
Data Structures in Java
Lecture 13: Priority Queues (Heaps)

11/4/2015

Daniel Bauer

1

The Selection Problem
• Given an unordered sequence of N numbers  

S = (a1, a2, … aN), select the k-th largest number.

2

Process Scheduling

Process 1 600ms Process 2 200ms

t
CPU

3

Process Scheduling
• Assume a system with a single CPU core.

• Only one process can run at a time.

• Simple approach: Keep new processes on a Queue,
schedule them in FIFO oder. (Why is a Stack a terrible
idea?)

Process 1 600ms Process 2 200ms

t
CPU

3

Process Scheduling
• Assume a system with a single CPU core.

• Only one process can run at a time.

• Simple approach: Keep new processes on a Queue,
schedule them in FIFO oder. (Why is a Stack a terrible
idea?)

• Problem: Long processes may block CPU (usually we
do not even know how long).

• Observation: Processes may have different priority  
(CPU vs. I/O bound, critical real time systems) 
.

Process 1 600ms Process 2 200ms

t
CPU

3

Round Robin Scheduling
• Idea: processes take turn running for a certain time

interval in round robin fashion.

Process 2Queue: Process 1

front back

CPU
t

4

Round Robin Scheduling
• Idea: processes take turn running for a certain time

interval in round robin fashion.

Process 2Queue:

Process 1

front back

Process 1

CPU
t

4

Round Robin Scheduling
• Idea: processes take turn running for a certain time

interval in round robin fashion.

Process 2

Queue:

Process 1

front back

Process 1

CPU
t

Process 3

4

Round Robin Scheduling
• Idea: processes take turn running for a certain time

interval in round robin fashion.

Process 2

Queue:

Process 1

front back

Process 1 CPU
t

Process 3 Process 1

4

Round Robin Scheduling
• Idea: processes take turn running for a certain time

interval in round robin fashion.

Process 2

Queue:

Process 1

front back

Process 1 CPU
t

Process 3 Process 1

Sometimes Process 3 is so crucial that we want to run it
immediately when the CPU becomes available!

4

Priority Scheduling
• Idea: Keep processes ordered by priority. Run the

process with the highest priority first.

• Usually lower number = higher priority.

Process 2Process 1

CPU
t

Queued Processes
priority 10 priority 10

5

Priority Scheduling
• Idea: Keep processes ordered by priority. Run the

process with the highest priority first.

• Usually lower number = higher priority.

Process 2

Process 1

Process 1

CPU
t

Queued Processes
priority 10 priority 10

5

Priority Scheduling
• Idea: Keep processes ordered by priority. Run the

process with the highest priority first.

• Usually lower number = higher priority.

Process 2Process 1

Process 1

CPU
t

Process 3 Queued Processes
priority 10 priority 1

5

Priority Scheduling
• Idea: Keep processes ordered by priority. Run the

process with the highest priority first.

• Usually lower number = higher priority.

Process 2Process 1

Process 1

CPU
t

Process 3

Queued Processes
priority 10 priority 1

5

The Priority Queue ADT

• A collection Q of comparable elements, that
supports the following operations:

• insert(x) - add an element to Q (compare to
enqueue).

• deleteMin() - return the minimum element in
Q and delete it from Q (compare to dequeue).

6

Other Applications for
Priority Queues

• Selection problem.

• Implementing sorting efficiently.

• Keep track of the k-best solutions of some dynamic
programing algorithm.

• Implementing greedy algorithms (e.g. graph
search).

7

Implementing Priority
Queues

8

Implementing Priority
Queues

• Idea 1: Use a Linked List.  
 insert(x):O(1), deleteMin(): O(N)

8

Implementing Priority
Queues

• Idea 1: Use a Linked List.  
 insert(x):O(1), deleteMin(): O(N)

• Idea 2: Use a Binary Search Tree.  
 insert(x):O(log N), deleteMin(): O(log N)

8

Implementing Priority
Queues

• Idea 1: Use a Linked List.  
 insert(x):O(1), deleteMin(): O(N)

• Idea 2: Use a Binary Search Tree.  
 insert(x):O(log N), deleteMin(): O(log N)

• Can do even better with a Heap data structure:
• Inserting N items in O(N).
• This gives a sorting algorithm in O(N log N).

8

Review: Complete Binary
Trees

D E

C

A

B

F G

H I J

• All non-leaf nodes have exactly 2 children (full binary tree)
• All levels are completely full (except possibly the last)

9

Storing Complete Binary
Trees in Arrays

D E

C

A

B

F G

H I J

• The shape of a complete binary tree with N nodes is unique.
• We can store such trees in an array in level-order.
• Traversal is easy:

• leftChild(i) = 2i
• rightChild(i) = 2i +1
• parent(i) = i/2

A B C D E F G H I J
10

Storing Incomplete Binary
Trees in Arrays

D

C

A

B

F

H I

• Assume the tree takes as much space as a complete binary
tree, but only store the nodes that actually exist.

A B C D F I
11

• A heap is a complete binary tree stored in an array, with the
following heap order property:
• For every node n with value x:

• the values of all nodes in the  
subtree rooted in n are  
greater or equal than x.

