Data Structures in Java

Lecture 13: Priority Queues (Heaps)

11/4/2015

Daniel Bauer
The Selection Problem

- Given an unordered sequence of N numbers $S = (a_1, a_2, \ldots, a_N)$, select the k-th largest number.
Process Scheduling

CPU

Process 1 600ms

Process 2 200ms
Process Scheduling

• Assume a system with a single CPU core.

• Only one process can run at a time.

• Simple approach: Keep new processes on a Queue, schedule them in FIFO order. (Why is a Stack a terrible idea?)

```
CPU
```

```
Process 1  600ms
```

```
Process 2  200ms
```
Process Scheduling

• Assume a system with a single CPU core.

• Only one process can run at a time.

• Simple approach: Keep new processes on a Queue, schedule them in FIFO order. (Why is a Stack a terrible idea?)

• Problem: Long processes may block CPU (usually we do not even know how long).

• Observation: Processes may have different priority (CPU vs. I/O bound, critical real time systems)
Round Robin Scheduling

• Idea: processes take turn running for a certain time interval in round robin fashion.

Queue:

CPU

\[t \]
Round Robin Scheduling

- Idea: processes take turn running for a certain time interval in round robin fashion.

Queue:

CPU

Process 1
Round Robin Scheduling

• Idea: processes take turn running for a certain time interval in round robin fashion.

Queue:

CPU

Process 1 Process 2

Process 1 Process 3

front back
Round Robin Scheduling

• Idea: processes take turn running for a certain time interval in round robin fashion.

Queue:

CPU

$\text{Process 1} \quad \text{Process 2} \quad \text{Process 1}$
Round Robin Scheduling

- Idea: processes take turn running for a certain time interval in round robin fashion.

Sometimes Process 3 is so crucial that we want to run it immediately when the CPU becomes available!
Priority Scheduling

• Idea: Keep processes ordered by priority. Run the process with the highest priority first.

• Usually lower number = higher priority.

Queued Processes

CPU

process 1
priority 10

process 2
priority 10
Priority Scheduling

• Idea: Keep processes ordered by priority. Run the process with the highest priority first.

• Usually lower number = higher priority.

Queued Processes

CPU

Process 1

Process 2

Priority 10

Priority 10
Priority Scheduling

• Idea: Keep processes ordered by priority. Run the process with the highest priority first.

• Usually lower number = higher priority.

Queued Processes

CPU
Priority Scheduling

• Idea: Keep processes ordered by priority. Run the process with the highest priority first.

• Usually lower number = higher priority.

Queued Processes

<table>
<thead>
<tr>
<th>Priority</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Process 1</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

CPU

<table>
<thead>
<tr>
<th>Process 1</th>
<th>Process 2</th>
<th>Process 3</th>
</tr>
</thead>
</table>
The Priority Queue ADT

• A collection Q of comparable elements, that supports the following operations:

 • \textbf{insert}(x) - add an element to Q (compare to \textbf{enqueue}).

 • \textbf{deleteMin}() - return the minimum element in Q and delete it from Q (compare to \textbf{dequeue}).
Other Applications for Priority Queues

• Selection problem.

• Implementing sorting efficiently.

• Keep track of the k-best solutions of some dynamic programming algorithm.

• Implementing greedy algorithms (e.g. graph search).
Implementing Priority Queues
Implementing Priority Queues

• Idea 1: Use a Linked List.
 \[\text{insert}(x): O(1), \text{deleteMin}(): O(N)\]
Implementing Priority Queues

• Idea 1: Use a Linked List.
 \[\text{insert}(x): O(1), \text{deleteMin}(): O(N)\]

• Idea 2: Use a Binary Search Tree.
 \[\text{insert}(x): O(\log N), \text{deleteMin}(): O(\log N)\]
Implementing Priority Queues

• Idea 1: Use a Linked List.
 \texttt{insert(x): O(1), deleteMin(): O(N)}

• Idea 2: Use a Binary Search Tree.
 \texttt{insert(x): O(log N), deleteMin(): O(log N)}

