
Data Structures in Java
Lecture 12: Introduction to Hashing.

10/19/2015

Daniel Bauer

Homework

• Due Friday, 11:59pm.

• Jarvis is now grading HW3.

Recitation Sessions
• Recitations this week:

• Review of balanced search trees.

• Implementing AVL rotations.

• Implementing maps with BSTs.

• Hashing (Friday/Next Mon & Tue).

Midterm
• Midterm next Wednesday (in-class)

• Closed books/notes/electronic devices.

• Ideally, bring a pen, water, and nothing else.

• 60 minutes

• Midterm review this Wednesday in class.

How to Prepare?
• Midterm will cover all content up to (and including) this

week.

• Know all ADTs, operations defined on them, data
structures, running times.

• Know basics of running time analysis (big-O).

• Understand recursion, inductive proofs, tree traversals, …

• Practice questions out today. Discussed Wednesday.

• Good idea to review slides & homework!

How to Prepare Even More?

• Optional:

• Solve Weiss textbook exercises and discuss on
Piazza.

• Try to implement data structures from scratch.

Map ADT
• A map is collection of (key, value) pairs.

• Keys are unique, values need not be (keys are a Set!).

• Two operations:

• get(key) returns the value associated with this key
• put(key, value) (overwrites existing keys)

key1
key2
key3
key4

value1
value2
value3

Implementing Maps

Implementing Maps
• Option 1: Use any set implementation to store special

(key,value) objects.

• Comparing these objects means comparing the key
(testing for equality or implementing the Comparable
interface)

Implementing Maps
• Option 1: Use any set implementation to store special

(key,value) objects.

• Comparing these objects means comparing the key
(testing for equality or implementing the Comparable
interface)

• Option 2: Specialized implementations

• B+ Tree: nodes contain keys, leaves contain values.

• Plain old Array: Only integer keys permitted.

• Hash maps (this week)

Balanced BSTs
• Runtime of BST operations (insert, contains/
find, remove, findmin, findmax) depend on
height of the tree.

• Balance condition: Guarantee that the BST is always
close to a complete binary tree.

• Then the height of the tree will be O(log N).

• All BST operations will run in O(log N).

• Map operations get and put will also run in O(log N)

Can we do better?

• When keys are integers, arrays provide a
convenient way of implementing maps.

• Time for get and put is O(1).

Arrays as Maps

A
0 1 2 3 4 5 6

DB C

Hash Tables

0

1Alice

• Define a table (an array) of some length TableSize.

• Define a function hash(key) that maps key
objects to an integer index in the range  
0 … TableSize -1

2

TableSize - 1

…

hash(key)555-341-1231 Alice 555-341-1231

Hash Tables

0

1Bob

• Define a table (an array) of some length TableSize.

• Define a function hash(key) that maps key
objects to an integer index in the range  
0 … TableSize -1

2

TableSize - 1

…

hash(key)555-987-2314 Alice 555-341-1231

Bob 555-341-1231

Hash Tables

0

1Alice

• Lookup/get: Just hash the key to find the index.

• Assuming hash(key) takes constant time, get
and put run in O(1).

2

TableSize - 1

…

hash(key)? Alice 555-341-1231

Bob 555-341-1231

Hash Table Collisions

0

1Anna

• Problem: There is an infinite number of keys, but only TableSize
entries in the array.

• How do we deal with collisions? (new item hashes to an array
cell that is already occupied)

• Also: Need to find a hash function that distributes items in the
array evenly.

2

TableSize - 1

…

hash(key)555-521-2973 Alice 555-341-1231

Bob 555-341-1231

• Hash functions depends on: type of keys we
expect (Strings, Integers…) and TableSize.

• Hash functions needs to:

• Spread out the keys as much as possible in the
table (ideal: uniform distribution).

• Make sure that all table cells can be reached.

