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Homework

• Due Friday, 11:59pm. 

• Jarvis is now grading HW3. 



Recitation Sessions
• Recitations this week:  

• Review of balanced search trees.  

• Implementing AVL rotations.  

• Implementing maps with BSTs.  

• Hashing (Friday/Next Mon & Tue).



Midterm 
• Midterm next Wednesday (in-class)

• Closed books/notes/electronic devices. 

• Ideally, bring a pen, water, and nothing else.  

• 60 minutes 

• Midterm review this Wednesday in class.



How to Prepare?
• Midterm will cover all content up to (and including) this 

week. 

• Know all ADTs, operations defined on them, data 
structures, running times.  

• Know basics of running time analysis (big-O). 

• Understand recursion, inductive proofs, tree traversals, … 

• Practice questions out today. Discussed Wednesday. 

• Good idea to review slides & homework!



How to Prepare Even More?

• Optional:  

• Solve Weiss textbook exercises and discuss on 
Piazza. 

• Try to implement data structures from scratch.



Map ADT
• A map is collection of (key, value) pairs. 

• Keys are unique, values need not be (keys are a Set!). 

• Two operations:  

• get(key)  returns the value associated with this key 
• put(key, value)     (overwrites existing keys)

key1
key2
key3
key4

value1
value2
value3



Implementing Maps



Implementing Maps
• Option 1: Use any set implementation to store special 

(key,value) objects.  

• Comparing these objects means comparing the key 
(testing for equality or implementing the Comparable 
interface)



Implementing Maps
• Option 1: Use any set implementation to store special 

(key,value) objects.  

• Comparing these objects means comparing the key 
(testing for equality or implementing the Comparable 
interface)

• Option 2: Specialized implementations  

• B+ Tree: nodes contain keys, leaves contain values. 

• Plain old Array: Only integer keys permitted.  

• Hash maps (this week)



Balanced BSTs
• Runtime of BST operations (insert, contains/
find, remove, findmin, findmax) depend on 
height of the tree. 

• Balance condition: Guarantee that the BST is always 
close to a complete binary tree. 

• Then the height of the tree will be O(log N). 

• All BST operations will run in O(log N). 

• Map operations get and put  will also run in O(log N)

Can we do better?



• When keys are integers, arrays provide a 
convenient way of implementing maps.  

• Time for get and put is O(1). 

Arrays as Maps

A
0 1 2 3 4 5 6

DB C



Hash Tables

0

1Alice

• Define a table (an array) of some length TableSize.  

• Define a function hash(key) that maps key 
objects to an integer index in the range  
0 … TableSize -1 

2

TableSize - 1

…

hash(key)555-341-1231 Alice 555-341-1231



Hash Tables

0

1Bob

• Define a table (an array) of some length TableSize.  

• Define a function hash(key) that maps key 
objects to an integer index in the range  
0 … TableSize -1 

2

TableSize - 1

…

hash(key)555-987-2314 Alice 555-341-1231

Bob 555-341-1231



Hash Tables

0

1Alice

• Lookup/get: Just hash the key to find the index.  

• Assuming hash(key) takes constant time, get 
and put run in O(1).

2

TableSize - 1

…

hash(key)? Alice 555-341-1231

Bob 555-341-1231



Hash Table Collisions

0

1Anna

• Problem: There is an infinite number of keys, but only TableSize 
entries in the array. 

• How do we deal with collisions? (new item hashes to an array 
cell that is already occupied)  

• Also: Need to find a hash function that distributes items in the 
array evenly. 

2

TableSize - 1

…

hash(key)555-521-2973 Alice 555-341-1231

Bob 555-341-1231



• Hash functions depends on: type of keys we 
expect (Strings, Integers…) and TableSize. 

• Hash functions needs to:  

• Spread out the keys as much as possible in the 
table (ideal: uniform distribution). 

• Make sure that all table cells can be reached. 

Choosing a Hash Function



Choosing a Hash Function: 
Integers

• If the keys are integers, it is often okay to assume  
that the possible keys are distributed evenly.  
              
hash(x) = x % TableSize 
public	  static	  int	  hash(	  Integer	  key,	  int	  tableSize	  )	  {	  
	  	  	  	  return	  key	  %	  tableSize;	  
}

          e.g. TableSize = 5  
          hash(0) = 0, hash(1) = 1,  
          hash(5) = 0, hash(6) = 1



Choosing a Hash Function: 
Strings - Idea 1

• Idea 1: Sum up the ASCII (or Unicode) values of all  
characters in the String.
public	  static	  int	  hash(	  String	  key,	  int	  tableSize	  )	  {	  
	  	  	  	  	  	  	  	  int	  hashVal	  =	  0;	  

