Data Structures in Java

Lecture 13: Priority Queues (Heaps)

11/4/2015

Daniel Bauer

The Selection Problem

* (Given an unordered sequence of N numbers
S = (ai, az, ... an), select the k-th largest number.

Process Scheduling

CPU

Process Scheduling

 Assume a system with a single CPU core.

* Only one process can run at a time.

 Simple approach: Keep new processes on a Queue,
schedule them in FIFO oder. (Why is a Stack a terrible
idea?)

CPU Process 1 600ms Process 2 200ms
> 1
3

Process Scheduling

 Assume a system with a single CPU core.

CPU

Only one process can run at a time.

Simple approach: Keep new processes on a Queue,
schedule them in FIFO oder. (Why is a Stack a terrible
idea”?)

Problem: Long processes may block CPU (usually we
do not even know how long).

Observation: Processes may have different priority
(CPU vs. /O bound, critical real time systems)

Process 1 600ms Process 2 200ms

3

> 1

Round Robin Scheduling

e |dea: processes take turn running for a certain time
interval in round robin fashion.

front back

} }
Queue

CPU

Round Robin Scheduling

e |dea: processes take turn running for a certain time
interval in round robin fashion.

front back

} }

Queue: Process 2 Process 1

CPU BerEn

Round Robin Scheduling

* |dea: processes take turn running for a certain time
interval in round robin fashion.

front back

} }

Queue: Process 1 Process 3

OI=UM Process 1 Process 2

Round Robin Scheduling

* |dea: processes take turn running for a certain time
interval in round robin fashion.

front back

} }

Queue: Process 3 Process 1

@IUM Process 1 Process 2 Process 1

Round Robin Scheduling

* |dea: processes take turn running for a certain time
interval in round robin fashion.

front back

} }

Queue: Process 3 Process 1

OI=UB Process 1 Process 2 Process 1
> 1

Sometimes Process 3 is so crucial that we want to run it
immediately when the CPU becomes available!

Priority Scheduling

* |dea: Keep processes ordered by priority. Run the
process with the highest priority first.

e Usually lower number = higher priority.
oriority 10 priority 10

Queued Processes

CPU

Priority Scheduling

* |dea: Keep processes ordered by priority. Run the
process with the highest priority first.

e Usually lower number = higher priority.
oriority 10 priority 10

Queued Processes

CPU BerEn

Priority Scheduling

* |dea: Keep processes ordered by priority. Run the
process with the highest priority first.

e Usually lower number = higher priority.
oriority 10 priority 1

Queued Processes

OI=UM Process 1 Process 2

Priority Scheduling

* |dea: Keep processes ordered by priority. Run the
process with the highest priority first.

e Usually lower number = higher priority.
priority 10 priority 1

Queued Processes

OI=UM Process 1 Process 2

The Priority Queue ADT

* A collection Q of comparable elements, that
supports the following operations:

« insert(x) - add an elementto Q (compare to
engueue).

* deleteMin() - returnthe minimum element in
Q and delete it from Q (compare to dequeue).

Other Applications for
Priority Queues

Selection problem.
Implementing sorting efficiently.

Keep track of the k-best solutions of some dynamic
programing algorithm.

Implementing greedy algorithms (e.g. graph
search).

Implementing Priority
Queues

Implementing Priority
Queues

e [dea 1: Use a Linked List.

insert(x):0(1), deleteMin(): O(N)

Implementing Priority
Queues

e [dea 1: Use a Linked List.

insert(x):0(1), deleteMin(): O(N)

* |dea 2: Use a Binary Search Tree.

insert(x):0(log N), deleteMin(): O(log N)

Implementing Priority
Queues

e |dea 1;: Use a Linked List.
insert(x):0(1), deleteMin(): O(N)

* |dea 2: Use a Binary Search Tree.
insert(x):0(log N), deleteMin(): O(log N)

* Can do even better with a Heap data structure:
* |Inserting N items in O(N).
* This gives a sorting algorithm in O(N log N).

Review: Complete Binary
Trees

* All non-leaf nodes have exactly 2 children (full binary tree)

o All levels are completely tull (except possibly the last)

9

Storing Complete

Binary

Trees In Arrays

* [he shape of a complete binary tree w

* We can store such trees in an array In

* [raversal is easy:

10

. |eftChild(i) = 2i

ith N nodes Is unigue.
evel-order.

+ rightChild(i) = 2i +1 O O
e parent(i) =|i/2) Q e G @

AlB|C|ID|IE|F|G|H]|I

J

Storing Incomplete Binary
Trees In Arrays

 Assume the tree takes as much space as a complete binary
tree, but only store the nodes that actually exist.

