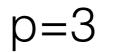

- We will discuss different sorting algorithms and compare their running time, required space, and stability.
 - Insertion sort
 - Shell sort
 - Heap sort
 - Merge sort
 - Quick sort
 - Radix Sort

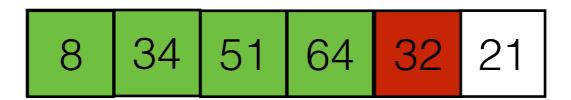
- Perform p=1...N-1 passes through the array.
 - Assume array[0..p-1] is already sorted.
 - Take the element x at position p.
 - Repeatedly swap x its left neighbor until it is in the correct position.



- Perform p=1...N-1 passes through the array.
 - Assume array[0..p-1] is already sorted.
 - Take the element x at position p.
 - Repeatedly swap x its left neighbor until it is in the correct position.

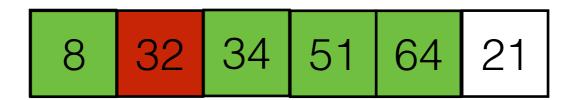


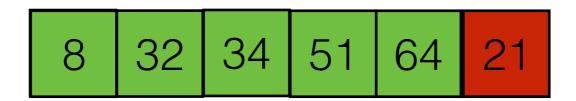

- Perform p=1...N-1 passes through the array.
 - Assume array[0..p-1] is already sorted.
 - Take the element x at position p.
 - Repeatedly swap x its left neighbor until it is in the correct position.



- Perform p=1...N-1 passes through the array.
 - Assume array[0..p-1] is already sorted.
 - Take the element x at position p.
 - Repeatedly swap x its left neighbor until it is in the correct position.

- Perform p=1...N-1 passes through the array.
 - Assume array[0..p-1] is already sorted.
 - Take the element x at position p.
 - Repeatedly swap x its left neighbor until it is in the correct position.


- Perform p=1...N-1 passes through the array.
 - Assume array[0..p-1] is already sorted.
 - Take the element x at position p.
 - Repeatedly swap x its left neighbor until it is in the correct position.


- Perform p=1...N-1 passes through the array.
 - Assume array[0..p-1] is already sorted.
 - Take the element x at position p.
 - Repeatedly swap x its left neighbor until it is in the correct position.

- Perform p=1...N-1 passes through the array.
 - Assume array[0..p-1] is already sorted.
 - Take the element x at position p.
 - Repeatedly swap x its left neighbor until it is in the correct position.

- Perform p=1...N-1 passes through the array.
 - Assume array[0..p-1] is already sorted.
 - Take the element x at position p.
 - Repeatedly swap x its left neighbor until it is in the correct position.

- Perform p=1...N-1 passes through the array.
 - Assume array[0..p-1] is already sorted.
 - Take the element x at position p.
 - Repeatedly swap x its left neighbor until it is in the correct position.

- Perform p=1...N-1 passes through the array.
 - Assume array[0..p-1] is already sorted.
 - Take the element x at position p.
 - Repeatedly swap x its left neighbor until it is in the correct position.

- Perform p=1...N-1 passes through the array.
 - Assume array[0..p-1] is already sorted.
 - Take the element x at position p.
 - Repeatedly swap x its left neighbor until it is in the correct position.

- Perform p=1...N-1 passes through the array.
 - Assume array[0..p-1] is already sorted.
 - Take the element x at position p.
 - Repeatedly swap x its left neighbor until it is in the correct position.

- Perform p=1...N-1 passes through the array.
 - Assume array[0..p-1] is already sorted.
 - Take the element x at position p.
 - Repeatedly swap x its left neighbor until it is in the correct position.

void insertionSort(Integer [] a) {
 int j;

void insertionSort(Integer [] a) {
 int j;

O(N) for(int p = 1; p < a.length; p++) {
 Integer x = a[p];
 O(N) for(j = p; j > 0 && x < a[j - 1]; j--)
 a[j] = a[j - 1];
 a[j] = x;
 }
}</pre>

Total: $O(N^2)$

void insertionSort(Integer [] a) {
 int j;

O(N) for(int p = 1; p < a.length; p++) {
 Integer x = a[p];
 O(N) for(j = p; j > 0 && x < a[j - 1]; j--)
 a[j] = a[j - 1];
 a[j] = x;
 }
}</pre>

Total: O(N²)

Best case input (sorted): O(N)

void insertionSort(Integer [] a) {
 int j;

O(N) for(int p = 1; p < a.length; p++) {
 Integer x = a[p];
 O(N) for(j = p; j > 0 && x < a[j - 1]; j--)
 a[j] = a[j - 1];
 a[j] = x;
 }
}</pre>

Total: O(N²)

Best case input (sorted): O(N)

Worst case input (sorted in reverse order):

 ΛT

$$\sum_{i=2}^{N} i = 2 + 3 + 3 + 4 + \dots + N = \Theta(N^2)$$

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

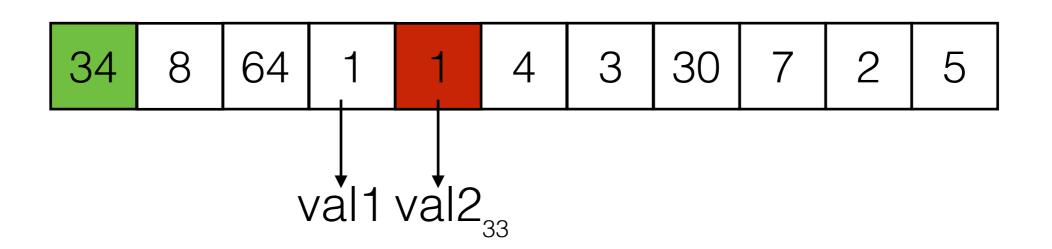
- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