Choosing a Hash Function

Choosing a Hash Function:
Integers

• If the keys are integers, it is often okay to assume  
that the possible keys are distributed evenly.  
  
hash(x) = x % TableSize
public	 static	 int	 hash(Integer	 key,	 int	 tableSize)	 {	
	 	 	 	 return	 key	 %	 tableSize;	
}

 e.g. TableSize = 5  
 hash(0) = 0, hash(1) = 1,  
 hash(5) = 0, hash(6) = 1

Choosing a Hash Function:
Strings - Idea 1

• Idea 1: Sum up the ASCII (or Unicode) values of all  
characters in the String.
public	 static	 int	 hash(String	 key,	 int	 tableSize)	 {	
	 	 	 	 	 	 	 	 int	 hashVal	 =	 0;	

	 	 	 	 	 	 	 	 for(int	 i	 =	 0;	 i	 <	 key.length();	 i++)	
	 	 	 	 	 	 	 	 	 	 	 	 hashVal	 =	 hashVal	 +	 key.charAt(i);	

	 	 	 	 	 	 	 	 return	 hashVal	 %	 tableSize;	
}

e.g. “Anna” → 65 + 2 ·110 + 97 = 382  
A → 65, n → 110, a → 97

Choosing a Hash Function:
Strings - Problems with Idea 1

• Idea 1 doesn’t work for large table sizes:

• Assume TableSize = 10,007

• Every character has a value in the range 0 and 127.

• Assume keys are at most 8 chars long:

• hash(key) is in the range 0 and 127 · 8 = 1016.

• Only the first 1017 cells of the array will be used!

Choosing a Hash Function:
Strings - Problems with Idea 1

• Idea 1 doesn’t work for large table sizes:

• Assume TableSize = 10,007

• Every character has a value in the range 0 and 127.

• Assume keys are at most 8 chars long:

• hash(key) is in the range 0 and 127 · 8 = 1016.

• Only the first 1017 cells of the array will be used!

• Also: All anagrams will produce collisions: 
“rescued”, “secured”,”seducer”

Choosing a Hash Function:
Strings - Idea 2

• Idea 2: Spread out the value for each character
public	 static	 int	 hash(Integer	 key,	 int	 tableSize)	 {	
	 	 	 	 return	 (key.charAt(0)	 +	 	
	 	 	 	 	 	 	 	 	 	 	 	 27	 *	 key.charAt(1)	 +	
	 	 	 	 	 	 	 27	 *	 27	 *	 key.charAt(2));	
}

Choosing a Hash Function:
Strings - Idea 2

• Idea 2: Spread out the value for each character
public	 static	 int	 hash(Integer	 key,	 int	 tableSize)	 {	
	 	 	 	 return	 (key.charAt(0)	 +	 	
	 	 	 	 	 	 	 	 	 	 	 	 27	 *	 key.charAt(1)	 +	
	 	 	 	 	 	 	 27	 *	 27	 *	 key.charAt(2));	
}

• Problem: assumes that the all three letter combinations
(trigrams) are equally likely at the beginning of a string.

• This is not the case for natural language
• some letters are more frequent than others
• some trigrams (e.g. “xvz”) don’t occur at all.

Choosing a Hash Function:
Strings - Idea 3

public	 static	 int	 hash(String	 key,	 int	 tableSize)	 {	
	 	 	 	 int	 hashVal	 =	 0;	

	 	 	 	 for(int	 i	 =	 0;	 i	 <	 key.length();	 i++)	
	 	 	 	 	 	 	 	 hashVal	 =	 37	 *	 hashVal	 +	 key.charAt(i);	

	 	 	 	 hashVal	 %=	 tableSize;	
	 	 	 	 if(hashVal	 <	 0)	
	 	 	 	 	 	 	 	 hashVal	 +=	 tableSize;	

	 	 	 	 return	 hashVal;	
}

This is what Java Strings use; works well, but slow for large
strings.

Combining Hash Functions
• In practice, we often write hash functions for some

container class:

• Assume all member variables have a hash
function (Integers, Strings…).

• Multiply the hash of each member variable with
some distinct, large prime number.

• Then sum them all up.

Combining Hash Functions,
Example

public	 class	 Person	 {	
	 	 	 	 public	 String	 firstName;	
	 	 	 	 public	 String	 lastName;	
	 	 	 	 public	 Integer	 age;	
}

Combining Hash Functions,
Example

public	 class	 Person	 {	
	 	 	 	 public	 String	 firstName;	
	 	 	 	 public	 String	 lastName;	
	 	 	 	 public	 Integer	 age;	
}

public	 static	 int	 hash(Person	 key,	 int	 tableSize)	 {	
	 	 	 	 int	 hashVal	 =	 	 hash(key.firstName,	 tableSize)	 *	 127	 +	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 hash(key.lastName,	 tableSize)	 *	 1901	 +	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 hash(key.age,	 tableSize)	 *	 4591;	
	 	 	 	 hashVal	 %=	 tableSize;	
	 	 	 	 if(hashVal	 <	 0)	
	 	 	 	 	 	 	 	 hashVal	 +=	 tableSize;	
}

Why Prime Numbers?
• To reduce collisions, TableSize should not be a

factor of any large hash value (before taking the
modulo).

