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Sorting Midterm Exams

. -. W

2
!
.

B e

N
»éﬂ

» 2 i ’.&.
S T o
_4_ ! 4
A %

——

’ .’.
n/_
’nm /



Sorting

Input: | 34| 8 |64|51|32]21

* Array containing unordered Comparables
(duplicates allowed).

Qutput: | 8 | 213234 |51 |64

* A sorted array containing the same items.

Only comparisons between pairs of items allowed
(comparison based sorting).
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Sorting email by date / subject ..., Sorting files by name.
Selection problem (find the k-th largest, find the median).
Efficient search (binary search on sorted data).
Finding duplicates.

Greedy algorithms (explore k highest scoring paths first).



Sorting Overview

* We will discuss different sorting algorithms and compare their
running time, required space, and stability.

* Insertion sort
e Shell sort

* Heap sort
 Merge sort

* Quick sort

e Radix Sort
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INnsertion Sort
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INnsertion Sort

void insertionSort( Integer [ ] a ) {
int j;

O(N) for( int p = 1; p < a.length; p++ ) {
Integer x = a[ p 1;

- p; J > 0 & x <alj - 15 3--)
=al J - 11];
X;

Total: O(N?)
Best case input (sorted): O(N)

Worst case input (sorted in reverse order):
N

i=2+3+4+---+N=0(N?)

i=2 /




Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h
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Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

21 7 64|51 |32 34 8.1 2|95

hs3=5 h>=3 hy{=1
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Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

21 7301323486451E

hs3=5 h>=3 hy{=1
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Shell Sort

e (Generalize insertion sort so that items that are
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Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h
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Shell Sort

e (Generalize insertion sort so that items that are
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Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h
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Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

112|218 | 7 30.64 5113234

hs=5 h2=3 hi=1
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Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

1121215 | £ |30 8.513234

hs=5 h2=3 hi=1
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Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

112 |21 5 730864.3234

hs=5 h2=3 hi=1
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e (Generalize insertion sort so that items that are
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Shell Sort

e (Generalize insertion sort so that items that are
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Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.
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Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h

112195 7.21 30|34 5132|064

hs3=5 ho=3 hi=1

27



Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

* “increment sequence” of steps hi, he, ... h
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hs3=5 ho=3 hi=1
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Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.

 “increment sequence” of steps hi, ho, ... ,h
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Shell Sort

e (Generalize insertion sort so that items that are
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Shell Sort

e (Generalize insertion sort so that items that are
further apart can be swapped.

* Break up sorting into phases. Each phase k makes
sure that all items space hk apart are sorted.
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Shell Sort

* The running time analysis for shell sort is complex
and depends on the specific increment seguence.

* With Hibbard’s sequence (1,3,7,15,...,2%-1)
worst case running time Is @(nN?3/2)

32



Sorting Stability

* Assume we put key/value pairs sorted by keys into the
array.

o Shell Sort is unstable: keys will be sorted, but values

for the same key may be in different order than in the
iINput.

348641’4 3130 7|2 |5

vall val233




Sorting Stability

* Assume we put key/value pairs sorted by keys into the
array.

o Shell Sort is unstable: keys will be sorted, but values

for the same key may be in different order than in the
iINput.

FS cd4| 1 |84 4 | 3 |30 7| 2|5

val? val
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Space Requirements

* Both Insertion Sort and Shell Sort operate in place.

* Only a small amount of memory required to store a
temporary value for swaps.

« Space requirement: O(1)

34



Heap Sort

e First convert an unordered array into a heap In
O(N) time.

 Then perform N deleteMin operations to retrieve
the elements in sorted order.

* each deleteMin is O(log N)
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Heap Sort

e First convert an unordered array into a heap In
O(N) time.

 Then perform N deleteMin operations to retrieve
the elements in sorted order.

* each deleteMin is O(log N)

 Problem: This algorithm requires a second array to
store the output: O(N) space!

* |dea: re-use the freed space after each deleteMin.
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Heap Sort Example
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Heap Sort Example

deleteMin, write min element into empty cell

@eﬁ

112 ] 3 6 |10 9 | 5 |11
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deleteMin, write min element into empty cell

@eﬁ

1112 | 3 o |10] 9|5 | 1
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Heap Sort Example

Percolate down
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Heap Sort Example

deleteMin, write min element into empty cell

@eﬁ

2| 4| 3 6 |10 9 | 11| T
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Heap Sort Example

deleteMin, write min element into empty cell
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Heap Sort Example

Percolate down

4 d
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deleteMin, write min element into empty cell
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deleteMin, write min element into empty cell
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Heap Sort Example

deleteMin, write min element into empty cell

of

101119876543 [2]1




Heap Sort Example

@

* Can use a max-heap if we want the output in
iIncreasing ordet.

1111019 |87 |6 |54 3|21
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Merge Sort

* A classic divide-and-conquer algorithm.
o Split the array in half, recursively sort each half.

 Merge the two sorted lists.

34| 8 |64 | 2 |01 32|21 1
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Merge Sort

* A classic divide-and-conquer algorithm.
o Split the array in half, recursively sort each half.

 Merge the two sorted lists.

2

8

34

04

21

32

51

2

32

34

51
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Merging Sorted Sublists

 Keep a pointers for each sub-list in the array.