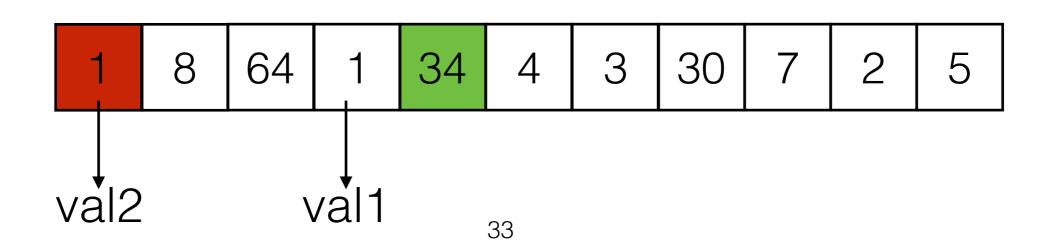
- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t


- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- Generalize insertion sort so that items that are further apart can be swapped.
- Break up sorting into phases. Each phase k makes sure that all items space h_k apart are sorted.
- "increment sequence" of steps h_1, h_2, \ldots, h_t

- The running time analysis for shell sort is complex and depends on the specific increment sequence.
- With Hibbard's sequence $(1,3,7,15,\ldots,2^{k}-1)$ worst case running time is $\Theta(N^{3/2})$


Sorting Stability

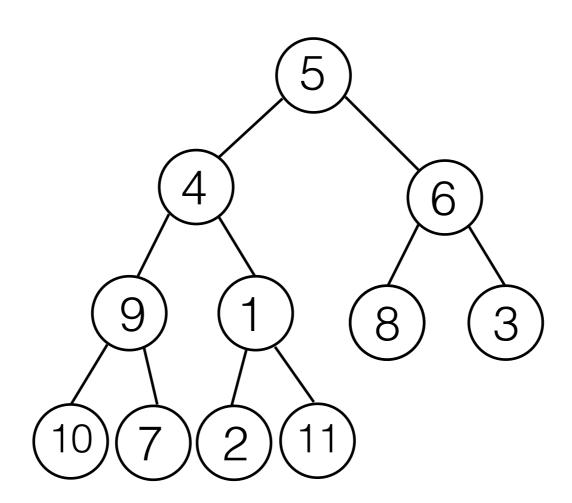
- Assume we put key/value pairs sorted by keys into the array.
 - Shell Sort is *unstable*: keys will be sorted, but values for the same key may be in different order than in the input.

Sorting Stability

- Assume we put key/value pairs sorted by keys into the array.
 - Shell Sort is *unstable*: keys will be sorted, but values for the same key may be in different order than in the input.

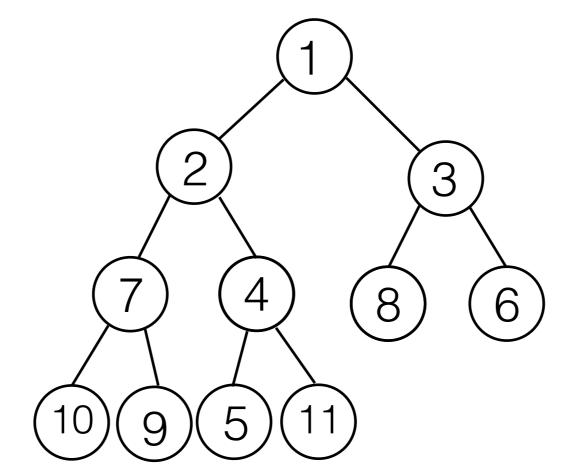
Space Requirements

- Both Insertion Sort and Shell Sort operate in place.
- Only a small amount of memory required to store a temporary value for swaps.
- Space requirement: O(1)

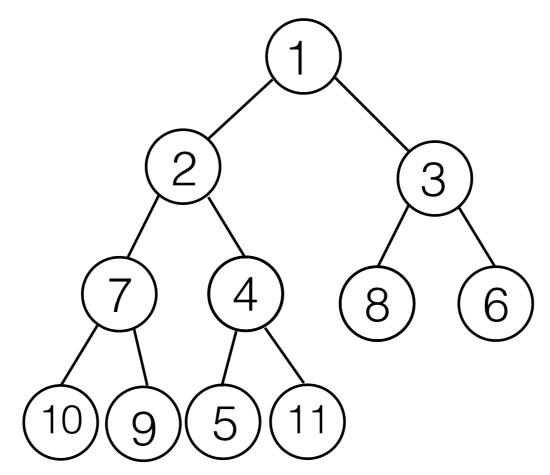

Heap Sort

- First convert an unordered array into a heap in O(N) time.
- Then perform N deleteMin operations to retrieve the elements in sorted order.
 - each deleteMin is O(log N)

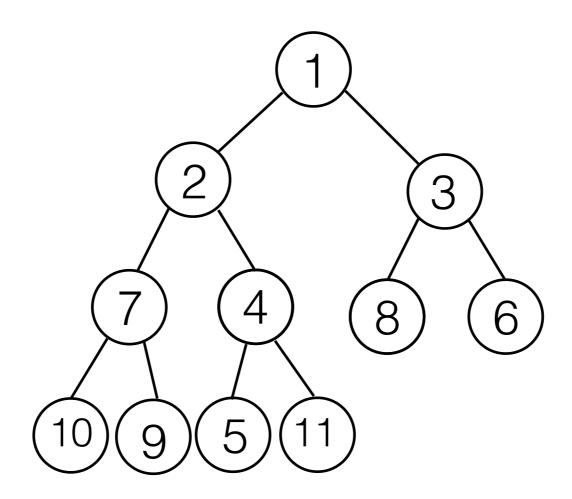
Heap Sort


- First convert an unordered array into a heap in O(N) time.
- Then perform N deleteMin operations to retrieve the elements in sorted order.
 - each deleteMin is O(log N)
- Problem: This algorithm requires a second array to store the output: O(N) space!
- Idea: re-use the freed space after each deleteMin.

