
Data Structures in Java
Lecture 14: Sorting I

11/9/2015

Daniel Bauer

1

Sorting Midterm Exams

2

Sorting
• Input:

• Array containing unordered Comparables
(duplicates allowed).

• Output:

• A sorted array containing the same items.

• Only comparisons between pairs of items allowed
(comparison based sorting).

34 8 64 51 32 21

8 21 32 34 51 64

3

Sorting Applications

4

Sorting Applications
• Sorting email by date / subject …, Sorting files by name.

4

Sorting Applications
• Sorting email by date / subject …, Sorting files by name.

• Selection problem (find the k-th largest, find the median).

4

Sorting Applications
• Sorting email by date / subject …, Sorting files by name.

• Selection problem (find the k-th largest, find the median).

• Efficient search (binary search on sorted data).

4

Sorting Applications
• Sorting email by date / subject …, Sorting files by name.

• Selection problem (find the k-th largest, find the median).

• Efficient search (binary search on sorted data).

• Finding duplicates.

4

Sorting Applications
• Sorting email by date / subject …, Sorting files by name.

• Selection problem (find the k-th largest, find the median).

• Efficient search (binary search on sorted data).

• Finding duplicates.

• Greedy algorithms (explore k highest scoring paths first).

4

Sorting Applications
• Sorting email by date / subject …, Sorting files by name.

• Selection problem (find the k-th largest, find the median).

• Efficient search (binary search on sorted data).

• Finding duplicates.

• Greedy algorithms (explore k highest scoring paths first).

• …

4

Sorting Overview
• We will discuss different sorting algorithms and compare their

running time, required space, and stability.

• Insertion sort

• Shell sort

• Heap sort

• Merge sort

• Quick sort

• Radix Sort

5

Insertion Sort
34 8 64 51 32 21

• Perform p=1…N-1 passes through the array.
• Assume array[0..p-1] is already sorted.
• Take the element x at position p.

• Repeatedly swap x its left neighbor until  
it is in the correct position.

p=1

6

Insertion Sort
348 64 51 32 21

• Perform p=1…N-1 passes through the array.
• Assume array[0..p-1] is already sorted.
• Take the element x at position p.

• Repeatedly swap x its left neighbor until  
it is in the correct position.

p=1

6

Insertion Sort
348 64 51 32 21

• Perform p=1…N-1 passes through the array.
• Assume array[0..p-1] is already sorted.
• Take the element x at position p.

• Repeatedly swap x its left neighbor until  
it is in the correct position.

8

p=2

64

6

Insertion Sort
348 32 21

• Perform p=1…N-1 passes through the array.
• Assume array[0..p-1] is already sorted.
• Take the element x at position p.

• Repeatedly swap x its left neighbor until  
it is in the correct position.

8 64

p=3

51

6

Insertion Sort
348 32 21

• Perform p=1…N-1 passes through the array.
• Assume array[0..p-1] is already sorted.
• Take the element x at position p.

• Repeatedly swap x its left neighbor until  
it is in the correct position.

8 64

p=3

51

6

Insertion Sort
348 21

• Perform p=1…N-1 passes through the array.
• Assume array[0..p-1] is already sorted.
• Take the element x at position p.

• Repeatedly swap x its left neighbor until  
it is in the correct position.

8 6451 32

p=4

6

Insertion Sort
348 21

• Perform p=1…N-1 passes through the array.
• Assume array[0..p-1] is already sorted.
• Take the element x at position p.

• Repeatedly swap x its left neighbor until  
it is in the correct position.

8 6451 32

p=4

6

Insertion Sort
348 21

• Perform p=1…N-1 passes through the array.
• Assume array[0..p-1] is already sorted.
• Take the element x at position p.

• Repeatedly swap x its left neighbor until  
it is in the correct position.

8 645132

p=4

6

Insertion Sort
348 21

• Perform p=1…N-1 passes through the array.
• Assume array[0..p-1] is already sorted.
• Take the element x at position p.

• Repeatedly swap x its left neighbor until  
it is in the correct position.

8 645132

p=4

6

Insertion Sort
348

• Perform p=1…N-1 passes through the array.
• Assume array[0..p-1] is already sorted.
• Take the element x at position p.

• Repeatedly swap x its left neighbor until  
it is in the correct position.

8 645132 21

p=5

6

Insertion Sort
348

• Perform p=1…N-1 passes through the array.
• Assume array[0..p-1] is already sorted.
• Take the element x at position p.