• Can do even better with a \textbf{Heap} data structure:
 • Inserting N items in O(N).
 • This gives a sorting algorithm in O(N \log N).
Review: Complete Binary Trees

- All non-leaf nodes have exactly 2 children (full binary tree)
- All levels are completely full (except possibly the last)
Storing Complete Binary Trees in Arrays

- The shape of a complete binary tree with N nodes is unique.
- We can store such trees in an array in level-order.
- Traversal is easy:
 - $\text{leftChild}(i) = 2i$
 - $\text{rightChild}(i) = 2i + 1$
 - $\text{parent}(i) = \lfloor i/2 \rfloor$
Storing Incomplete Binary Trees in Arrays

- Assume the tree takes as much space as a complete binary tree, but only store the nodes that actually exist.
Heap

- A heap is a complete binary tree stored in an array, with the following **heap order property**:
 - For every node n with value x:
 - the values of all nodes in the subtree rooted in n are greater or equal than x.
Max Heap

- A heap is a complete binary tree stored in an array, with the following **heap order property**:
- For every node n with value x:
 - the values of all nodes in the subtree rooted in n are **less or equal** than x.

```
| 20 | 16 | 15 | 13 | 14 | 8 | 9 | 10 | 5 | 1 |
```
Min Heap - insert(x)

- Attempt to insert at last array position (next possible leaf in the last layer).
- If heap order property is violated, percolate the value up.
 - Swap that value (‘hole’) and value in the parent cell, then try the new cell.
 - If heap order is still violated, continue until correct position is found.
Min Heap - insert(x)

- Attempt to insert at last array position (next possible leaf in the last layer).
- If heap order property is violated, *percolate* the value *up*.
 - Swap that value (‘hole’) and value in the parent cell, then try the new cell.
- If heap order is still violated, continue until correct position is found.

![Min Heap - insert(3) Diagram](image)
Min Heap - insert(x)

- Attempt to insert at last array position (next possible leaf in the last layer).
- If heap order property is violated, *percolate* the value *up*.
 - Swap that value (‘hole’) and value in the parent cell, then try the new cell.
 - If heap order is still violated, continue until correct position is found.
Min Heap - deleteMin()

• The minimum is always at the root of the tree.
• Remove lowest item, creating an empty cell in the root.
• Try to place last item in the heap into the root.
 • If heap order is violated, *percolate* the value *down*:
 • Swap with the smaller child until correct position is found.
Min Heap - `deleteMin()`

- The minimum is always at the root of the tree.
- Remove lowest item, creating an empty cell in the root.
- Try to place last item in the heap into the root.
- If heap order is violated, *percolate* the value *down*:
 - Swap with the smaller child until correct position is found.

<table>
<thead>
<tr>
<th>15</th>
<th>3</th>
<th>10</th>
<th>8</th>
<th>5</th>
<th>14</th>
<th>13</th>
<th>9</th>
<th>20</th>
<th>16</th>
</tr>
</thead>
</table>

![Min Heap Diagram]

`deleteMin()` → 1
Min Heap - deleteMin()

- The minimum is always at the root of the tree.
- Remove lowest item, creating an empty cell in the root.
- Try to place last item in the heap into the root.
- If heap order is violated, **percolate** the value **down**:
 - Swap with the smaller child until correct position is found.
Min Heap - `deleteMin()`

- The minimum is always at the root of the tree.
- Remove lowest item, creating an empty cell in the root.
- Try to place last item in the heap into the root.
- If heap order is violated, **percolate** the value **down**:
 - Swap with the smaller child until correct position is found.
Running Time for Heap Operations

• Because a Heap is a complete binary tree, it’s height is about log N.

• Worst-case running time for \texttt{insert(x)} and \texttt{deleteMin()} is therefore $O(\log N)$.