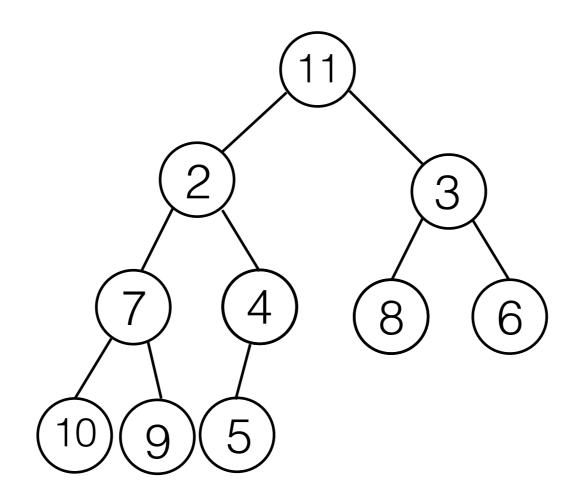
5	4	6	9	1	8	3	10	7	2	11
---	---	---	---	---	---	---	----	---	---	----

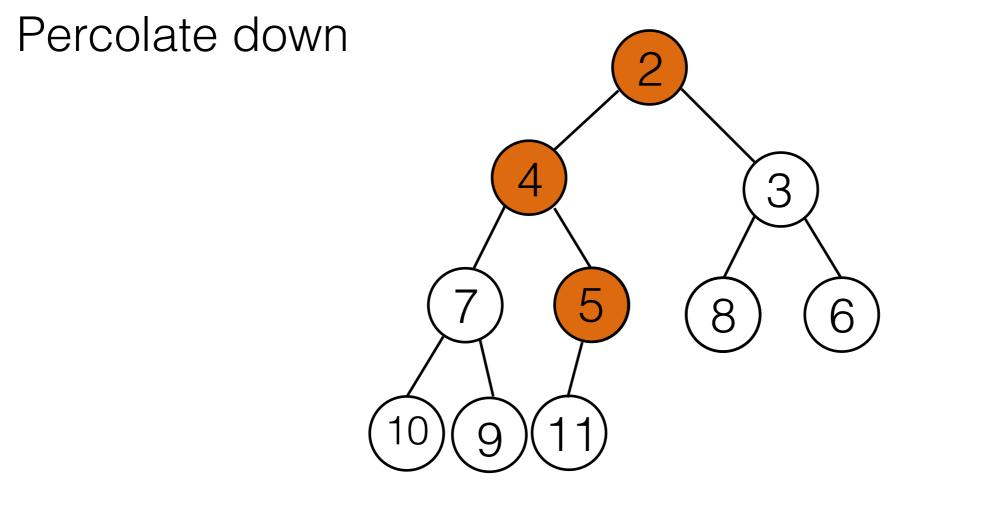

	5	4	6	9	1	8	3	10	7	2	11	
--	---	---	---	---	---	---	---	----	---	---	----	--

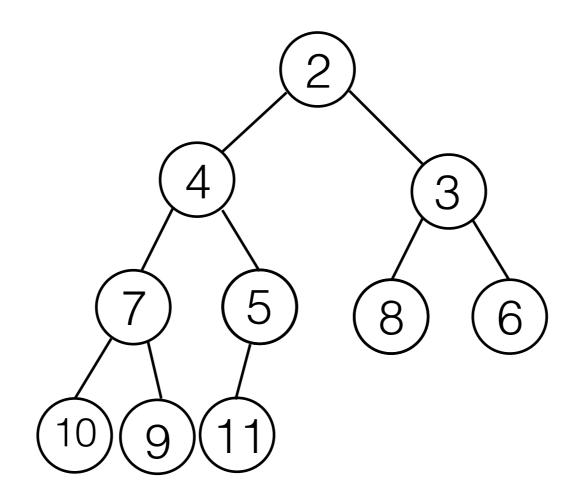
Build heap in O(N) time

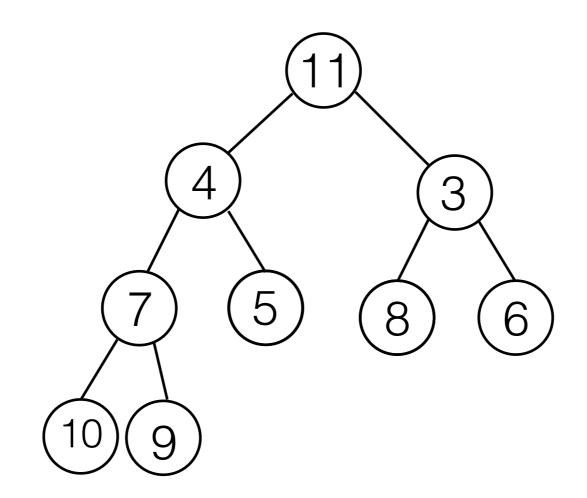


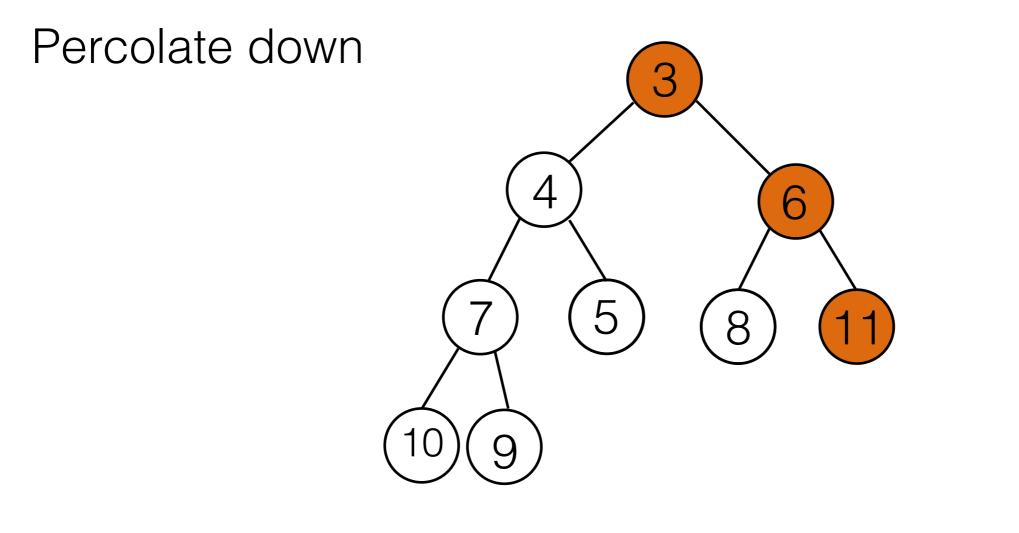
1	2 3	7	4	8	6	10	9	5	11
---	-----	---	---	---	---	----	---	---	----