• Repeatedly swap x its left neighbor until  
it is in the correct position.

8 645132 21

p=5

6

Insertion Sort
348

• Perform p=1…N-1 passes through the array.
• Assume array[0..p-1] is already sorted.
• Take the element x at position p.

• Repeatedly swap x its left neighbor until  
it is in the correct position.

8 645132 21

p=5

6

Insertion Sort
348

• Perform p=1…N-1 passes through the array.
• Assume array[0..p-1] is already sorted.
• Take the element x at position p.

• Repeatedly swap x its left neighbor until  
it is in the correct position.

8 645132 21

p=5

6

Insertion Sort
348

• Perform p=1…N-1 passes through the array.
• Assume array[0..p-1] is already sorted.
• Take the element x at position p.

• Repeatedly swap x its left neighbor until  
it is in the correct position.

8 64513221

p=5

6

Insertion Sort
void	
 insertionSort(
 Integer	
 [
]	
 a	
)	
 {	

	
 	
 	
 	
 int	
 j;	

	
 	
 	
 	
 for(
 int	
 p	
 =	
 1;	
 p	
 <	
 a.length;	
 p++	
)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 Integer	
 x	
 =	
 a[
 p	
];	

	
 	
 	
 	
 	
 	
 	
 	
 for(
 j	
 =	
 p;	
 j	
 >	
 0	
 &&	
 x	
 <	
 a[j	
 -­‐	
 1];	
 j-­‐-­‐	
)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 a[
 j	
]	
 =	
 a[
 j	
 -­‐	
 1	
];	

	
 	
 	
 	
 	
 	
 	
 	
 a[
 j	
]	
 =	
 x;	

	
 	
 	
 	
 }	

}

7

Insertion Sort
void	
 insertionSort(
 Integer	
 [
]	
 a	
)	
 {	

	
 	
 	
 	
 int	
 j;	

	
 	
 	
 	
 for(
 int	
 p	
 =	
 1;	
 p	
 <	
 a.length;	
 p++	
)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 Integer	
 x	
 =	
 a[
 p	
];	

	
 	
 	
 	
 	
 	
 	
 	
 for(
 j	
 =	
 p;	
 j	
 >	
 0	
 &&	
 x	
 <	
 a[j	
 -­‐	
 1];	
 j-­‐-­‐	
)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 a[
 j	
]	
 =	
 a[
 j	
 -­‐	
 1	
];	

	
 	
 	
 	
 	
 	
 	
 	
 a[
 j	
]	
 =	
 x;	

	
 	
 	
 	
 }	

}

O(N)

O(N)

Total: O(N2)

7

Insertion Sort
void	
 insertionSort(
 Integer	
 [
]	
 a	
)	
 {	

	
 	
 	
 	
 int	
 j;	

	
 	
 	
 	
 for(
 int	
 p	
 =	
 1;	
 p	
 <	
 a.length;	
 p++	
)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 Integer	
 x	
 =	
 a[
 p	
];	

	
 	
 	
 	
 	
 	
 	
 	
 for(
 j	
 =	
 p;	
 j	
 >	
 0	
 &&	
 x	
 <	
 a[j	
 -­‐	
 1];	
 j-­‐-­‐	
)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 a[
 j	
]	
 =	
 a[
 j	
 -­‐	
 1	
];	

	
 	
 	
 	
 	
 	
 	
 	
 a[
 j	
]	
 =	
 x;	

	
 	
 	
 	
 }	

}

O(N)

O(N)

Total: O(N2)
Best case input (sorted): O(N)

7

Insertion Sort
void	
 insertionSort(
 Integer	
 [
]	
 a	
)	
 {	

	
 	
 	
 	
 int	
 j;	

	
 	
 	
 	
 for(
 int	
 p	
 =	
 1;	
 p	
 <	
 a.length;	
 p++	
)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 Integer	
 x	
 =	
 a[
 p	
];	

	
 	
 	
 	
 	
 	
 	
 	
 for(
 j	
 =	
 p;	
 j	
 >	
 0	
 &&	
 x	
 <	
 a[j	
 -­‐	
 1];	
 j-­‐-­‐	
)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 a[
 j	
]	
 =	
 a[
 j	
 -­‐	
 1	
];	

	
 	
 	
 	
 	
 	
 	
 	
 a[
 j	
]	
 =	
 x;	