• \texttt{getMin()} is $O(1)$.
Building a Heap

• Want to convert an collection of N items into a heap.

• Each \texttt{insert(x)} takes $O(\log N)$ in the worst case, so the total time is $O(N \log N)$.

• Can show a better bound $O(N)$ for building a heap.
Building a Heap Bottom-Up

• Start with an unordered array.

• `percolateDown(i)` assumes that both subtrees under `i` are already heaps.

• Idea: restore heap property bottom-up.
 • Make sure all subtrees in the two last layers are heaps.
 • Then move up layer-by-layer.
Building a Heap Bottom-Up

- Start with an unordered array.

- `percolateDown(i)` assumes that both subtrees under `i` are already heaps.

- Idea: restore heap property bottom-up.
 - Make sure all subtrees in the two last layers are heaps.
 - Then move up layer-by-layer.
Building a Heap Bottom-Up

• Start with an unordered array.

• `percolateDown(i)` assumes that both subtrees under i are already heaps.

• Idea: restore heap property bottom-up.
 • Make sure all subtrees in the two last layers are heaps.
 • Then move up layer-by-layer.
Building a Heap Bottom-Up

• Start with an unordered array.

• `percolateDown(i)` assumes that both subtrees under \(i \) are already heaps.

• Idea: restore heap property bottom-up.
 • Make sure all subtrees in the two last layers are heaps.
 • Then move up layer-by-layer.
Building a Heap Bottom-Up

• Start with an unordered array.

• `percolateDown(i)` assumes that both subtrees under `i` are already heaps.

• Idea: restore heap property bottom-up.

• Make sure all subtrees in the two last layers are heaps.

• Then move up layer-by-layer.

For \(i = \lfloor N/2 \rfloor \ldots 1 \)
`percolateDown(i)`
Building a Heap - Example

For \(i = \lfloor N/2 \rfloor \ldots 1 \)
percolateDown\((i) \)

\(i = 11/2 = 5 \)
Building a Heap - Example

For \(i = \lfloor N/2 \rfloor \ldots 1 \), percolateDown(i)

i=4

Diagram:

```
  5
 / \
4   6
 / \ / \n9   1  8
 / \ / \ / \n10 7 2 11
```

Array:

```
5  4  6  9  1  8  3  10  7  2  11
```
Building a Heap - Example

For $i = \lfloor N/2 \rfloor \ldots 1$

percolateDown(i)

i=4

\[
\begin{array}{c}
5 & 4 & 6 & 7 & 1 & 8 & 3 & 10 & 9 & 2 & 11
\end{array}
\]
Building a Heap - Example

For $i = \lfloor N/2 \rfloor \ldots 1$

percolateDown(i)

For $i = 3$

$i=3$
Building a Heap - Example

For $i = \lceil N/2 \rceil \ldots 1$
percolateDown(i)

i=3

5 4 3 7 1 8 6 10 9 2 11
Building a Heap - Example

For $i = \lfloor N/2 \rfloor \ldots 1$

percolateDown(i)

For $i = 2$

5 4 3 7 1 8 6 10 9 2 11
Building a Heap - Example

For $i = \lfloor N/2 \rfloor \ldots 1$

percolateDown(i)

For $i = 2$

percolateDown(i)
Building a Heap - Example

For $i = \lceil N/2 \rceil \ldots 1$

percolateDown(i)

For $i = 2$
Building a Heap - Example

For $i = \lfloor N/2 \rfloor \ldots 1$
percolateDown(i)

For $i = 1$...
Building a Heap - Example

For \(i = \lceil N/2 \rceil \ldots 1 \)
\[\text{percolateDown}(i) \]
Building a Heap - Example

For $i = \lfloor N/2 \rfloor \ldots 1$

percolateDown(i)
Building a Heap - Example

For $i = \lfloor N/2 \rfloor$ … 1
percolateDown(i)
BuildHeap - Running Time

• How many comparisons do we need in each of the \(N/2 \) \texttt{percolateDown} calls?