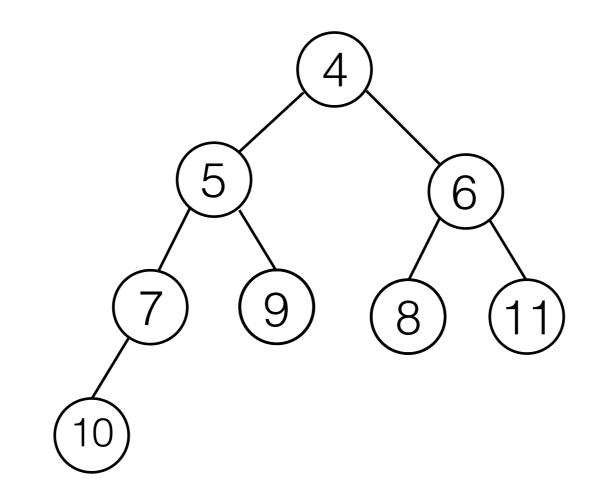

Build heap in O(N) time

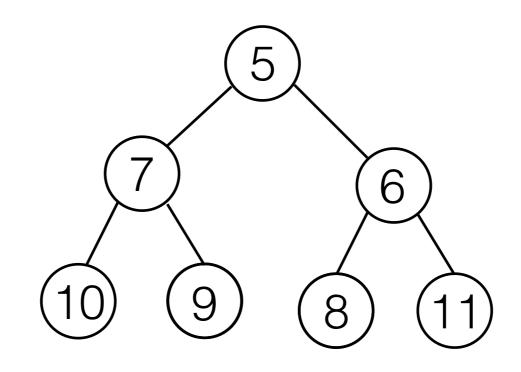

	1	2	3	7	4	8	6	10	9	5	11	
--	---	---	---	---	---	---	---	----	---	---	----	--

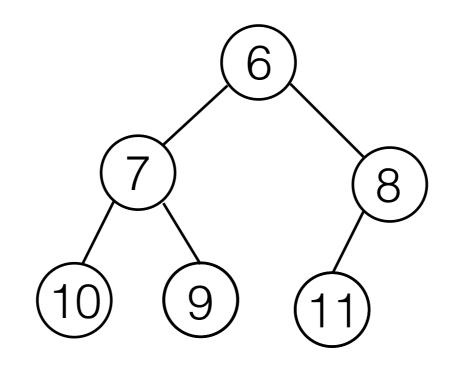

	1	2	3	7	4	8	6	10	9	5	11
--	---	---	---	---	---	---	---	----	---	---	----

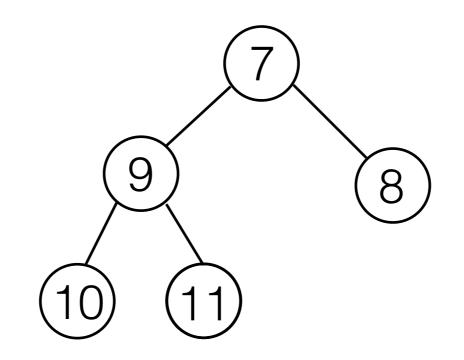

	11	2	3	7	4	8	6	10	9	5	1
--	----	---	---	---	---	---	---	----	---	---	---

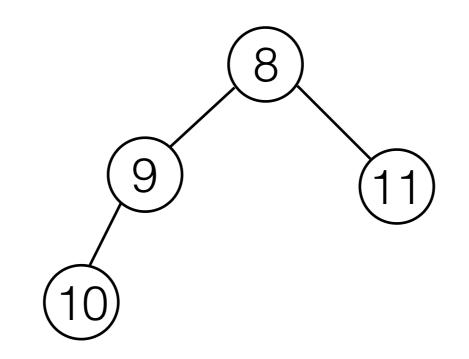

	2	4	3	7	5	8	6	10	9	11	1	
--	---	---	---	---	---	---	---	----	---	----	---	--

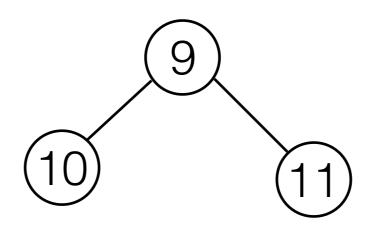

	2	4	3	7	5	8	6	10	9	11	1	
--	---	---	---	---	---	---	---	----	---	----	---	--

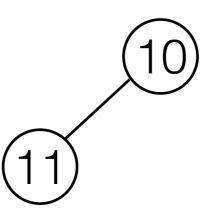

	11	4	3	7	5	8	6	10	9	2	1
--	----	---	---	---	---	---	---	----	---	---	---


	3	4	6	7	5	8	11	10	9	2	1
--	---	---	---	---	---	---	----	----	---	---	---

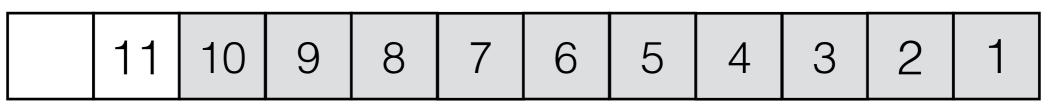

	4	5	6	7	9	8	11	10	3	2	1
--	---	---	---	---	---	---	----	----	---	---	---


	5	7	6	10	9	8	11	4	3	2	1
--	---	---	---	----	---	---	----	---	---	---	---