TableSize = 8 factors = 2, 4, 6, 8, 16
Bad example:

Why Prime Numbers?
• To reduce collisions, TableSize should not be a

factor of any large hash value (before taking the
modulo).

TableSize = 8 factors = 2, 4, 6, 8, 16
Bad example:

• Good practices:

• Keep TableSize a prime number.

• When combining hash values, make the factors prime
numbers.

What Objects Can be Keys?
• Anything can be a key, we just need to find a good

hash function.

• Need to make sure that objects that are used as
keys cannot be changed at runtime (they are
immutable)

What Objects Can be Keys?
• Anything can be a key, we just need to find a good

hash function.

• Need to make sure that objects that are used as
keys cannot be changed at runtime (they are
immutable)

• Otherwise, if their content changes their
hash value should change too!

What Objects Can be Keys?
• Anything can be a key, we just need to find a good

hash function.

• Need to make sure that objects that are used as
keys cannot be changed at runtime (they are
immutable)

• How would you compute the hash value for a LinkedList
or a Binary Tree?

• Otherwise, if their content changes their
hash value should change too!

Hash Table Collisions

0

1Anna

• Problem: There is an infinite number of keys, but only TableSize
entries in the array.

• Need to find a hash function that distributes items in the array
evenly.

• How do we deal with collisions? (new item hashes to an array
cell that is already occupied)

2

TableSize - 1

…

hash(key)555-521-2973 Alice 555-341-1231

Bob 555-341-1231

Dealing with Collisions:
Separate Chaining

• Keep all items whose key hashes to the same value on a
linked list.

• Can think of each list as a bucket defined by the hash
value.

0

1
2

TableSize - 1
…

Alice 555-341-1231

Bob 555-341-1231

Dealing with Collisions:
Separate Chaining

• To insert a new key in cell that’s already occupied
prepend to the list.

0

1
2

TableSize - 1

Alice 555-341-1231

Bob 555-341-1231

Anna 555-521-2973

hash(key)

…

Dealing with Collisions:
Separate Chaining

• To insert a new key in cell that’s already occupied
prepend to the list.

0

1
2

TableSize - 1

Alice 555-341-1231

Bob 555-341-1231

Anna 555-521-2973

hash(key) Anna 555-521-2973

…

Analyzing Running Time for
Separate Chaining (1)

• Time to find a key = time to compute hash function  
 + time to traverse the linked list.

• Assume hash functions computed in O(1).

• How many elements do we expect in a list on
average?

Load Factor
• Let N be the number of keys in the  

table.
• Define the load factor as

• The average length of a list is .

Weiss, Data Structures and Algorithm Analysis in Java, 3rd ed.

Analyzing Running Time for
Separate Chaining (2)

• If lookup fails (table miss):
• Need to search all nodes in the

list for this hash bucket.

Design rule: keep . If load becomes too high increase
table size (rehash).

• If lookup succeeds (table hit):
• There will be about other

nodes in the list.
• On average we search half the

list and the target key, so we
touch nodes.

Problems with Separate
Chaining

• Requires allocation of new list nodes, which
introduces overhead.

• Requires more code because it requires a linked
list data structure in addition to the hash table itself.

Hash Tables without Linked
Lists: Probing

0
1
2
3
4
5
6
7

• When a collision occurs put item in an empty cell of
the hash table itself.

40
8
9

10

hash(key)40
x % 11

7

• When a collision occurs put item in an empty cell of
the hash table itself.

Hash Tables without Linked
Lists: Probing

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)18
x % 11

7

18

• When a collision occurs put item in an empty cell of
the hash table itself.

Hash Tables without Linked
Lists: Probing

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)29
x % 11

7

18
29

• When a collision occurs put item in an empty cell of
the hash table itself.