• In the worst case, each call to \texttt{percolateDown} needs to move the value all the way down to the leaf level.

• We need to sum the possible steps for each level of the tree.
BuildHeap - Running Time

- Upper bound for nodes in a complete binary tree (if all levels are full): \(2^{h+1} - 1\)

- A complete binary tree with \(N\) nodes has height: \(h = \lfloor \log(N + 1) \rfloor\)
BuildHeap - Running Time

$2^h \cdot 0$ nodes · 0 steps

$8 \cdot 0 \rightarrow$
BuildHeap - Running Time

2^{h-1} nodes · 1 steps

2^h nodes · 0 steps
BuildHeap - Running Time

2^{h-2} nodes \cdot 2 steps

2^{h-1} nodes \cdot 1 steps

2^h nodes \cdot 0 steps
BuildHeap - Running Time

2^{h-3} nodes · 3 steps

2^{h-2} nodes · 2 steps

2^{h-1} nodes · 1 steps

2^h nodes · 0 steps
BuildHeap - Running Time

\[T(N) = 2^{h-1} \cdot 1 + \cdots + 4 \cdot (h - 2) + 2 \cdot (h - 1) + h \cdot 1 \]
BuildHeap - Running Time

\[T(N) = 2^{h-1} \cdot 1 + \cdots + 4 \cdot (h - 2) + 2 \cdot (h - 1) + h \cdot 1 = \sum_{j=0}^{h-1} j \cdot 2^{h-j} \]
BuildHeap - Running Time

\[2T(N) = 2^h \cdot 1 + \cdots + 8 \cdot (h - 2) + 4 \cdot (h - 1) + h \cdot 2 \]

\[T(N) = 2^{h-1} \cdot 1 + \cdots + 4 \cdot (h - 2) + 2 \cdot (h - 1) + h \cdot 1 \]

\[
2T(N) - T(N) = 2^h + 2^{h+1} + \cdots + 8 + 4 + 2 + h
\]

\[
\sum_{i=0}^{h} 2^i - 1 = (2^{h+1} - 1) - 1
\]

\[T(N) = (2^{h+1} - 1) - (h + 1) \]

\[T(N) = (2^{h+1} - 1) - (\log(N + 1) + 1) = O(N) \]
The Selection Problem

• Given an unordered sequence of \(N \) numbers \(S = (a_1, a_2, \ldots , a_N) \), select the \(k \)-th largest number.

• Approach 1: Sort the numbers in decreasing order. Then pick the number at \(k \)-th position. \(\Rightarrow O(N \log N + k) \)

• Approach 2: Initialize array of size \(k \) with the first \(k \) numbers. Sort the array in decreasing order. For every element in the sequence, if it is larger than the \(k \)-th entry in the array, replace the appropriate entry in the array with the new number.
\(\Rightarrow O(k \log k) + O(N \cdot k) \)
The Selection Problem

- Given an unordered sequence of \(N \) numbers \(S = (a_1, a_2, \ldots, a_N) \), select the \(k \)-th largest number.

- Using a Heap (Option 1):
 - First build a Max-Heap in \(O(N) \).
 - Then call `deleteMax()` \(k \) times \(O(k \log N) \).
 - Total: \(O(N + k \log N) \)
 - If \(k \) has a linear dependence on \(N \) (e.g. \(k=N/2 \)), then the total is \(O(N \log N) \).
The Selection Problem

• Given an unordered sequence of N numbers $S = (a_1, a_2, \ldots, a_N)$, select the k-th largest number.

• Using a Heap (Option 2):

 • Build a Min-Heap S from the first k unordered elements in $O(k)$.

 • The root of S now contains the k-th largest element.

 • Iterate through the remaining $N-k = O(N)$ numbers:

 • If a number is larger than the root of S, remove the root of S and insert the new number into S. This takes $O(\log k)$ time.

 • Total: $O(k + N \cdot \log k) = O(N \log k)$