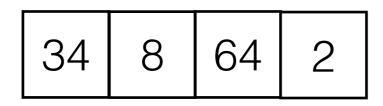

	6	7	8	10	9	11	5	4	3	2	1
--	---	---	---	----	---	----	---	---	---	---	---


	7	9	8	10	11	6	5	4	3	2	1
--	---	---	---	----	----	---	---	---	---	---	---

	8	9	11	10	7	6	5	4	3	2	1	
--	---	---	----	----	---	---	---	---	---	---	---	--


	9	10	11	8	7	6	5	4	3	2	1	
--	---	----	----	---	---	---	---	---	---	---	---	--

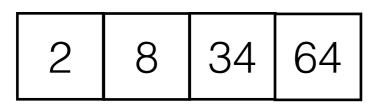
	10	11	9	8	7	6	5	4	3	2	1	
--	----	----	---	---	---	---	---	---	---	---	---	--

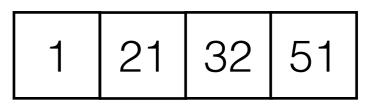


• Can use a max-heap if we want the output in increasing order.

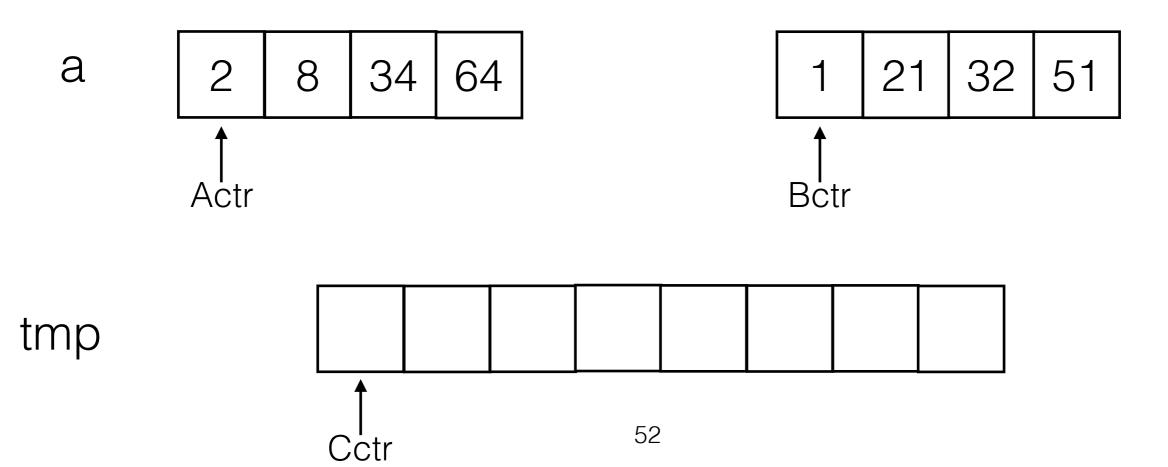
- A classic *divide-and-conquer* algorithm.
- Split the array in half, recursively sort each half.
- Merge the two sorted lists.

- A classic *divide-and-conquer* algorithm.
- Split the array in half, recursively sort each half.
- Merge the two sorted lists.


51	32	21	1
----	----	----	---

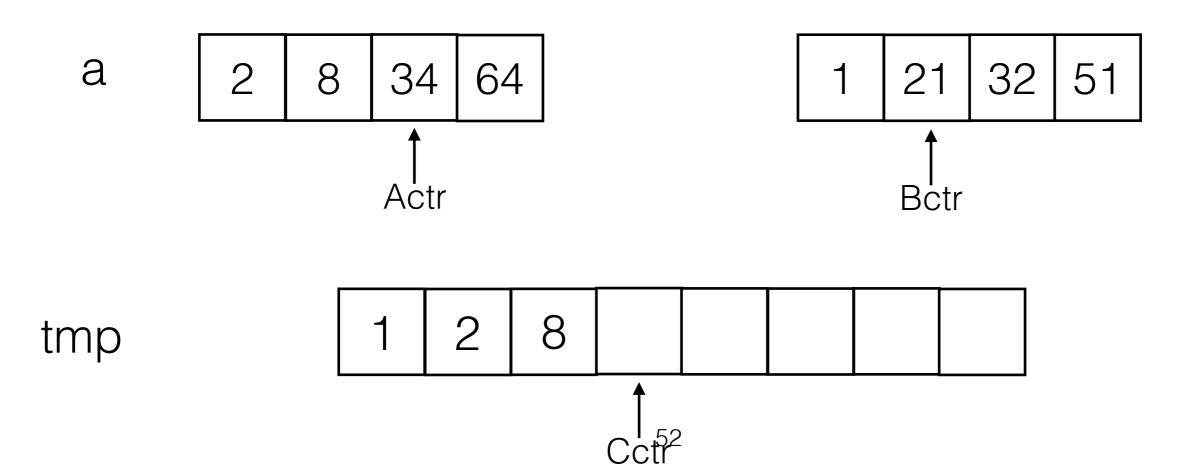

- A classic *divide-and-conquer* algorithm.
- Split the array in half, recursively sort each half.
- Merge the two sorted lists.