A|lB|C|D = ||I||
11

Heap

A heap is a complete binary tree stored in an array, with the
following heap order property:

* For every node n with value Xx:

e the values of all nodes in the
subtree rooted In n are G
greater or equal than x. a

1165 1108 (1514113 9 (20| 16

12

Max Heap

A heap is a complete binary tree stored in an array, with the
following heap order property:

* For every node n with value Xx:

e the values of all nodes in the
subtree rooted in n are @
less or equal than x. @

(D
101 & | 1

201161151314 8 | O

13

Min Heap - insert(x)

e Attempt to insert at last array position (next possible leaf in
the last layer).

* |f heap order property is violated, nsert(s)

percolate the value up.

 Swap that value (‘hole’) and value in
the parent cell, then try the new CeII. @

* |f heap order is still violated,
continue until correct position
'S found.

14

Min Heap - insert(x)

e Attempt to insert at last array position (next possible leaf in
the last layer).

* |f heap order property is violated, nsert(s)

percolate the value up. G

 Swap that value (‘hole’) and value in
the parent cell, then try the new CeII. @

* |f heap order is still violated,
continue until correct position G 3 @ @
s found.

14

Min Heap - insert(x)

e Attempt to insert at last array position (next possible leaf in
the last layer).

* |f heap order property is violated, nsert(s)

percolate the value up. G

 Swap that value (‘hole’) and value in
the parent cell, then try the new CeII. @

* |f heap order is still violated,
continue until correct position G @ @ @
s found.

14

Min Heap - deleteMin()

 The minimum Is always at the root of the tree.

« Remove lowest item, creating an empty
cell in the root.

* [ry to place last item in the heap into
the root.

* |t heap order is violated,
percolate the value down:

o Swap with the smaller child
until correct position is found.

15

Min Heap - deleteMin()

 The minimum Is always at the root of the tree.

« Remove lowest item, creating an empty
cell in the root.

* [ry to place last item in the heap into

15

the root.

* |t heap order is violated,

percolate the value down:

o Swap with the smaller child

until correct position is found.

deleteMin()—1

19

10

14

13

Min Heap - deleteMin()

 The minimum Is always at the root of the tree.

« Remove lowest item, creating an empty
cell in the root.

* [ry to place last item in the heap into

15

the root.

* |t heap order is violated,

percolate the value down:

o Swap with the smaller child

until correct position is found.

deleteMin()—1

10

14

13

Min Heap - deleteMin()

 The minimum Is always at the root of the tree.

« Remove lowest item, creating an empty

* [ry to place last item in the heap into

15

cell in the root.

the root.

* |t heap order is violated,

percolate the value down:

o Swap with the smaller child

until correct position is found.

deleteMin()—1

15

14

13

Running Time for Heap
Operations

 Because a Heap is a complete binary tree, it's
height is about log N.

* Worst-case running time for insert(x) and
deleteMin() is therefore O(log N).

e getMin() is O(1).

16

Bullding a Reap

e \Want to convert an collection of N items into a
heap.

 Each insert(x) takes O(log N) in the worst case,
so the total time is O(N log N).

e Can show a better bound O(N) for building a heap.

17

Building a Heap Bottom-Up

Start with an unordered array.

percolateDown(i) assumes that both
subtrees under / are already heaps.

|dea: restore heap property bottom-up.

e Make sure all subtrees in the two last
layers are heaps.

* Then move up layer-by-layer. b

18

Building a Heap Bottom-Up

Start with an unordered array.

percolateDown(i) assumes that both
subtrees under / are already heaps.

|dea: restore heap property bottom-up.

e Make sure all subtrees in the two last
layers are heaps.

* Then move up layer-by-layer. b

18

Building a Heap Bottom-Up

Start with an unordered array.

percolateDown(i) assumes that both
subtrees under / are already heaps.

|dea: restore heap property bottom-up.

e Make sure all subtrees in the two last
layers are heaps. i

* Then move up layer-by-layer.

18

Building a Heap Bottom-Up

Start with an unordered array.

percolateDown(i) assumes that both
subtrees under / are already heaps.

|dea: restore heap property bottom-up. ‘

e Make sure all subtrees in the two last ‘ ‘ ‘ ‘

layers are heaps.

* Then move up layer-by-layer. ‘ " ‘

18

19

Building a Heap Bottom-Up

Start with an unordered array.

percolateDown(i) assumes that both
subtrees under | are already heaps.

|dea: restore heap property bottom-up.

