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The Selection Problem
• Given an unordered sequence of N numbers  

S = (a1, a2, … aN), select the k-th largest number. 
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Process Scheduling
• Assume a system with a single CPU core. 

• Only one process can run at a time. 

• Simple approach: Keep new processes on a Queue, 
schedule them in FIFO oder. (Why is a Stack a terrible 
idea?)
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Process Scheduling
• Assume a system with a single CPU core. 

• Only one process can run at a time. 

• Simple approach: Keep new processes on a Queue, 
schedule them in FIFO oder. (Why is a Stack a terrible 
idea?)

• Problem: Long processes may block CPU (usually we 
do not even know how long). 

• Observation: Processes may have different priority  
(CPU vs. I/O bound, critical real time systems) 
.
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Round Robin Scheduling
• Idea: processes take turn running for a certain time 

interval in round robin fashion. 
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Round Robin Scheduling
• Idea: processes take turn running for a certain time 

interval in round robin fashion. 

Process 2

Queue: 

Process 1 

front back

Process 1 CPU 
t

Process 3 Process 1 

Sometimes Process 3 is so crucial that we want to run it 
immediately when the CPU becomes available!
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Priority Scheduling
• Idea: Keep processes ordered by priority. Run the 

process with the highest priority first.  

• Usually lower number = higher priority.
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Priority Scheduling
• Idea: Keep processes ordered by priority. Run the 

process with the highest priority first.  

• Usually lower number = higher priority.
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The Priority Queue ADT

• A collection Q of comparable elements, that 
supports the following operations:  

• insert(x) - add an element to Q (compare to 
enqueue). 

• deleteMin() - return the minimum element in 
Q and delete it from Q (compare to dequeue).
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Other Applications for 
Priority Queues

• Selection problem. 

• Implementing sorting efficiently. 

• Keep track of the k-best solutions of some dynamic 
programing algorithm. 

• Implementing greedy algorithms (e.g. graph 
search).
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Implementing Priority 
Queues
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Implementing Priority 
Queues

• Idea 1: Use a Linked List.  
     insert(x):O(1), deleteMin(): O(N)
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Implementing Priority 
Queues

• Idea 1: Use a Linked List.  
     insert(x):O(1), deleteMin(): O(N)

• Idea 2: Use a Binary Search Tree.  
      insert(x):O(log N), deleteMin(): O(log N)

• Can do even better with a Heap data structure:  
• Inserting N items in O(N). 
• This gives a sorting algorithm in O(N log N). 
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Review: Complete Binary 
Trees
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• All non-leaf nodes have exactly 2 children (full binary tree) 
• All levels are completely full (except possibly the last)
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Storing Complete Binary 
Trees in Arrays
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• The shape of a complete binary tree with N nodes is unique.  
• We can store such trees in an array in level-order. 
• Traversal is easy:  

• leftChild(i) = 2i 
• rightChild(i) = 2i +1 
• parent(i) = i/2

A B C D E F G H I J
10



Storing Incomplete Binary 
Trees in Arrays
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• Assume the tree takes as much space as a complete binary 
tree, but only store the nodes that actually exist. 
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• A heap is a complete binary tree stored in an array, with the 
following heap order property: 
• For every node n with value x: 

• the values of all nodes in the  
subtree rooted in n are  
greater or equal than x.
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• A heap is a complete binary tree stored in an array, with the 
following heap order property: 
• For every node n with value x: 

• the values of all nodes in the  
subtree rooted in n are  
less or equal than x.
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• Attempt to insert at last array position (next possible leaf in  
the last layer).  

• If heap order property is violated, 
percolate the value up. 
• Swap that value (‘hole’) and value in  

the parent cell, then try the new cell. 
• If heap order is still violated,  

continue until correct position  
is found.

Min Heap - insert(x)
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• Attempt to insert at last array position (next possible leaf in  
the last layer).  

• If heap order property is violated, 
percolate the value up. 
• Swap that value (‘hole’) and value in  

the parent cell, then try the new cell. 
• If heap order is still violated,  

continue until correct position  
is found.
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• The minimum is always at the root of the tree.  
• Remove lowest item, creating an empty  

cell in the root. 
• Try to place last item in the heap into  

the root. 
• If heap order is violated, 
percolate the value down:
• Swap with the smaller child 

until correct position is found.