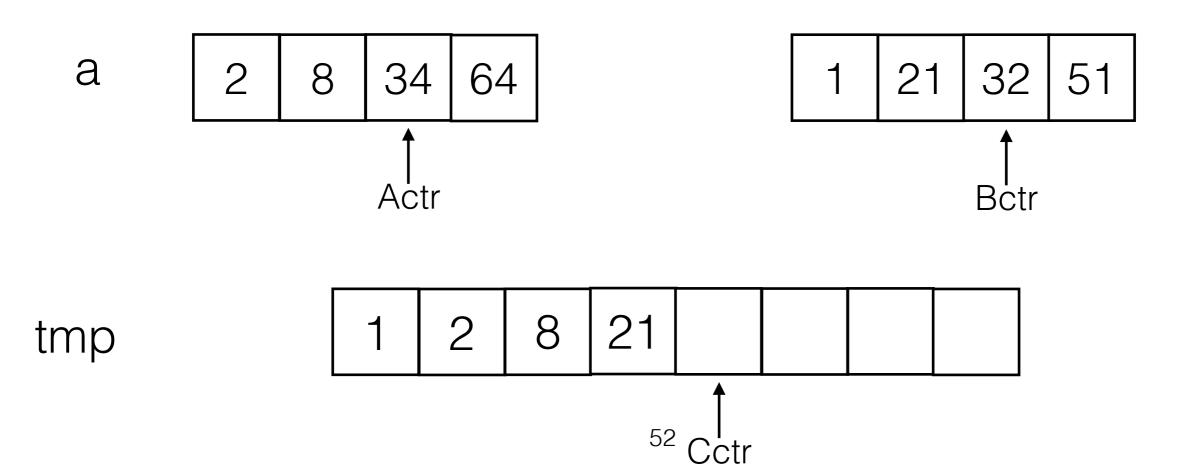
2 8	34	64
-----	----	----

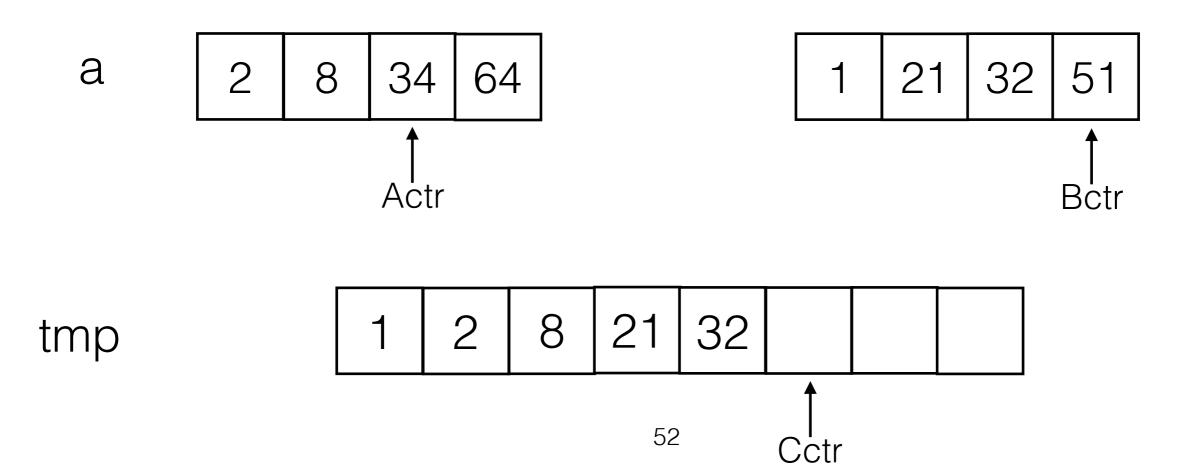

1 21	32	51
------	----	----

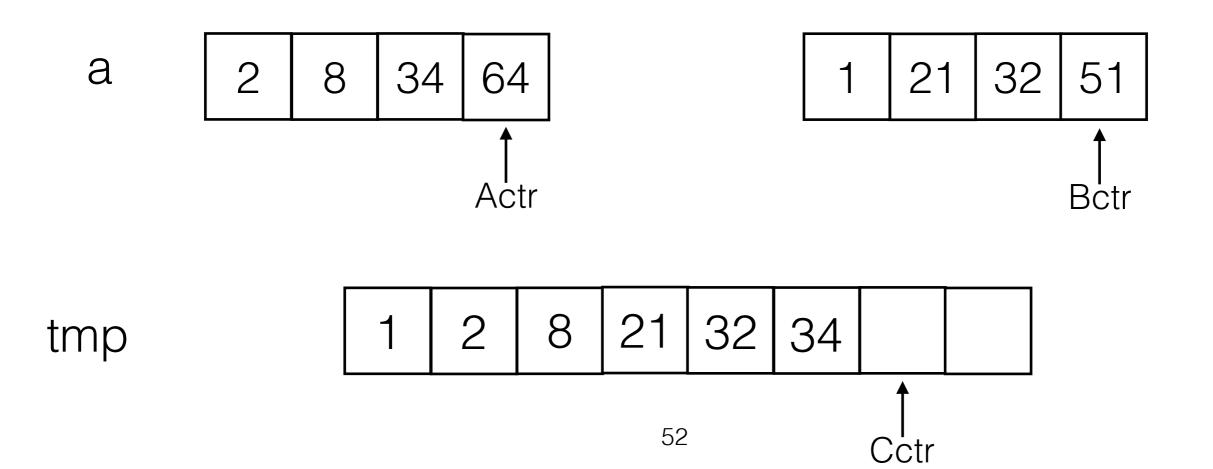
- A classic *divide-and-conquer* algorithm.
- Split the array in half, recursively sort each half.
- Merge the two sorted lists.


- Keep a pointers for each sub-list in the array.
- In each step, compare the elements they point two.
 - If a[Actr] < a[Bctr], copy a[Actr] to tmp and advance Actr.
 - Otherwise, copy a[Bctr] to the output and advance Bctr.