	  	  	  	  	  	  	  	  for(	  int	  i	  =	  0;	  i	  <	  key.length(	  );	  i++	  )	  
	  	  	  	  	  	  	  	  	  	  	  	  hashVal	  =	  hashVal	  +	  key.charAt(	  i	  );	  

	  	  	  	  	  	  	  	  return	  hashVal	  %	  tableSize;	  
}

e.g.   “Anna” → 65 + 2 ·110 + 97 = 382  
A → 65, n → 110, a → 97  



Choosing a Hash Function: 
Strings - Problems with Idea 1

• Idea 1 doesn’t work for large table sizes:  

• Assume TableSize = 10,007 

• Every character has a value in the range 0 and 127. 

• Assume keys are at most 8 chars long:  

• hash(key) is in the range 0 and 127 · 8 = 1016.  

• Only the first 1017 cells of the array will be used! 



Choosing a Hash Function: 
Strings - Problems with Idea 1

• Idea 1 doesn’t work for large table sizes:  

• Assume TableSize = 10,007 

• Every character has a value in the range 0 and 127. 

• Assume keys are at most 8 chars long:  

• hash(key) is in the range 0 and 127 · 8 = 1016.  

• Only the first 1017 cells of the array will be used! 

• Also: All anagrams will produce collisions: 
“rescued”, “secured”,”seducer”



Choosing a Hash Function: 
Strings - Idea 2

• Idea 2: Spread out the value for each character 
public	  static	  int	  hash(	  Integer	  key,	  int	  tableSize	  )	  {	  
	  	  	  	  return	  (key.charAt(0)	  +	  	  
	  	  	  	  	  	  	  	  	  	  	  	  27	  *	  key.charAt(1)	  +	  
	  	  	  	  	  	  	  27	  *	  27	  *	  key.charAt(2));	  
}



Choosing a Hash Function: 
Strings - Idea 2

• Idea 2: Spread out the value for each character 
public	  static	  int	  hash(	  Integer	  key,	  int	  tableSize	  )	  {	  
	  	  	  	  return	  (key.charAt(0)	  +	  	  
	  	  	  	  	  	  	  	  	  	  	  	  27	  *	  key.charAt(1)	  +	  
	  	  	  	  	  	  	  27	  *	  27	  *	  key.charAt(2));	  
}

• Problem: assumes that the all three letter combinations 
(trigrams) are equally likely at the beginning of a string. 

• This is not the case for natural language  
• some letters are more frequent than others 
• some trigrams ( e.g. “xvz”) don’t occur at all.



Choosing a Hash Function: 
Strings - Idea 3

public	  static	  int	  hash(	  String	  key,	  int	  tableSize	  )	  {	  
	  	  	  	  int	  hashVal	  =	  0;	  

	  	  	  	  for(	  int	  i	  =	  0;	  i	  <	  key.length(	  );	  i++	  )	  
	  	  	  	  	  	  	  	  hashVal	  =	  37	  *	  hashVal	  +	  key.charAt(	  i	  );	  

	  	  	  	  hashVal	  %=	  tableSize;	  
	  	  	  	  if(	  hashVal	  <	  0	  )	  
	  	  	  	  	  	  	  	  hashVal	  +=	  tableSize;	  

	  	  	  	  return	  hashVal;	  
}

This is what Java Strings use; works well, but slow for large 
strings. 



Combining Hash Functions
• In practice, we often write hash functions for some 

container class:  

• Assume all member variables have a hash 
function (Integers, Strings…). 

• Multiply the hash of each member variable with 
some distinct, large prime number. 

• Then sum them all up. 



Combining Hash Functions, 
Example

public	  class	  Person	  {	  
	  	  	  	  public	  String	  firstName;	  
	  	  	  	  public	  String	  lastName;	  
	  	  	  	  public	  Integer	  age;	  
}



Combining Hash Functions, 
Example

public	  class	  Person	  {	  
	  	  	  	  public	  String	  firstName;	  
	  	  	  	  public	  String	  lastName;	  
	  	  	  	  public	  Integer	  age;	  
}

public	  static	  int	  hash(	  Person	  key,	  int	  tableSize	  )	  {	  
	  	  	  	  int	  hashVal	  =	  	  hash(key.firstName,	  tableSize)	  *	  127	  +	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  hash(key.lastName,	  tableSize)	  *	  1901	  +	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  hash(key.age,	  tableSize)	  *	  4591;	  
	  	  	  	  hashVal	  %=	  tableSize;	  
	  	  	  	  if(	  hashVal	  <	  0	  )	  
	  	  	  	  	  	  	  	  hashVal	  +=	  tableSize;	  
}



Why Prime Numbers? 
• To reduce collisions, TableSize should not be a 

factor of any large hash value (before taking the 
modulo).