Hash Tables without Linked
Lists: Probing

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)9
x % 11

9

18
29

9

• When a collision occurs put item in an empty cell of
the hash table itself.

Hash Tables without Linked
Lists: Probing

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)21
x % 11

9

18
29

10

21

• When a collision occurs put item in an empty cell of
the hash table itself.

Hash Tables without Linked
Lists: Probing

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)21
x % 11

9

18
29

10

21

• To look up a key, we search the table, starting from
the cell the key was hashed to.

Hash Tables without Linked
Lists: Probing

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)29
x % 11

9

18
29

7

21

With a Probing Hash Table
 . Table is full if .

Probing: Collision Resolution
Strategies (1)

• To insert an item, we probe other table cells in a
systematic way until an empty cell is found.

• To look up a key, we probe in a systematic way until
the key is found.

• Different strategies to determine the next cell

• Example: Just try cells sequentially (with
wraparound).

Collision Resolution
Strategies (2)

• Can describe collision resolution strategies using a
function , such that the i-th table cell to be
probed is  
 .

• Linear Probing (previous example):
• f(i) is some linear function of i, usually .

Collision Resolution
Strategies (2)

• Can describe collision resolution strategies using a
function , such that the i-th table cell to be
probed is  
 .

If hash(x) = 7, try cell 7 first, then try  
cell 7+f(1)=8, cell 7+f(2)=9, cell 7+f(3)=10, …

• Linear Probing (previous example):
• f(i) is some linear function of i, usually .

Collision Resolution
Strategies (2)

• Can describe collision resolution strategies using a
function , such that the i-th table cell to be
probed is  
 .

If hash(x) = 7, try cell 7 first, then try  
cell 7+f(1)=8, cell 7+f(2)=9, cell 7+f(3)=10, …

• Quadratic probing
• Double hashing

Linear Probing
• Can always find an empty cell (if there is space in

the table).

• Problem: Primary Clustering.

• Full cells tend to cluster, with no free cells in
between.

• Time required to find an empty cell can become
very large if the table is almost full  
(is close to 1).

Linear Probing
• Can always find an empty cell (if there is space in

the table).

• Problem: Primary Clustering.

• Full cells tend to cluster, with no free cells in
between.

• Time required to find an empty cell can become
very large if the table is almost full  
(is close to 1).

Primary Clustering

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)40
x % 11

7

Primary Clustering

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)51
x % 11

7

51

Primary Clustering

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)18
x % 11

7

51
18

• Cells 7-9 are occupied with keys that hash to 7. The
entire block is unavailable to keys that hash to k<7.

Primary Clustering

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)39
x % 11

6

51
18

• Cells 7-8 are occupied with keys that hash to 7. The
entire block is unavailable to keys that hash to k<7.

39

Primary Clustering

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)17
x % 11

6

51
18

• Cells 7-8 are occupied with keys that hash to 7. The
entire block is unavailable to keys that hash to k<7.

39

17

Primary Clustering

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)6
x % 11

6

51
18

• This becomes really bad if is close to 1

39

17

1
13
24
14

11

Linear Probing vs. Choosing
a Random Cell

Weiss, Data Structures and Algorithm Analysis in Java, 3rd ed.

number  
or probes

linear probing, 
 insert or table miss

linear probing,  
table hit

Quadratic Probing

0
1
2
3
4
5
6
7

25

8
9

10

hash(key)25
x % 11

3

Quadratic Probing

0
1
2
3
4
5
6
7

25

8
9

10

hash(key)14
x % 11

3

f(1) = 1 3

Quadratic Probing

0
1
2
3
4
5
6
7

25

8
9

10

hash(key)14
x % 11

3

f(2) = 4 3

14

Quadratic Probing

0
1
2
3
4
5
6
7

25

8
9

10

hash(key)47
x % 11

3

f(3) = 9
3

14

47

Quadratic Probing

0
1
2
3
4
5
6
7

25

8
9

10

hash(key)15
x % 11

4
f(1) = 1

3

14

47

• Primary clustering is not a problem.

15

Quadratic Probing

0
1
2
3
4
5
6
7

hash(key)19
x % 8

• Important: With quadratic probing,TableSize should be a
prime number! Otherwise it is possible that we won’t find an
empty cell, even if there is plenty of space.