Heap

8 15

10

1

5

14 13

9 20 16

1 5 10 8 15 14 13 9 20 16
12

• A heap is a complete binary tree stored in an array, with the
following heap order property:
• For every node n with value x:

• the values of all nodes in the  
subtree rooted in n are  
less or equal than x.

Max Heap

13 14

15

20

16

8 9

10 5 1

20 16 15 13 14 8 9 10 5 1
13

• Attempt to insert at last array position (next possible leaf in  
the last layer).

• If heap order property is violated, 
percolate the value up.
• Swap that value (‘hole’) and value in  

the parent cell, then try the new cell.
• If heap order is still violated,  

continue until correct position  
is found.

Min Heap - insert(x)

8

10

1

14 13

9 20 16

1 5 10 8 15 14 13 9 20 16

15

insert(3)

5

3

153
14

• Attempt to insert at last array position (next possible leaf in  
the last layer).

• If heap order property is violated, 
percolate the value up.
• Swap that value (‘hole’) and value in  

the parent cell, then try the new cell.
• If heap order is still violated,  

continue until correct position  
is found.

Min Heap - insert(x)

8

10

1

14 13

9 20 16

1 5 10 8 14 13 9 20 16

15

insert(3)

3

5

3

15
14

• Attempt to insert at last array position (next possible leaf in  
the last layer).

• If heap order property is violated, 
percolate the value up.
• Swap that value (‘hole’) and value in  

the parent cell, then try the new cell.
• If heap order is still violated,  

continue until correct position  
is found.

Min Heap - insert(x)

8

10

1

14 13

9 20 16

1 5 10 8 14 13 9 20 16

15

insert(3)

5

53

3

15
14

3

• The minimum is always at the root of the tree.
• Remove lowest item, creating an empty  

cell in the root.
• Try to place last item in the heap into  

the root.
• If heap order is violated, 
percolate the value down:
• Swap with the smaller child 

until correct position is found.

Min Heap - deleteMin()

10 8 14 13 9 20 16

8

10

14 13

9 20 16 15

15

5

1

1 3 5
15

3

• The minimum is always at the root of the tree.
• Remove lowest item, creating an empty  

cell in the root.
• Try to place last item in the heap into  

the root.
• If heap order is violated, 
percolate the value down:
• Swap with the smaller child 

until correct position is found.

Min Heap - deleteMin()

10 8 14 13 9 20 16

8

10

14 13

9 20 16

deleteMin() 1

15

5

15

3 5
15

15

3

• The minimum is always at the root of the tree.
• Remove lowest item, creating an empty  

cell in the root.
• Try to place last item in the heap into  

the root.
• If heap order is violated, 
percolate the value down:
• Swap with the smaller child 

until correct position is found.

Min Heap - deleteMin()

10 8 14 13 9 20 16

8

10

14 13

9 20 16

deleteMin() 1

5

15

3 5
15

3

• The minimum is always at the root of the tree.
• Remove lowest item, creating an empty  

cell in the root.
• Try to place last item in the heap into  

the root.
• If heap order is violated, 
percolate the value down:
• Swap with the smaller child 

until correct position is found.

Min Heap - deleteMin()

10 8 14 13 9 20 16

8

10

14 13

9 20 16

deleteMin() 1

5

15

3 5 15
15

Running Time for Heap
Operations

• Because a Heap is a complete binary tree, it’s
height is about log N.

• Worst-case running time for insert(x) and
deleteMin() is therefore O(log N).

• getMin() is O(1).

16

Building a Heap

• Want to convert an collection of N items into a
heap.

• Each insert(x) takes O(log N) in the worst case,
so the total time is O(N log N).

• Can show a better bound O(N) for building a heap.

17

Building a Heap Bottom-Up
• Start with an unordered array.

• percolateDown(i) assumes that both
subtrees under i are already heaps.

• Idea: restore heap property bottom-up.

• Make sure all subtrees in the two last
layers are heaps.

• Then move up layer-by-layer.

18

Building a Heap Bottom-Up
• Start with an unordered array.

• percolateDown(i) assumes that both
subtrees under i are already heaps.

• Idea: restore heap property bottom-up.

• Make sure all subtrees in the two last
layers are heaps.

• Then move up layer-by-layer.

18

Building a Heap Bottom-Up
• Start with an unordered array.

• percolateDown(i) assumes that both
subtrees under i are already heaps.

• Idea: restore heap property bottom-up.

• Make sure all subtrees in the two last
layers are heaps.

• Then move up layer-by-layer.

18

Building a Heap Bottom-Up
• Start with an unordered array.

• percolateDown(i) assumes that both
subtrees under i are already heaps.

• Idea: restore heap property bottom-up.

• Make sure all subtrees in the two last
layers are heaps.

• Then move up layer-by-layer.

18

Building a Heap Bottom-Up
• Start with an unordered array.

• percolateDown(i) assumes that both
subtrees under i are already heaps.

• Idea: restore heap property bottom-up.

• Make sure all subtrees in the two last
layers are heaps.

• Then move up layer-by-layer.