TableSize = 8 factors = 2, 4, 6, 8, 16
Bad example:



Why Prime Numbers? 
• To reduce collisions, TableSize should not be a 

factor of any large hash value (before taking the 
modulo).

TableSize = 8 factors = 2, 4, 6, 8, 16
Bad example:

• Good practices:  

• Keep TableSize a prime number.  

• When combining hash values, make the factors prime 
numbers.



What Objects Can be Keys?
• Anything can be a key, we just need to find a good 

hash function. 

• Need to make sure that objects that are used as 
keys cannot be changed at runtime (they are 
immutable)



What Objects Can be Keys?
• Anything can be a key, we just need to find a good 

hash function. 

• Need to make sure that objects that are used as 
keys cannot be changed at runtime (they are 
immutable)

• Otherwise, if their content changes their 
hash value should change too!



What Objects Can be Keys?
• Anything can be a key, we just need to find a good 

hash function. 

• Need to make sure that objects that are used as 
keys cannot be changed at runtime (they are 
immutable)

• How would you compute the hash value for a LinkedList 
or a Binary Tree?  

• Otherwise, if their content changes their 
hash value should change too!



Hash Table Collisions

0

1Anna

• Problem: There is an infinite number of keys, but only TableSize 
entries in the array. 

• Need to find a hash function that distributes items in the array 
evenly. 

• How do we deal with collisions? (new item hashes to an array 
cell that is already occupied) 

2

TableSize - 1

…

hash(key)555-521-2973 Alice 555-341-1231

Bob 555-341-1231



Dealing with Collisions: 
Separate Chaining

• Keep all items whose key hashes to the same value on a 
linked list. 

• Can think of each list as a bucket defined by the hash 
value.

0

1
2

TableSize - 1
…

Alice 555-341-1231

Bob 555-341-1231



Dealing with Collisions: 
Separate Chaining

• To insert a new key in cell that’s already occupied 
prepend to the list.

0

1
2

TableSize - 1

Alice 555-341-1231

Bob 555-341-1231

Anna 555-521-2973

hash(key)

…



Dealing with Collisions: 
Separate Chaining

• To insert a new key in cell that’s already occupied 
prepend to the list.

0

1
2

TableSize - 1

Alice 555-341-1231

Bob 555-341-1231

Anna 555-521-2973

hash(key) Anna 555-521-2973

…



Analyzing Running Time for 
Separate Chaining (1)

• Time to find a key = time to compute hash function  
                              + time to traverse the linked list. 

• Assume hash functions computed in O(1). 

• How many elements do we expect in a list on 
average?



Load Factor
• Let N be the number of keys in the  

table.  
• Define the load factor as

• The average length of a list is        .

Weiss, Data Structures and Algorithm Analysis in Java, 3rd ed.



Analyzing Running Time for 
Separate Chaining (2)

• If lookup fails (table miss): 
• Need to search all    nodes in the 

list for this hash bucket.

Design rule: keep           . If load becomes too high increase 
table size (rehash).

• If lookup succeeds (table hit): 
• There will be about   other 

nodes in the list.  
• On average we search half the 

list and the target key, so we 
touch               nodes.



Problems with Separate 
Chaining 

• Requires allocation of new list nodes, which 
introduces overhead.  

• Requires more code because it requires a linked 
list data structure in addition to the hash table itself.



Hash Tables without Linked 
Lists: Probing

0
1
2
3
4
5
6
7

• When a collision occurs put item in an empty cell of 
the hash table itself.

40
8
9

10

hash(key)40
x % 11

7



• When a collision occurs put item in an empty cell of 
the hash table itself.

Hash Tables without Linked 
Lists: Probing

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)18
x % 11

7

18



• When a collision occurs put item in an empty cell of 
the hash table itself.

Hash Tables without Linked 
Lists: Probing

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)29
x % 11

7

18
29



• When a collision occurs put item in an empty cell of 
the hash table itself.

Hash Tables without Linked 
Lists: Probing

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)9
x % 11

9

18
29

9



• When a collision occurs put item in an empty cell of 
the hash table itself.

Hash Tables without Linked 
Lists: Probing

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)21
x % 11

9

18
29

10

21



• When a collision occurs put item in an empty cell of 
the hash table itself.

