Data Structures in Java

Lecture 13: Priority Queues (Heaps)

11/4/2015

Daniel Bauer

The Selection Problem

- Given an unordered sequence of N numbers $S=\left(a_{1}, a_{2}, \ldots a_{N}\right)$, select the k-th largest number.

Process Scheduling

Process Scheduling

- Assume a system with a single CPU core.
- Only one process can run at a time.
- Simple approach: Keep new processes on a Queue, schedule them in FIFO oder. (Why is a Stack a terrible idea?)

Process Scheduling

- Assume a system with a single CPU core.
- Only one process can run at a time.
- Simple approach: Keep new processes on a Queue, schedule them in FIFO oder. (Why is a Stack a terrible idea?)
- Problem: Long processes may block CPU (usually we do not even know how long).
- Observation: Processes may have different priority (CPU vs. I/O bound, critical real time systems)

Round Robin Scheduling

- Idea: processes take turn running for a certain time interval in round robin fashion.

Queue:

CPU

Round Robin Scheduling

- Idea: processes take turn running for a certain time interval in round robin fashion.

CPU Process 1

Round Robin Scheduling

- Idea: processes take turn running for a certain time interval in round robin fashion.

Queue:

CPU Process 1 Process 2

Round Robin Scheduling

- Idea: processes take turn running for a certain time interval in round robin fashion.

Queue:

CPU Process 1 Process 2 Process 1

Round Robin Scheduling

- Idea: processes take turn running for a certain time interval in round robin fashion.

Queue:

CPU Process 1 Process 2 Process 1

Sometimes Process 3 is so crucial that we want to run it immediately when the $\mathrm{C}_{4} \mathrm{PU}$ becomes available!

Priority Scheduling

- Idea: Keep processes ordered by priority. Run the process with the highest priority first.
- Usually lower number = higher priority.

\author{
priority 10 priority 10
 Queued Processes
 ```
Process 1 Process 2

```
}

CPU


\section*{Priority Scheduling}
- Idea: Keep processes ordered by priority. Run the process with the highest priority first.
- Usually lower number = higher priority.

\author{
priority 10 priority 10 \\ Queued Processes \\ ```
Process 2 Process 1
```

}

CPU Process 1

Priority Scheduling

- Idea: Keep processes ordered by priority. Run the process with the highest priority first.
- Usually lower number = higher priority.

priority 10 priority 1
Queued Processes
``` Process1\mathrm{ Process }

```
}

\section*{CPU Process 1 Process 2}


\section*{Priority Scheduling}
- Idea: Keep processes ordered by priority. Run the process with the highest priority first.
- Usually lower number = higher priority.

\author{
priority 10 priority 1 \\ Queued Processes
}
```