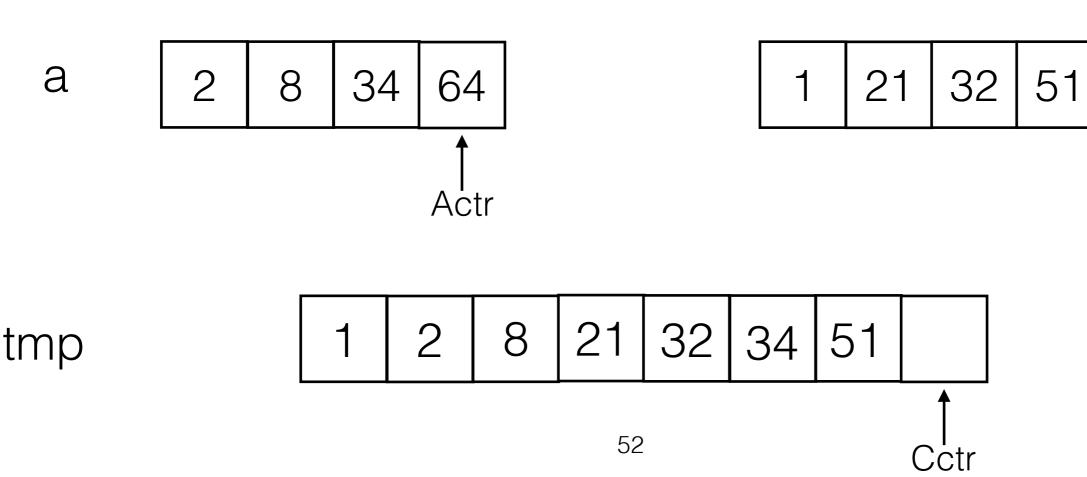

- Keep a pointers for each sub-list in the array.
- In each step, compare the elements they point two.
 - If a[Actr] < a[Bctr], copy a[Actr] to tmp and advance Actr.
 - Otherwise, copy a[Bctr] to the output and advance Bctr.


- Keep a pointers for each sub-list in the array.
- In each step, compare the elements they point two.
 - If a[Actr] < a[Bctr], copy a[Actr] to tmp and advance Actr.
 - Otherwise, copy a[Bctr] to the output and advance Bctr.


- Keep a pointers for each sub-list in the array.
- In each step, compare the elements they point two.
 - If a[Actr] < a[Bctr], copy a[Actr] to tmp and advance Actr.
 - Otherwise, copy a[Bctr] to the output and advance Bctr.

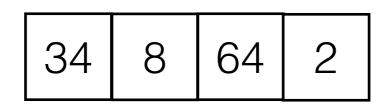

- Keep a pointers for each sub-list in the array.
- In each step, compare the elements they point two.
 - If a[Actr] < a[Bctr], copy a[Actr] to tmp and advance Actr.
 - Otherwise, copy a[Bctr] to the output and advance Bctr.

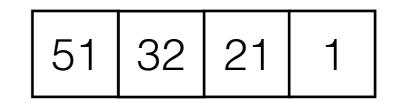
- Keep a pointers for each sub-list in the array.
- In each step, compare the elements they point two.
 - If a[Actr] < a[Bctr], copy a[Actr] to tmp and advance Actr.
 - Otherwise, copy a[Bctr] to the output and advance Bctr.



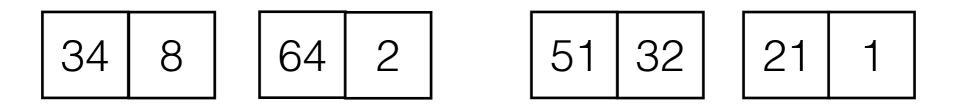
- Keep a pointers for each sub-list in the array.
- In each step, compare the elements they point two.
 - If a[Actr] < a[Bctr], copy a[Actr] to tmp and advance Actr.
 - Otherwise, copy a[Bctr] to the output and advance Bctr.

- Keep a pointers for each sub-list in the array.
- In each step, compare the elements they point two. ullet
 - If a[Actr] < a[Bctr], copy a[Actr] to tmp and advance Actr.
 - Otherwise, copy a[Bctr] to the output and advance Bctr.

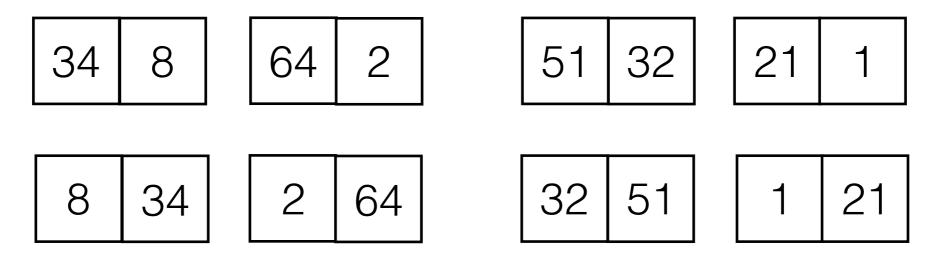

- Keep a pointers for each sub-list in the array.
- In each step, compare the elements they point two.
 - If a[Actr] < a[Bctr], copy a[Actr] to tmp and advance Actr.
 - Otherwise, copy a[Bctr] to the output and advance Bctr.