	
 	
 	
 	
 }	

}

O(N)

O(N)

Total: O(N2)

Worst case input (sorted in reverse order):
Best case input (sorted): O(N)

7

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

34 8 64 51 32 21 7 30 1

h3 = 5

2 5

h2 = 3 h1 = 1
8

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

348 64 51 3221 7 30 1

h3 = 5

2 5

h2 = 3 h1 = 1
8

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

21 8 64 51 32 34 7 30 1

h3 = 5

2 5

h2 = 3 h1 = 1
9

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

21 864 51 32 347 30 1

h3 = 5

2 5

h2 = 3 h1 = 1
9

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

21 7 64 51 32 34 8 30 1

h3 = 5

2 5

h2 = 3 h1 = 1
10

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

21 7 6451 32 34 830 1

h3 = 5

2 5

h2 = 3 h1 = 1
10

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

21 7 30 51 32 34 8 64 1

h3 = 5

2 5

h2 = 3 h1 = 1
11

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

21 7 30 5132 34 8 641

h3 = 5

2 5

h2 = 3 h1 = 1
11

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

21 7 30 1 32 34 8 64 51

h3 = 5

2 5

h2 = 3 h1 = 1
12

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

21 7 30 1 3234 8 64 51

h3 = 5

2 5

h2 = 3 h1 = 1
12

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

21 7 30 1 2 34 8 64 51

h3 = 5

32 5

h2 = 3 h1 = 1
13

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

21 7 30 1 2 348 64 51

h3 = 5

325

h2 = 3 h1 = 1
13

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

217 30 1 2 348 64 51

h3 = 5

325

h2 = 3 h1 = 1
13

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

5 7 30 1 2 21 8 64 51

h3 = 5

32 34

h2 = 3 h1 = 1
14

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

57 301 2 21 8 64 51

h3 = 5

32 34

h2 = 3 h1 = 1
14

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 7 30 5 2 21 8 64 51

h3 = 5

32 34

h2 = 3 h1 = 1
15

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 730 52 21 8 64 51

h3 = 5

32 34

h2 = 3 h1 = 1
15

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 30 5 7 21 8 64 51

h3 = 5

32 34

h2 = 3 h1 = 1
16

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 305 721 8 64 51

h3 = 5

32 34

h2 = 3 h1 = 1
16

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 21 5 7 30 8 64 51

h3 = 5

32 34

h2 = 3 h1 = 1
17

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 21 5 7 30 8 64 51

h3 = 5

32 34

h2 = 3 h1 = 1
18

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 21 5 7 30 8 64 51

h3 = 5

32 34

h2 = 3 h1 = 1
19

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 21 5 7 30 8 64 51

h3 = 5

32 34

h2 = 3 h1 = 1
20

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 21 5 7 30 8 64 51

h3 = 5

32 34

h2 = 3 h1 = 1
21

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 21 5 7 30 8 6451

h3 = 5

3234

h2 = 3 h1 = 1
21

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 21 5 7 30 8 34 51

h3 = 5

32 64

h2 = 3 h1 = 1
22

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 21 5 7 30 8 34 51

h3 = 5

32 64

h2 = 3 h1 = 1
23

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 21 5 7 30 8 34 51

h3 = 5

32 64

h2 = 3 h1 = 1
24

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 215 7 30 8 34 51

h3 = 5

32 64

h2 = 3 h1 = 1
24

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 5 21 7 30 8 34 51

h3 = 5

32 64

h2 = 3 h1 = 1
25

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 5 217 30 8 34 51

h3 = 5

32 64

h2 = 3 h1 = 1
25

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 5 7 21 30 8 34 51

h3 = 5

32 64

h2 = 3 h1 = 1
26

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 5 7 21 30 8 34 51

h3 = 5

32 64

h2 = 3 h1 = 1
27

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 5 7 21 308 34 51

h3 = 5

32 64

h2 = 3 h1 = 1
27

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 5 7 21 308 34 51

h3 = 5

32 64

h2 = 3 h1 = 1
27

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 5 7 8 21 30 34 51

h3 = 5

32 64

h2 = 3 h1 = 1
28

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 5 7 8 21 30 34 51

h3 = 5

32 64

h2 = 3 h1 = 1
29

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 5 7 8 21 30 34 51

h3 = 5

32 64

h2 = 3 h1 = 1
30

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 5 7 8 21 30 34 51

h3 = 5

32 64

h2 = 3 h1 = 1
30

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 5 7 8 21 30 34 51

h3 = 5

32 64

h2 = 3 h1 = 1
30

Shell Sort
• Generalize insertion sort so that items that are

further apart can be swapped.

• Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

• “increment sequence” of steps h1, h2, … ,ht

1 2 5 7 8 21 30 32 34

h3 = 5

51 64

h2 = 3 h1 = 1
31

Shell Sort
• The running time analysis for shell sort is complex

and depends on the specific increment sequence.

• With Hibbard’s sequence (1,3,7,15,…,2k-1)  
worst case running time is

32

Sorting Stability
• Assume we put key/value pairs sorted by keys into the  

 array.

• Shell Sort is unstable: keys will be sorted, but values  
for the same key may be in different order than in the  
input.

34 8 64 1 4 3 30 7 2 5

val1

1

val233

Sorting Stability
• Assume we put key/value pairs sorted by keys into the  

 array.

• Shell Sort is unstable: keys will be sorted, but values  
for the same key may be in different order than in the  
input.

348 64 1 4 3 30 7 2 5

val1

1

val2 33

Space Requirements
• Both Insertion Sort and Shell Sort operate in place.

• Only a small amount of memory required to store a  
temporary value for swaps.

• Space requirement: O(1)

34

Heap Sort
• First convert an unordered array into a heap in

O(N) time.

• Then perform N deleteMin operations to retrieve
the elements in sorted order.

• each deleteMin is O(log N)

35

Heap Sort
• First convert an unordered array into a heap in

O(N) time.

• Then perform N deleteMin operations to retrieve
the elements in sorted order.

• each deleteMin is O(log N)

• Problem: This algorithm requires a second array to  
store the output: O(N) space!  

• Idea: re-use the freed space after each deleteMin.
35

Heap Sort Example

5 4 6 9 1 8 3 10 7 2 11
36

Heap Sort Example

1

2

3

4

5

6

7

89

10 11

5 4 6 9 1 8 3 10 7 2 11
36

Heap Sort Example

6

3

7 8

910

2

1

4

5 11

1 2 3 7 4 8 6 10 9 5 11

Build heap in O(N) time

37

Heap Sort Example

6

3

7 8

910

2

1

4

5 11

1 2 3 7 4 8 6 10 9 5 11

Build heap in O(N) time

37

Heap Sort Example

6

3

7 8

910

2

1

4

5 11

2 3 7 4 8 6 10 9 51 11

deleteMin, write min element into empty cell

38

Heap Sort Example

6

3

7 8

910

2

4

5

11

2 3 7 4 8 6 10 9 5 111

deleteMin, write min element into empty cell

38

Heap Sort Example

6

3

7 8

910

4

2

5

11

2 4 3 7 5 8 6 10 9 11 1

Percolate down

39

Heap Sort Example

6

3

7 8

910

4

2

5

11

4 3 7 5 8 6 10 9 1112

deleteMin, write min element into empty cell

40

Heap Sort Example

6

3

7 8

910

4

5

11

4 3 7 5 8 6 10 9 111 2

deleteMin, write min element into empty cell

40

Heap Sort Example

11

6

7 8

910

4

3

5

4 6 7 5 8 11 10 9 123

Percolate down

41

Heap Sort Example

11

6

7 89

10

4

5

5 6 7 9 8 11 10 3 124

deleteMin, write min element into empty cell

42

Heap Sort Example

11

6

10 89

5

7

7 6 10 9 8 11 4 3 125

deleteMin, write min element into empty cell

43

Heap Sort Example

8

10 119

6

7

7 8 10 9 11 5 4 3 126

deleteMin, write min element into empty cell

44

Heap Sort Example

8

10 11

7

9

9 8 10 11 6 5 4 3 127

deleteMin, write min element into empty cell

45

Heap Sort Example

11

10

8

9

9 11 10 7 6 5 4 3 128

deleteMin, write min element into empty cell

46

Heap Sort Example

11

9

10

10 11 8 7 6 5 4 3 129

deleteMin, write min element into empty cell

47

Heap Sort Example

10

11

11 9 8 7 6 5 4 3 1210

deleteMin, write min element into empty cell

48

Heap Sort Example

11

10 9 8 7 6 5 4 3 1211

• Can use a max-heap if we want the output in  
increasing order.

49

Merge Sort
• A classic divide-and-conquer algorithm.