Min Heap - deleteMin()
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3

• The minimum is always at the root of the tree.  
• Remove lowest item, creating an empty  

cell in the root. 
• Try to place last item in the heap into  

the root. 
• If heap order is violated, 
percolate the value down:
• Swap with the smaller child 

until correct position is found.
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Running Time for Heap 
Operations

• Because a Heap is a complete binary tree, it’s 
height is about log N. 

• Worst-case running time for insert(x) and 
deleteMin() is therefore O(log N). 

• getMin() is O(1).
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Building a Heap

• Want to convert an collection of N items into a 
heap. 

• Each insert(x) takes O(log N) in the worst case, 
so the total time is O(N log N). 

• Can show a better bound O(N) for building a heap.
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Building a Heap Bottom-Up
• Start with an unordered array.  

• percolateDown(i) assumes that both 
subtrees under i are already heaps.  

• Idea: restore heap property bottom-up.  

• Make sure all subtrees in the two last 
layers are heaps.  

• Then move up layer-by-layer. 
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Building a Heap Bottom-Up
• Start with an unordered array.  

• percolateDown(i) assumes that both 
subtrees under i are already heaps.  

• Idea: restore heap property bottom-up.  

• Make sure all subtrees in the two last 
layers are heaps.  

• Then move up layer-by-layer. 

For i = N/2 … 1 
    percolateDown(i)
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Building a Heap - Example
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Building a Heap - Example
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Building a Heap - Example
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Building a Heap - Example
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Building a Heap - Example
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Building a Heap - Example
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Building a Heap - Example
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Building a Heap - Example
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Building a Heap - Example
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Building a Heap - Example
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Building a Heap - Example
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Building a Heap - Example
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• How many comparisons do we need in each of the 
N/2 percolateDown calls? 

• In the worst case, each call to percolateDown 
needs to move the value all the way down to the 
leaf level.   

• We need to sum the possible steps for each level 
of the tree.

BuildHeap - Running Time
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BuildHeap - Running Time
• Upper bound for nodes in a complete binary tree (if all 

levels are full) :                

• A complete binary tree with N nodes has  
height: 
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BuildHeap - Running Time

8 · 0nodes · 0 steps
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BuildHeap - Running Time

8 · 0nodes · 0 steps

4 · 1nodes · 1 steps

27



BuildHeap - Running Time

8 · 0nodes · 0 steps

4 · 1nodes · 1 steps

2 · 2nodes · 2 steps

27



BuildHeap - Running Time

8 · 0nodes · 0 steps

4 · 1nodes · 1 steps

2 · 2nodes · 2 steps

1 · 3nodes · 3 steps

27



BuildHeap - Running Time

8 · 0nodes · 0 steps

4 · 1nodes · 1 steps

2 · 2nodes · 2 steps

1 · 3nodes · 3 steps

27



BuildHeap - Running Time

8 · 0nodes · 0 steps

4 · 1nodes · 1 steps

2 · 2nodes · 2 steps

1 · 3nodes · 3 steps

27



BuildHeap - Running Time

=N 28



The Selection Problem
• Given an unordered sequence of N numbers  

S = (a1, a2, … aN), select the k-th largest number.  

• Approach 1: Sort the numbers in decreasing order. Then 
pick the number at k-th position. => O(N log N + k) 

• Approach 2: Initialize array of size k with the first k 
numbers. Sort the array in decreasing order. For every 
element in the sequence, if it is larger than the k-th entry 
in the array, replace the appropriate entry in the array 
with the new number.  
=> O(k log k) + O(N · k) 
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The Selection Problem
• Given an unordered sequence of N numbers  

S = (a1, a2, … aN), select the k-th largest number.  

• Using a Heap (Option 1):  

• First build a Max-Heap in O(N). 

• Then call deleteMax() k times O(k log N). 

• Total: O(N + k log N)  

• If k has a linear dependence on N (e.g. k=N/2), then the 
total is O(N log N).
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The Selection Problem
• Given an unordered sequence of N numbers  

S = (a1, a2, … aN), select the k-th largest number.  

• Using a Heap (Option 2):  

• Build a Min-Heap S from the first k unordered elements in O(k). 

• The root of S now contains the k-th largest element. 

•  lterate through the remaining N-k = O(N) numbers:  

• If a number is larger than the root of S, remove the root of S 
and insert the new number into S. This takes O(log k) time.  

• Total: O(k+ N · log k) = O(N log k)
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