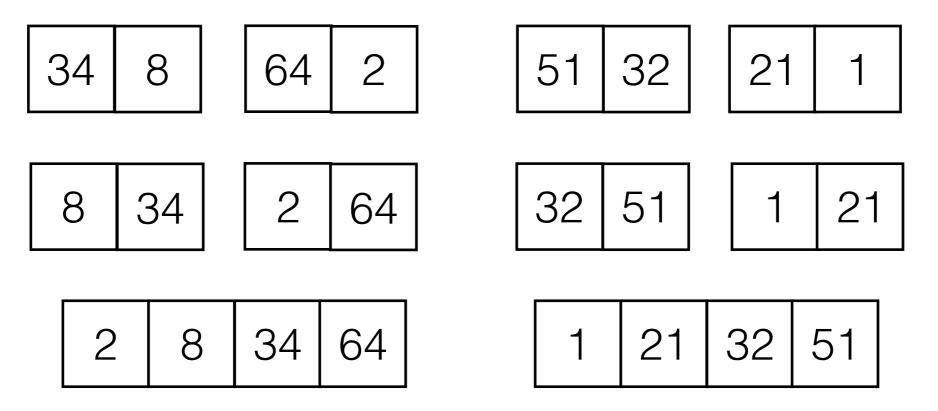

2 8	34	64	
-----	----	----	--

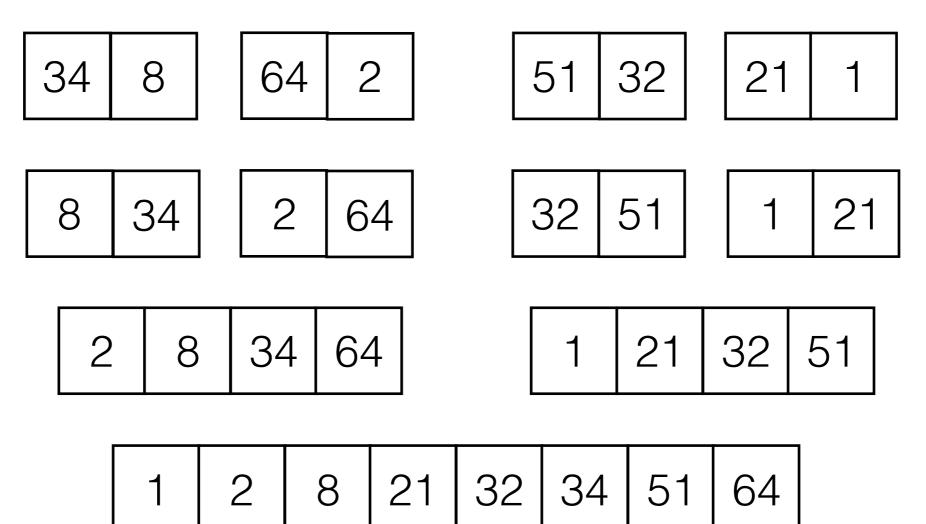
```
private static <T extends Comparable<T>>
void merge( T[] a, T[] tmpArray, int aCtr, int bCtr, int rightEnd ) {
    int leftEnd = bCtr - 1;
    int tmpPos = aCtr;
    int numElements = rightEnd - aCtr + 1;
    // Main Loop
    while( aCtr <= leftEnd && bCtr <= rightEnd )</pre>
        if( a[ aCtr ].compareTo( a[ bCtr ] ) <= 0 )</pre>
            tmpArray[ tmpPos++ ] = a[ aCtr++ ];
        else
            tmpArray[ tmpPos++ ] = a[ bCtr++ ];
    while( aCtr <= leftEnd ) // Copy rest of first half</pre>
        tmpArray[ tmpPos++ ] = a[ aCtr++ ];
    while( bCtr <= rightEnd ) // Copy rest of right half</pre>
        tmpArray[ tmpPos++ ] = a[ bCtr++ ];
    // Copy tmpArray back
    for( int i = 0; i < numElements; i++, rightEnd-- )</pre>
        a[ rightEnd ] = tmpArray[ rightEnd ];
```


- Split the array in half, recursively sort each half.
- Merge the two sorted lists.

- Split the array in half, recursively sort each half.
- Merge the two sorted lists.




- Split the array in half, recursively sort each half.
- Merge the two sorted lists.


- Split the array in half, recursively sort each half.
- Merge the two sorted lists.

- Split the array in half, recursively sort each half.
- Merge the two sorted lists.

- Split the array in half, recursively sort each half.
- Merge the two sorted lists.

Merge Sort - Implementation

```
private static <T extends Comparable<T>>
void mergeSort( T[] a, T[] tmpArray, int left, int right )

if( left < right ) {
    int center = ( left + right ) / 2;
    mergeSort( a, tmpArray, left, center );
    mergeSort( a, tmpArray, center + 1, right );
    merge( a, tmpArray, left, center + 1, right );
}</pre>
```

Merge Sort Running Time

- This running time analysis is typical for divide and conquer algorithms.
- Merge sort is a recursive algorithm. The running time analysis should be similar to what we have seen for other algorithms of this type (e.g. binary search)
- Base case: N=1 (sort a 1-element list). T(1) = 1

61

• Recurrence: T(N) = 2T(N/2) + N

Recursively sort each half

Merge Sort Running Time

$$egin{aligned} T(N) &= 2 \cdot T(rac{N}{2}) + N \ &= 2 \cdot (2 \cdot T(rac{N}{4}) + rac{N}{2}) + N \ &= 4 \cdot T(rac{N}{4}) + N + N \ &= 2^k \cdot T(rac{N}{2^k}) + k \cdot N \end{aligned}$$
 assume $k = \log N$

$$= N \cdot T(1) + log N \cdot N$$
 $= N + N \cdot \log N = \Theta(N \log N)$

. .

Merge Sort Properties

- Worst case running time: $\Theta(N \log N)$
- Is MergeSort stable?

• Space requirement?

Merge Sort Properties

- Worst case running time: $\Theta(N \log N)$
- Is MergeSort stable? Yes. Merging preservers order of elements.

• Space requirement?

Merge Sort Properties

- Worst case running time: $\Theta(N \log N)$
- Is MergeSort stable? Yes. Merging preservers order of elements.

• Space requirement?

Need a temporary array. O(N)