CPU Process 1 Process }2\mathrm{ Process 3

```

\section*{The Priority Queue ADT}
- A collection Q of comparable elements, that supports the following operations:
- insert (x) - add an element to \(Q\) (compare to enqueue).
- deleteMin() - return the minimum element in \(Q\) and delete it from \(Q\) (compare to dequeue).

\section*{Other Applications for Priority Queues}
- Selection problem.
- Implementing sorting efficiently.
- Keep track of the \(k\)-best solutions of some dynamic programing algorithm.
- Implementing greedy algorithms (e.g. graph search).

\section*{Implementing Priority \\ Queues}

\section*{Implementing Priority Queues}
- Idea 1: Use a Linked List. insert (x): O(1), deleteMin( ): \(O(N)\)

\section*{Implementing Priority Queues}
- Idea 1: Use a Linked List. insert ( \(x\) ): \(O(1)\), deleteMin( \(): ~ O(N)\)
- Idea 2: Use a Binary Search Tree. insert (x): O(log \(N\) ), deleteMin( ): O(log N)

\section*{Implementing Priority \\ Queues}
- Idea 1: Use a Linked List.
\[
\text { insert }(x): O(1) \text {, deleteMin( }): O(N)
\]
- Idea 2: Use a Binary Search Tree. insert (x): O(log \(N\) ), deleteMin( ): O(log N)
- Can do even better with a Heap data structure: - Inserting \(N\) items in \(O(N)\).
- This gives a sorting algorithm in \(\mathrm{O}(\mathrm{N} \log \mathrm{N})\).

\section*{Review: Complete Binary Trees}
- All non-leaf nodes have exactly 2 children (full binary tree)
- All levels are completely full (except possibly the last)


\section*{Storing Complete Binary Trees in Arrays}
- The shape of a complete binary tree with N nodes is unique.
- We can store such trees in an array in level-order.
- Traversal is easy:
- leftChild(i) \(=2 \mathrm{i}\)
- rightChild(i) \(=2 \mathrm{i}+1\)
- parent (i) = i/2

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & \(A\) & \(B\) & \(C\) & \(D\) & \(E\) & \(F\) & \(G\) & \(H\) & I & J & & & \\
\hline
\end{tabular}

\section*{Storing Incomplete Binary Trees in Arrays}
- Assume the tree takes as much space as a complete binary tree, but only store the nodes that actually exist.


\section*{Heap}
- A heap is a complete binary tree stored in an array, with the following heap order property:
- For every node \(n\) with value \(x\) :
- the values of all nodes in the subtree rooted in \(n\) are greater or equal than \(x\).

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 1 & 5 & 10 & 8 & 15 & 14 & 13 & 9 & 20 & 16 & & & \\
\hline
\end{tabular}

\section*{Max Heap}
- A heap is a complete binary tree stored in an array, with the following heap order property:
- For every node \(n\) with value x:
- the values of all nodes in the subtree rooted in \(n\) are less or equal than \(x\).

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 20 & 16 & 15 & 13 & 14 & 8 & 9 & 10 & 5 & 1 & & & \\
\hline
\end{tabular}

\section*{Min Heap - insert (x)}
- Attempt to insert at last array position (next possible leaf in the last layer).
- If heap order property is violated,
- Swap that value ('hole') and value in the parent cell, then try the new cell. 5
- If heap order is still violated,
continue until correct position
- If heap order is still violated,
continue until correct position is found.

\section*{percolate the value up.}

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 1 & 5 & 10 & 8 & 15 & 14 & 13 & 9 & 20 & 16 & 3 & & \\
\hline
\end{tabular}

\section*{Min Heap - insert(x)}
- Attempt to insert at last array position (next possible leaf in the last layer).
- If heap order property is violated, percolate the value up.
- Swap that value ('hole') and value in the parent cell, then try the new cell. 5 )
- If heap order is still violated,
continue until correct position
- If heap order is still violated,
continue until correct position is found.

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 1 & 5 & 10 & 8 & 3 & 14 & 13 & 9 & 20 & 16 & 15 & & \\
\hline
\end{tabular}

\section*{Min Heap - insert (x)}
- Attempt to insert at last array position (next possible leaf in the last layer).
- If heap order property is violated, percolate the value up.
- Swap that value ('hole') and value in the parent cell, then try the new cell. 3