3
20

9

11

3

3 + f(i) % 8
i 1

4
2
7

3
4

4
3

5
4

6
7

7
4

8
3 …

Quadratic Probing

0
1
2
3
4
5
6
7

25

8
9

10

hash(key)11
x % 11

0

3

14

47

• Problem: If the table gets too full (), it is possible
that empty cells become unreachable, even if the table
size is prime.

13

12

0 + f(i) % 11

i 1

1

2

4

3

9

4

5

5

3

9

6

3

7

5

8

9 …

Quadratic Probing Theorem
IfTableSize is prime, then the first cells visited by
quadratic probing are distinct.  
Therefore we can always find an empty cell if the table is at
most half full.

Quadratic Probing Theorem
IfTableSize is prime, then the first cells visited by
quadratic probing are distinct.  
Therefore we can always find an empty cell if the table is at
most half full.

• Let TableSize be some prime greater than 3.
• Let hash(x) = h
• If there was a slot visited twice during the first  

probing steps, then there must be two numbers
 
 such that

Quadratic Probing Theorem (2)
Proof by contradiction:
If there is an index visited twice during the first  
probing steps, then there must be two numbers
 
 such that

Quadratic Probing Theorem (2)
Proof by contradiction:
If there is an index visited twice during the first  
probing steps, then there must be two numbers
 
 such that

either

or or

Quadratic Probing Theorem (2)
Proof by contradiction:
If there is an index visited twice during the first  
probing steps, then there must be two numbers
 
 such that

either

or or

impossible because TableSize
is prime

impossible because i < j
impossible because

i<j≤TableSize/2

Quadratic Probing Theorem (2)
Proof by contradiction:
If there is an index visited twice during the first  
probing steps, then there must be two numbers
 
 such that

either

or or

impossible because TableSize
is prime

impossible because i < j
impossible because

i<j≤TableSize/2

Contradiction! 
The assumption must be false!

Double Hashing

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)40
x % 11 7

hash2(key)

5 - x % 5

Compute a second hash function to  
determine a linear offset for this key.

Double Hashing

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)84
x % 11 7

hash2(key)

5 - x % 5

4

f(1) = 1 · hash2(x) =1

84

Compute a second hash function to  
determine a linear offset for this key.

Double Hashing

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)62
x % 11 7

hash2(key)

5 - x % 5

3

f(1) = 1 · hash2(x) =3

84

62

Compute a second hash function to  
determine a linear offset for this key.

Double Hashing

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)29
x % 11 7

hash2(key)

5 - x % 5

1

f(1) = 1 · hash2(x) =1

84

62

f(2) = 2 · hash2(x) =2

29

Compute a second hash function to  
determine a linear offset for this key.

Choosing a Secondary Hash
Function

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)22
x % 11

0

hash2(key)

x % 11

0 84

62
29

• Need to choose hash2 wisely!
• What happens with the following function?

22

Choosing a Secondary Hash
Function

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)11
x % 11

hash2(key)

x % 11

0 84

62
29

• Need to choose hash2 wisely!
• What what happen with the following function?

22
f(1) = 1 · hash2(x) =0
f(2) = 2 · hash2(x) =0

…

• A good choice for integers is

• As with quadratic hashing, we need to choose the
table size to be prime (otherwise cells become
unreachable too quickly).

• Properly implemented, double hashing produces a
good distribution of keys over table cells.

Double Hashing

• Separate Chaining Hash Tables become inefficient if the
load factor becomes too large (lists become too long).

• Hash Tables with Linear Probing become inefficient if
the load factor approaches 1 (primary clustering) and
eventually fill up.

• Hash Tables with Quadratic Probing and Double
Hashing can have failed inserts if the table is more than
half full.

• Need to copy data to a new table.

Rehashing

• Allocate a new table of twice the size as the original one.

• For probing hash tables, we cannot simply copy entries to the
new array.

• Different modulo wraparound won’t cause the same
collisions.

• Since the hash function is based on the TableSize,keys won’t
be in the correct cell, anyway.

• Remove all N items and re-insert into the new table.  
This operation takes O(N), but this cost is only incurred in the
rare case when rehashing is needed.

Rehashing

• Remove all N items and re-insert into the new table.

• Every insert is O(1), so rehashing takes O(N).

• But rehashing is relatively rare, we need to do it
only after every TableSize/2 inserts.

Rehashing Running Time