For i = N/2 … 1 
 percolateDown(i)

19

Building a Heap - Example

1

2

3

4

5

6

7

89

10 11

5 4 6 9 1 8 3 10 7 2 11

i=11/2 = 5

For i = N/2 … 1 
 percolateDown(i)

20

Building a Heap - Example

1

2

3

4

5

6

89

10 117

5 4 6 9 1 8 3 10 7 2 11

i=4

For i = N/2 … 1 
 percolateDown(i)

21

Building a Heap - Example

1

2

3

4

5

6

8

910 11

7

5 4 6 1 8 3 10 2 11

i=4

97

For i = N/2 … 1 
 percolateDown(i)

21

Building a Heap - Example

1

2

4

5

6

7 8

910 11

5 4 6 7 1 8 3 10 9 2 11

i=3 3

For i = N/2 … 1 
 percolateDown(i)

22

Building a Heap - Example

1

2

4

5

67 8

910 11

5 4 7 1 8 10 9 2 11

i=3

63

3

For i = N/2 … 1 
 percolateDown(i)

22

Building a Heap - Example

2

6

4

5

3

7 8

910 11

5 4 3 7 1 8 6 10 9 2 11

i=2 1

For i = N/2 … 1 
 percolateDown(i)

23

Building a Heap - Example

2

64

5

3

7 8

910 11

5 3 7 1 8 6 10 9 2 11

i=2

1

1 4

For i = N/2 … 1 
 percolateDown(i)

23

Building a Heap - Example

2 6

4

5

3

7 8

910 11

5 3 7 1 8 6 10 9 2 11

i=2

1

1 2 4

For i = N/2 … 1 
 percolateDown(i)

23

Building a Heap - Example

6

3

7 8

910

5 3 7 8 6 10 9 4 11

i=1

1 2

1

5

2

4 11

For i = N/2 … 1 
 percolateDown(i)

24

Building a Heap - Example

6

3

7 8

910

3 7 8 6 10 9 4 11

i=1

1 2

1

5

2

4 11

51

For i = N/2 … 1 
 percolateDown(i)

24

Building a Heap - Example

6

3

7 8

910

3 7 8 6 10 9 4 11

i=1

1 2

1

5

2

4 11

1 2 5

For i = N/2 … 1 
 percolateDown(i)

24

Building a Heap - Example

6

3

7 8

910

3 7 8 6 10 9 4 11

i=1

1 2

1

5

2

4

11

1 2 54

For i = N/2 … 1 
 percolateDown(i)

24

• How many comparisons do we need in each of the
N/2 percolateDown calls?

• In the worst case, each call to percolateDown
needs to move the value all the way down to the
leaf level.

• We need to sum the possible steps for each level
of the tree.

BuildHeap - Running Time

25

BuildHeap - Running Time
• Upper bound for nodes in a complete binary tree (if all

levels are full) :

• A complete binary tree with N nodes has  
height:

26

BuildHeap - Running Time

8 · 0nodes · 0 steps

27

BuildHeap - Running Time

8 · 0nodes · 0 steps

4 · 1nodes · 1 steps

27

BuildHeap - Running Time

8 · 0nodes · 0 steps

4 · 1nodes · 1 steps

2 · 2nodes · 2 steps

27

BuildHeap - Running Time

8 · 0nodes · 0 steps

4 · 1nodes · 1 steps

2 · 2nodes · 2 steps

1 · 3nodes · 3 steps

27

BuildHeap - Running Time

8 · 0nodes · 0 steps

4 · 1nodes · 1 steps

2 · 2nodes · 2 steps

1 · 3nodes · 3 steps

27

BuildHeap - Running Time

8 · 0nodes · 0 steps

4 · 1nodes · 1 steps

2 · 2nodes · 2 steps

1 · 3nodes · 3 steps

27

BuildHeap - Running Time

=N 28

The Selection Problem
• Given an unordered sequence of N numbers  

S = (a1, a2, … aN), select the k-th largest number.

• Approach 1: Sort the numbers in decreasing order. Then
pick the number at k-th position. => O(N log N + k)

• Approach 2: Initialize array of size k with the first k
numbers. Sort the array in decreasing order. For every
element in the sequence, if it is larger than the k-th entry
in the array, replace the appropriate entry in the array
with the new number.  
=> O(k log k) + O(N · k)

29

The Selection Problem
• Given an unordered sequence of N numbers  

S = (a1, a2, … aN), select the k-th largest number.

• Using a Heap (Option 1):

• First build a Max-Heap in O(N).

• Then call deleteMax() k times O(k log N).

• Total: O(N + k log N)

• If k has a linear dependence on N (e.g. k=N/2), then the
total is O(N log N).

30

The Selection Problem
• Given an unordered sequence of N numbers  

S = (a1, a2, … aN), select the k-th largest number.

• Using a Heap (Option 2):

• Build a Min-Heap S from the first k unordered elements in O(k).

• The root of S now contains the k-th largest element.

• lterate through the remaining N-k = O(N) numbers:

• If a number is larger than the root of S, remove the root of S
and insert the new number into S. This takes O(log k) time.

• Total: O(k+ N · log k) = O(N log k)

31