- If heap order is still violated,
continue until correct position
- If heap order is still violated,
continue until correct position is found.

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 1 & 3 & 10 & 8 & 5 & 14 & 13 & 9 & 20 & 16 & 15 & & \\
\hline
\end{tabular}

\section*{Min Heap - deleteMin()}
- The minimum is always at the root of the tree.
- Remove lowest item, creating an empty cell in the root.
- Try to place last item in the heap into the root.
- If heap order is violated, percolate the value down:
- Swap with the smaller child until correct position is found.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 1 & 3 & 10 & 8 & 5 & 14 & 13 & 9 & 20 & 16 & 15 & & \\
\hline
\end{tabular}

\section*{Min Heap - deleteMin()}
- The minimum is always at the root of the tree.
- Remove lowest item, creating an empty cell in the root.
- Try to place last item in the heap into the root.
- If heap order is violated, percolate the value down:
- Swap with the smaller child
until correct position is found.
- Swap with the smaller child
until correct position is found.
deleteMin() \(\rightarrow 1\)

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 15 & 3 & 10 & 8 & 5 & 14 & 13 & 9 & 20 & 16 & & & \\
\hline
\end{tabular}

\section*{Min Heap - deleteMin()}
- The minimum is always at the root of the tree.
- Remove lowest item, creating an empty cell in the root.
- Try to place last item in the heap into the root.
- If heap order is violated, percolate the value down:
- Swap with the smaller child until correct position is found.
deleteMin() \(\rightarrow 1\)

\section*{Min Heap - deleteMin()}
- The minimum is always at the root of the tree.
- Remove lowest item, creating an empty cell in the root.
- Try to place last item in the heap into the root.
- If heap order is violated, percolate the value down:
- Swap with the smaller child
until correct position is found.
- Swap with the smaller child
until correct position is found.
deleteMin() \(\rightarrow 1\)

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 3 & 5 & 10 & 8 & 15 & 14 & 13 & 9 & 20 & 16 & & & \\
\hline
\end{tabular}

\title{
Running Time for Heap Operations
}
- Because a Heap is a complete binary tree, it's height is about \(\log \mathrm{N}\).
- Worst-case running time for insert ( \(x\) ) and deleteMin() is therefore \(\mathrm{O}(\log \mathrm{N})\).
- getMin() is \(\mathrm{O}(1)\).

\section*{Building a Heap}
- Want to convert an collection of N items into a heap.
- Each insert (x) takes \(O(\log N\) ) in the worst case, so the total time is \(\mathrm{O}(\mathrm{N} \log \mathrm{N})\).
- Can show a better bound \(\mathrm{O}(\mathrm{N})\) for building a heap.

\section*{Building a Heap Bottom-Up}
- Start with an unordered array.
- percolateDown(i) assumes that both subtrees under \(i\) are already heaps.
- Idea: restore heap property bottom-up.
- Make sure all subtrees in the two last layers are heaps.
- Then move up layer-by-layer.


\section*{Building a Heap Bottom-Up}
- Start with an unordered array.
- percolateDown(i) assumes that both subtrees under i are already heaps.
- Idea: restore heap property bottom-up.
- Make sure all subtrees in the two last layers are heaps.
- Then move up layer-by-layer.


\section*{Building a Heap Bottom-Up}
- Start with an unordered array.
- percolateDown(i) assumes that both subtrees under i are already heaps.
- Idea: restore heap property bottom-up.
- Make sure all subtrees in the two last layers are heaps.
- Then move up layer-by-layer.


\section*{Building a Heap Bottom-Up}
- Start with an unordered array.
- percolateDown(i) assumes that both subtrees under i are already heaps.
- Idea: restore heap property bottom-up.
- Make sure all subtrees in the two last layers are heaps.
- Then move up layer-by-layer.


\section*{Building a Heap Bottom-Up}
- Start with an unordered array.
- percolateDown(i) assumes that both subtrees under i are already heaps.
- Idea: restore heap property bottom-up.
- Make sure all subtrees in the two last layers are heaps.
- Then move up layer-by-layer.


> For \(\mathrm{i}=\mathrm{N} / 2 \ldots 1\) percolateDown(i)

\section*{Building a Heap - Example}
```