• Split the array in half, recursively sort each half.

• Merge the two sorted lists.

51 32 21 134 8 64 2

50

Merge Sort
• A classic divide-and-conquer algorithm.

• Split the array in half, recursively sort each half.

• Merge the two sorted lists.

51 32 21 134 8 64 2

50

Merge Sort

1 21 32 512 8 34 64

• A classic divide-and-conquer algorithm.

• Split the array in half, recursively sort each half.

• Merge the two sorted lists.

51

Merge Sort

1 21 32 512 8 34 64

1 2 8 21 32 34 51 64

• A classic divide-and-conquer algorithm.

• Split the array in half, recursively sort each half.

• Merge the two sorted lists.

51

Merging Sorted Sublists

1 21 32 512 8 34 64

Actr Bctr

Cctr

• Keep a pointers for each sub-list in the array.

• In each step, compare the elements they point two.

• If a[Actr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

• Otherwise, copy a[Bctr] to the output and advance Bctr.

tmp

a

52

Merging Sorted Sublists

1 21 32 512 8 34 64

Actr Bctr

Cctr

1

• Keep a pointers for each sub-list in the array.

• In each step, compare the elements they point two.

• If a[Actr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

• Otherwise, copy a[Bctr] to the output and advance Bctr.

tmp

a

52

Merging Sorted Sublists

1 21 32 512 8 34 64

Actr Bctr

Cctr

1 2

• Keep a pointers for each sub-list in the array.

• In each step, compare the elements they point two.

• If a[Actr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

• Otherwise, copy a[Bctr] to the output and advance Bctr.

tmp

a

52

Merging Sorted Sublists

1 21 32 512 8 34 64

Actr Bctr

Cctr

1 2 8

• Keep a pointers for each sub-list in the array.

• In each step, compare the elements they point two.

• If a[Actr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

• Otherwise, copy a[Bctr] to the output and advance Bctr.

tmp

a

52

Merging Sorted Sublists

1 21 32 512 8 34 64

Actr Bctr

Cctr

1 2 8 21

• Keep a pointers for each sub-list in the array.

• In each step, compare the elements they point two.

• If a[Actr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

• Otherwise, copy a[Bctr] to the output and advance Bctr.

tmp

a

52

Merging Sorted Sublists

1 21 32 512 8 34 64

Actr Bctr

Cctr

1 2 8 21 32

• Keep a pointers for each sub-list in the array.

• In each step, compare the elements they point two.

• If a[Actr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

• Otherwise, copy a[Bctr] to the output and advance Bctr.

tmp

a

52

Merging Sorted Sublists

1 21 32 512 8 34 64

Actr Bctr

Cctr

1 2 8 21 32 34

• Keep a pointers for each sub-list in the array.

• In each step, compare the elements they point two.

• If a[Actr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

• Otherwise, copy a[Bctr] to the output and advance Bctr.

tmp

a

52

Merging Sorted Sublists

1 21 32 512 8 34 64

Actr

Cctr

1 2 8 21 32 34 51

• Keep a pointers for each sub-list in the array.

• In each step, compare the elements they point two.

• If a[Actr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

• Otherwise, copy a[Bctr] to the output and advance Bctr.

tmp

a

52

Merging Sorted Sublists

1 21 32 512 8 34 64

1 2 8 21 32 34 51 64

• Keep a pointers for each sub-list in the array.

• In each step, compare the elements they point two.

• If a[Actr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

• Otherwise, copy a[Bctr] to the output and advance Bctr.

tmp

a

52

Merging Sorted Sublists
	
 	
 	
 	
 private	
 static	
 <T	
 extends	
 Comparable<T>>	

	
 	
 	
 	
 void	
 merge(
 T[]	
 a,	
 T[]	
 tmpArray,	
 int	
 aCtr,	
 int	
 bCtr,	
 int	
 rightEnd	
)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 int	
 leftEnd	
 =	
 bCtr	
 -­‐	
 1;	

	
 	
 	
 	
 	
 	
 	
 	
 int	
 tmpPos	
 =	
 aCtr;	

	
 	
 	
 	
 	
 	
 	
 	
 int	
 numElements	
 =	
 rightEnd	
 -­‐	
 aCtr	
 +	
 1;	

	
 	
 	
 	
 	
 	
 	
 	
 //	
 Main	
 loop	

	
 	
 	
 	
 	
 	