* |n each step, compare the elements they point two.
o |f alActr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

o QOtherwise, copy a[Bctr] to the output and advance Bctr.

a 2|18 (34|64 112113251
Altr Bltr
tmp

Cctr o2
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Merging Sorted Sublists

 Keep a pointers for each sub-list in the array.

* |n each step, compare the elements they point two.
o |f alActr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

o QOtherwise, copy a[Bctr] to the output and advance Bctr.

a 34 | 64 2113251
AI:tr Bltr
tmp 112
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Merging Sorted Sublists

tmp

Keep a pointers for each sub-list in the array.

n each step, compare the elements they point two.
o |f alActr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

o QOtherwise, copy a[Bctr] to the output and advance Bctr.

2|1 8 |34|64 1 12113251
AI:tr Bltr
112 |8 |21

2 Cetr



Merging Sorted Sublists

tmp

Keep a pointers for each sub-list in the array.

n each step, compare the elements they point two.
o |f alActr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

o QOtherwise, copy a[Bctr] to the output and advance Bctr.

52
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Merging Sorted Sublists

tmp

Keep a pointers for each sub-list in the array.

n each step, compare the elements they point two.
o |f alActr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

o QOtherwise, copy a[Bctr] to the output and advance Bctr.

34 | 64 1121 32|51
Altr Bltr
2 21132134
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Merging Sorted Sublists

tmp

Keep a pointers for each sub-list in the array.

n each step, compare the elements they point two.
o |f alActr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

o QOtherwise, copy a[Bctr] to the output and advance Bctr.

2|1 8 (34|04 1121 32|51
/\ltr
1121821321345

) T

Cctr



Merging Sorted Sublists

 Keep a pointers for each sub-list in the array.

* |n each step, compare the elements they point two.
o |f alActr] < a[Bctr], copy a[Actr] to tmp and advance Actr.

o QOtherwise, copy a[Bctr] to the output and advance Bctr.

tmp

34

04

21

32

51

21

32

34

51

64

52




Merging Sorted Sublists

private static <T extends Comparable<T>>
void merge( T[] a, T[] tmpArray, int aCtr, int bCtr, int rightEnd ) {

int leftEnd = bCtr - 1;
int tmpPos = aCtr;

int numElements = rightEnd - aCtr + 1;

// Main Loop

while( aCtr <= leftEnd && bCtr <= rightEnd )
if( a[ aCtr ].compareTo( a[ bCtr ] ) <=

tmpArray[ tmpPos++ |

else

tmpArray[ tmpPos++ |

while( aCtr <= leftEnd )
tmpArray[ tmpPos++ | =

[ aCtr++ ];

49

[ bCtr++ ];

49

// Copy rest of first half
al[ aCtr++ ];

while( bCtr <= rightEnd ) // Copy rest of right half

tmpArray[ tmpPos++ ]| =

// Copy tmpArray back

al bCtr++ ];

for( int i = 0; 1 < numElements; i++, rightEnd-- )

al rightEnd ] = tmpArray[ rightEnd ];




Merge Sort

o Split the array in half, recursively sort each half.

 Merge the two sorted lists.

34| 8 |[64] 2 |51 (32|21 1
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o Split the array in half, recursively sort each half.

 Merge the two sorted lists.
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Merge Sort

o Split the array in half, recursively sort each half.

 Merge the two sorted lists.
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Merge Sort

o Split the array in half, recursively sort each half.

 Merge the two sorted lists.
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Merge Sort

o Split the array in half, recursively sort each half.

 Merge the two sorted lists.

34 | 8 04| 2 51132 [21] T
38 |34 2 |64 32 | O 1121
8 | 34 | 64 112113251
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Merge Sort

o Split the array in half, recursively sort each half.

 Merge the two sorted lists.

34 | 8 04| 2 51132 [21] T
38 |34 2 |64 32 | O 1121
8 | 34 | 64 112113251
1121812113234 (51|064
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Merge Sort - Implementation

private static <T extends Comparable<T>>
void mergeSort( T[] a, T[] tmpArray, int left, int right )

if( left < right ) {
int center = ( left + right ) / 2;
mergeSort( a, tmpArray, left, center );
mergeSort( a, tmpArray, center + 1, right );
merge( a, tmpArray, left, center + 1, right );

60



Merge Sort Running Time

conqguer algorithms.

 Merge sort is a recursive algo
time analysis should be simila

seen for other algorithms of thi

search)

e Recurrence:

Recursively sort each half o

N) = 2 T(N/2) +

This running time analysis is typical for divide and

‘ithm. The running
to what we have
s type (e.g. binary

Base case: N=1 (sort a 1-element list). T(1) = 1

N Merge the two halfs




Merge Sort Running Time

N, N N
=2-2-T(—)+—=—)+N =4.-T(—)+N-+N
4 2 4

k N __
= 2% . T( k) L k.- N assume k = log N
2

= N -T(1) +logN - N

=N+ N-logN =0(NlogN)
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Merge Sort Properties

 Worst case running time: ©(N log N)

* |s MergeSort stable”

e Space reqguirement?
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Yes. Merging preservers order of elements.
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Merge Sort Properties

 Worst case running time: ©(N log N)

* |s MergeSort stable”
Yes. Merging preservers order of elements.

e Space reqguirement?
Need a temporary array. O(N)
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