For i = N/2 ... 1
percolateDown(i)

```

\(i=11 / 2=5\)

\section*{Building a Heap - Example}

For \(\mathrm{i}=\mathrm{N} / 2 \ldots 1\)
percolateDown(i)
\(\mathrm{i}=4\)

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 5 & 4 & 6 & 9 & 1 & 8 & 3 & 10 & 7 & 2 & 11 & & \\
\hline
\end{tabular}

\section*{Building a Heap - Example}

For \(\mathrm{i}=\mathrm{N} / 2 \ldots 1\)
percolateDown(i)
\[
\mathrm{i}=4
\]

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 5 & 4 & 6 & 7 & 1 & 8 & 3 & 10 & 9 & 2 & 11 & & \\
\hline
\end{tabular}

\section*{Building a Heap - Example}

For \(\mathrm{i}=\mathrm{N} / 2 \ldots 1\)
percolateDown(i)
\[
i=3
\]

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 5 & 4 & 6 & 7 & 1 & 8 & 3 & 10 & 9 & 2 & 11 & & \\
\hline
\end{tabular}

\section*{Building a Heap - Example}

For \(\mathrm{i}=\mathrm{N} / 2 \ldots 1\)
percolateDown(i)
\[
i=3
\]

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 5 & 4 & 3 & 7 & 1 & 8 & 6 & 10 & 9 & 2 & 11 & & \\
\hline
\end{tabular}

\section*{Building a Heap - Example}

For \(\mathrm{i}=\mathrm{N} / 2 \ldots 1\)
percolateDown(i)
\(i=2\)

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 5 & 4 & 3 & 7 & 1 & 8 & 6 & 10 & 9 & 2 & 11 & & \\
\hline
\end{tabular}

\section*{Building a Heap - Example}

For \(\mathrm{i}=\mathrm{N} / 2 \ldots 1\)
percolateDown(i)
\(i=2\)

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 5 & 1 & 3 & 7 & 4 & 8 & 6 & 10 & 9 & 2 & 11 & & \\
\hline
\end{tabular}

\section*{Building a Heap - Example}

For \(\mathrm{i}=\mathrm{N} / 2 \ldots 1\)
percolateDown(i)
\(\mathrm{i}=2\)

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 5 & 1 & 3 & 7 & 2 & 8 & 6 & 10 & 9 & 4 & 11 & & \\
\hline
\end{tabular}

\section*{Building a Heap - Example}

For \(\mathrm{i}=\mathrm{N} / 2 \ldots 1\)
percolateDown(i)
\(i=1\)

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 5 & 1 & 3 & 7 & 2 & 8 & 6 & 10 & 9 & 4 & 11 & & \\
\hline
\end{tabular}

\section*{Building a Heap - Example}

For \(\mathrm{i}=\mathrm{N} / 2 \ldots 1\)
percolateDown(i)
\(i=1\)

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 3 & 3 & 24 & 6 & 40 & 4 & \\
\hline
\end{tabular}

\section*{Building a Heap - Example}

For \(\mathrm{i}=\mathrm{N} / 2 \ldots 1\)
percolateDown(i)
\(i=1\)

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 6 & 6 & 40 & 9 & 4 & \\
\hline
\end{tabular}

\section*{Building a Heap - Example}

For \(\mathrm{i}=\mathrm{N} / 2 \ldots 1\)
percolateDown(i)

\section*{BuildHeap - Running Time}
- How many comparisons do we need in each of the N/2 percolateDown calls?
- In the worst case, each call to percolateDown needs to move the value all the way down to the leaf level.
- We need to sum the possible steps for each level of the tree.

\section*{BuildHeap - Running Time}
- Upper bound for nodes in a complete binary tree (if all levels are full) : \(2^{h+1}-1\)
- A complete binary tree with N nodes has height: \(h=\lfloor\log (N+1)\rfloor\)


\section*{BuildHeap - Running Time}
\(2^{h}\) nodes \(\cdot 0\) steps


\section*{BuildHeap - Running Time}