 	
 	
 while(
 aCtr	
 <=	
 leftEnd	
 &&	
 bCtr	
 <=	
 rightEnd	
)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if(
 a[
 aCtr	
].compareTo(
 a[
 bCtr	
]	
)	
 <=	
 0	
)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 tmpArray[
 tmpPos++	
]	
 =	
 a[
 aCtr++	
];	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 else	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 tmpArray[
 tmpPos++	
]	
 =	
 a[
 bCtr++	
];	

	
 	
 	
 	
 	
 	
 	
 	
 while(
 aCtr	
 <=	
 leftEnd	
)	
 	
 	
 	
 //	
 Copy	
 rest	
 of	
 first	
 half	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 tmpArray[
 tmpPos++	
]	
 =	
 a[
 aCtr++	
];	

	
 	
 	
 	
 	
 	
 	
 	
 while(
 bCtr	
 <=	
 rightEnd	
)	
 	
 //	
 Copy	
 rest	
 of	
 right	
 half	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 tmpArray[
 tmpPos++	
]	
 =	
 a[
 bCtr++	
];	

	
 	
 	
 	
 	
 	
 	
 	
 //	
 Copy	
 tmpArray	
 back	

	
 	
 	
 	
 	
 	
 	
 	
 for(
 int	
 i	
 =	
 0;	
 i	
 <	
 numElements;	
 i++,	
 rightEnd-­‐-­‐	
)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 a[
 rightEnd	
]	
 =	
 tmpArray[
 rightEnd	
];	

	
 	
 	
 	
 } 53

Merge Sort
• Split the array in half, recursively sort each half.

• Merge the two sorted lists.

51 32 21 134 8 64 2

54

Merge Sort
• Split the array in half, recursively sort each half.

• Merge the two sorted lists.

51 32 21 134 8 64 2

55

Merge Sort
• Split the array in half, recursively sort each half.

• Merge the two sorted lists.

51 32 21 134 8 64 2

56

Merge Sort
• Split the array in half, recursively sort each half.

• Merge the two sorted lists.

51 32 21 134 8 64 2

8 34 2 64 32 51 1 21

57

Merge Sort
• Split the array in half, recursively sort each half.

• Merge the two sorted lists.

51 32 21 134 8 64 2

8 34 2 64 32 51 1 21

2 8 34 64 1 21 32 51

58

Merge Sort
• Split the array in half, recursively sort each half.

• Merge the two sorted lists.

51 32 21 134 8 64 2

8 34 2 64 32 51 1 21

2 8 34 64 1 21 32 51

1 2 8 21 32 34 51 64
59

Merge Sort - Implementation
private	
 static	
 <T	
 extends	
 Comparable<T>>	

void	
 mergeSort(
 T[]	
 a,	
 T[]	
 tmpArray,	
 int	
 left,	
 int	
 right	
)	
 	

	
 	
 	
 	
 if(
 left	
 <	
 right	
)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 int	
 center	
 =	
 (
 left	
 +	
 right	
)	
 /	
 2;	

	
 	
 	
 	
 	
 	
 	
 	
 mergeSort(
 a,	
 tmpArray,	
 left,	
 center	
);	

	
 	
 	
 	
 	
 	
 	
 	
 mergeSort(
 a,	
 tmpArray,	
 center	
 +	
 1,	
 right	
);	

	
 	
 	
 	
 	
 	
 	
 	
 merge(
 a,	
 tmpArray,	
 left,	
 center	
 +	
 1,	
 right	
);	

	
 	
 	
 	
 }	

}

60

Merge Sort Running Time
• This running time analysis is typical for divide and

conquer algorithms.

• Merge sort is a recursive algorithm. The running
time analysis should be similar to what we have
seen for other algorithms of this type (e.g. binary
search)

• Base case: N=1 (sort a 1-element list). T(1) = 1

• Recurrence: T(N) = 2 T(N/2) + N
Recursively sort each half

Merge the two halfs

61

Merge Sort Running Time

assume

62

Merge Sort Properties
• Worst case running time:

• Is MergeSort stable?  
 

• Space requirement?  
 

63

Merge Sort Properties
• Worst case running time:

• Is MergeSort stable?  
 

• Space requirement?  
 

Yes. Merging preservers order of elements.

63

Merge Sort Properties
• Worst case running time:

• Is MergeSort stable?  
 

• Space requirement?  
 

Yes. Merging preservers order of elements.

Need a temporary array. O(N)

63