* Make sure all subtrees in the two last
layers are heaps.
* Then move up layer-by-layer. Z >

Fori=|N/2)... 1

percolateDown(i)

Bullding a Heap - Example

For i =|N/2;... 1
percolateDown(i)

(5,

(4) (8
=11/2=5 9 @ () (3
WO@®

51|14 |0 9.8 3|10 7| 2 |11

20

Bullding a Heap - Example

For i =|N/2;... 1
percolateDown(i)

11

Bullding a Heap - Example

For i =|N/2;... 1
percolateDown(i)

=4

11

Bullding a Heap - Example

For i =|N/2;... 1
percolateDown(i)

=3

11

Bullding a Heap - Example

For i =|N/2;... 1
percolateDown(i)

=3

Bullding a Heap - Example

For i =|N/2;... 1
percolateDown(i)

|=2

7|1 8|16 |10] 9] 2 |11

23

Bullding a Heap - Example

Fori=|N/2)... 1
percolateDown(i)
(5
L ERO

X ¥oJG
0000

51| 3 7.8 o |10 9 | 2 |11

23

Bullding a Heap - Example

Fori=|N/2)... 1 |
percolateDown(i) 6
Q E
NONONG

51| 3 7|2 8 | 6|10 9.11

23

Bullding a Heap - Example

For i =|N/2;... 1
percolateDown(i)

(1) (3)
T eoed

3|72 |86 |10]19]4]11

24

Bullding a Heap - Example

For i =|N/2;... 1
percolateDown(i)

@@9

=1

/1218106109] 4|11

24

Bullding a Heap - Example

Fori=|N/2)... 1
percolateDown(i)
(U
2) (3

B>+

1123 7.8 o |10 9| 4 |11

24

Bullding a Heap - Example

For i =|N/2;... 1
percolateDown(i)

=1

BuildHeap - Running Iime

« How many comparisons do we need in each of the
N/2 percolateDown calls?

* |[nthe worst case, each call to percolateDown
needs to move the value all the way down to the
eaf level.

* We need to sum the possible steps for each level
of the tree.

25

BuildHeap - Running Iime

 Upper bound for nodes in a complete binary tree (if all
levels are full) : 2" — 1

A complete binary tree with N nodes has
height:h = |log(N + 1)]

OOOOOCC

20

BuildHeap - Running Iime

BuildHeap - Running Iime

oh-1 nodes - 1steps , .4 _,
2" nodes-Osteps §-0 — b b b b

27

BuildHeap - Running Iime

oh—2 nodes - 2 steps 2.9

oh-1 nodes - 1steps , .4 _,
2" nodes-Osteps §-0 — b b b b

27

BuildHeap - Running Iime

2h=3 nodes

2h—2 nodes
oh—1 nodes

2% nodes

- 3 steps

- 2 steps
-1 steps

- 0 steps

1-3

22

S S0 o o o &

27

BuildHeap - Running Iime

2"=3 nodes - 3steps 1-3 .

oh—2 nodes - 2 steps 2.9

oh—1 nodes - 1 steps

2" nodes - 0 steps - b b b b

T(N)=2"1.1+...44.-(h—2)+2-(h—1)+h-1

27

BuildHeap - Running Iime

2"=3 nodes - 3steps 1-3 .

oh—2 nodes - 2 steps 2.9 R

oh—1 nodes - 1 steps

2" nodes-Osteps 8-0— b b b b

h
T(N) = 2h_1-1—|----—|—4-(h—2)—|—2-(h—l)—l—h-l:Zj.zh—J
27 §=0

BuildHeap - Running Iime

2T(N)=2"-1+---4+8-(h—2)+4-(h—1)+h-2
T(N)=2"1 . 1+...44.-(h—2)+2-(h—1)+h-1

2T(N) —T(N) =2" + 2" ... 184+ 44+2+h

h
(Z2i)—1 = (2" —1) -1

T(N) = (2" —1) - (h+1)
T(N) = (2" —1) — (log(N +1) +1) = O(N)

&£

The Selection Problem

* Given an unordered sequence of N numbers
S =(ay, as, ... an), select the k-th largest number.

* Approach 1: Sort the numbers in decreasing order. Then
pick the number at k-th position. => O(N log N + k)

e Approach 2: Initialize array of size k with the first k
numbers. Sort the array in decreasing order. For every
element in the sequence, it it is larger than the k-th entry
INn the array, replace the appropriate entry in the array

with the new number.
=> O(k log k) + O(N - k)

29

The Selection Problem

e (Given an unordered sequence of N numbers
S =(ay, as, ... an), select the k-th largest number.

e Using a Heap (Option 1):
e First build a Max-Heap in O(N).
* Then call deleteMax() k times O(k log N).
e Total: O(N + k log N)

* It k has a linear dependence on N (e.g. k=N/2), then the
total is O(N log N).

30

The Selection Problem

* (Given an unordered sequence of N numbers
S =(a; a, ... ay), select the k-th largest number.

e Using a Heap (Option 2):

e Build a Min-Heap S from the first k unordered elements in O(k).

The root of S now contains the k-th largest element.

terate through the remaining N-k = O(N) numbers:

e |f a number is larger than the root of S, remove the root of S
and insert the new number into S. This takes O(log k) time.

e Total: O(k+ N - log k) = O(N log k)

31