\(2^{h-1}\) nodes \(\cdot 1\) steps
\(2^{h} \quad\) nodes \(\cdot 0\) steps


\section*{BuildHeap - Running Time}

\author{
\(2^{h-2}\) nodes \(\cdot 2\) steps
}
\(2^{h-1}\) nodes • 1 steps
\(2^{h} \quad\) nodes \(\cdot 0\) steps


\section*{BuildHeap - Running Time}
\(2^{h-3}\) nodes \(\cdot 3\) steps
\(2^{h-2}\) nodes \(\cdot 2\) steps
\(2^{h-1}\) nodes • 1 steps
\(2^{h} \quad\) nodes \(\cdot 0\) steps


\section*{BuildHeap - Running Time}
\(2^{h-3}\) nodes \(\cdot 3\) steps
\(2^{h-2}\) nodes \(\cdot 2\) steps
\(2^{h-1}\) nodes \(\cdot 1\) steps
\(2^{h} \quad\) nodes \(\cdot 0\) steps

\[
T(N)=2^{h-1} \cdot 1+\cdots+4 \cdot(h-2)+2 \cdot(h-1)+h \cdot 1
\]

\section*{BuildHeap - Running Time}
\(2^{h-3}\) nodes \(\cdot 3\) steps \(2^{h-2}\) nodes \(\cdot 2\) steps \(2^{h-1}\) nodes \(\cdot 1\) steps \(2^{h} \quad\) nodes \(\cdot 0\) steps

\[
T(N)=2^{h-1} \cdot 1+\cdots+4 \cdot(h-2)+2 \cdot(h-1)+h \cdot 1=\sum_{j=0}^{h} j \cdot 2^{h-j}
\]

\section*{BuildHeap - Running Time}
\[
\begin{aligned}
& 2 T(N)=2^{h} \cdot 1+\cdots+8 \cdot(h-2)+4 \cdot(h-1)+h \cdot 2 \\
& T(N)= 2^{h-1} \cdot 1+\cdots+4 \cdot(h-2)+2 \cdot(h-1)+h \cdot 1 \\
& 2 T(N)-T(N)= \underbrace{2^{h}+2^{h+1}+\cdots+8+4+2}+h \\
& T(N)=\left(\sum_{i=0}^{h} 2^{i}\right)-1=\left(2^{h+1}-1\right)-1 \\
& T(N)=\left(2^{h+1}-1\right)-(\log (N+1)+1)=O(N) \\
& \underbrace{28}_{=N}
\end{aligned}
\]

\section*{The Selection Problem}
- Given an unordered sequence of \(N\) numbers \(S=\left(a_{1}, a_{2}, \ldots a_{N}\right)\), select the \(k\)-th largest number.
- Approach 1: Sort the numbers in decreasing order. Then pick the number at \(k\)-th position. \(=>O(N \log N+k)\)
- Approach 2: Initialize array of size \(k\) with the first \(k\) numbers. Sort the array in decreasing order. For every element in the sequence, if it is larger than the k-th entry in the array, replace the appropriate entry in the array with the new number.
\(=>\mathrm{O}(\mathrm{k} \log \mathrm{k})+\mathrm{O}(\mathrm{N} \cdot \mathrm{k})\)

\section*{The Selection Problem}
- Given an unordered sequence of \(N\) numbers \(S=\left(a_{1}, a_{2}, \ldots a_{N}\right)\), select the \(k\)-th largest number.
- Using a Heap (Option 1):
- First build a Max-Heap in O(N).
- Then call deleteMax() k times \(\mathrm{O}(\mathrm{k} \log \mathrm{N})\).
- Total: O(N + k log N)
- If k has a linear dependence on N (e.g. \(\mathrm{k}=\mathrm{N} / 2\) ), then the total is \(\mathrm{O}(\mathrm{N} \log \mathrm{N})\).

\section*{The Selection Problem}
- Given an unordered sequence of \(N\) numbers \(S=\left(a_{1}, a_{2}, \ldots a_{N}\right)\), select the \(k\)-th largest number.
- Using a Heap (Option 2):
- Build a Min-Heap S from the first k unordered elements in \(\mathrm{O}(\mathrm{k})\).
- The root of \(S\) now contains the \(k\)-th largest element.
- Iterate through the remaining \(\mathrm{N}-\mathrm{k}=\mathrm{O}(\mathrm{N})\) numbers:
- If a number is larger than the root of \(S\), remove the root of \(S\) and insert the new number into \(S\). This takes \(O(\log k)\) time.
- Total: \(O(k+N \cdot \log k)=O(N \log k)\)```