Hash Tables without Linked 
Lists: Probing

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)21
x % 11

9

18
29

10

21



• To look up a key, we search the table, starting from 
the cell the key was hashed to.

Hash Tables without Linked 
Lists: Probing

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)29
x % 11

9

18
29

7

21

With a Probing Hash Table 
           . Table is full if            . 



Probing: Collision Resolution 
Strategies (1)

• To insert an item, we probe other table cells in a 
systematic way until an empty cell is found.  

• To look up a key, we probe in a systematic way until 
the key is found.  

• Different strategies to determine the next cell 

• Example: Just try cells sequentially (with 
wraparound).



Collision Resolution 
Strategies (2)

• Can describe collision resolution strategies using a 
function       , such that the i-th table cell to be 
probed is                                                   
                                                            .



• Linear Probing (previous example):  
• f(i) is some linear function of i, usually               .   

Collision Resolution 
Strategies (2)

• Can describe collision resolution strategies using a 
function       , such that the i-th table cell to be 
probed is                                                   
                                                            .

If hash(x) = 7, try cell 7 first, then try  
cell 7+f(1)=8, cell 7+f(2)=9,  cell 7+f(3)=10, … 



• Linear Probing (previous example):  
• f(i) is some linear function of i, usually               .   

Collision Resolution 
Strategies (2)

• Can describe collision resolution strategies using a 
function       , such that the i-th table cell to be 
probed is                                                   
                                                            .

If hash(x) = 7, try cell 7 first, then try  
cell 7+f(1)=8, cell 7+f(2)=9,  cell 7+f(3)=10, … 

• Quadratic probing  
• Double hashing 



Linear Probing
• Can always find an empty cell (if there is space in 

the table). 

• Problem: Primary Clustering.  

• Full cells tend to cluster, with no free cells in 
between. 

• Time required to find an empty cell can become 
very large if the table is almost full          
(     is close to 1).



Linear Probing
• Can always find an empty cell (if there is space in 

the table). 

• Problem: Primary Clustering.  

• Full cells tend to cluster, with no free cells in 
between. 

• Time required to find an empty cell can become 
very large if the table is almost full          
(     is close to 1).



Primary Clustering
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1
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5
6
7 40
8
9

10

hash(key)40
x % 11

7



Primary Clustering
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Primary Clustering

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)18
x % 11

7

51
18

• Cells 7-9 are occupied with keys that hash to 7. The 
entire block is unavailable to keys that hash to k<7.



Primary Clustering

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)39
x % 11

6

51
18

• Cells 7-8 are occupied with keys that hash to 7. The 
entire block is unavailable to keys that hash to k<7.

39



Primary Clustering

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)17
x % 11

6

51
18

• Cells 7-8 are occupied with keys that hash to 7. The 
entire block is unavailable to keys that hash to k<7.

39

17



Primary Clustering

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)6
x % 11

6

51
18

• This becomes really bad if    is close to 1

39

17

1
13
24
14

11



Linear Probing vs. Choosing 
a Random Cell

Weiss, Data Structures and Algorithm Analysis in Java, 3rd ed.

number  
or probes

linear probing, 
 insert or table miss

linear probing,  
table hit



Quadratic Probing

0
1
2
3
4
5
6
7

25

8
9

10

hash(key)25
x % 11

3



Quadratic Probing

0
1
2
3
4
5
6
7

25

8
9

10

hash(key)14
x % 11

3

f(1) = 1 3



Quadratic Probing

0
1
2
3
4
5
6
7

25

8
9

10

hash(key)14
x % 11

3

f(2) = 4 3

14



Quadratic Probing

0
1
2
3
4
5
6
7

25

8
9

10

hash(key)47
x % 11

3

f(3) = 9
3

14

47



Quadratic Probing

0
1
2
3
4
5
6
7

25

8
9

10

hash(key)15
x % 11

4
f(1) = 1

3

14

47

• Primary clustering is not a problem. 

15



Quadratic Probing

0
1
2
3
4
5
6
7

hash(key)19
x % 8

• Important:  With quadratic probing,TableSize should be a 
prime number! Otherwise it is possible that we won’t find an 
empty cell, even if there is plenty of space.

3
20

9

11

3

3 + f(i) % 8
i 1

4
2
7

3
4

4
3

5
4

6
7

7
4

8
3 …



Quadratic Probing

0
1
2
3
4
5
6
7

25

8
9

10

hash(key)11
x % 11

0

3

14

47

• Problem: If the table gets too full (            ), it is possible 
that empty cells become unreachable, even if the table 
size is prime.  

13

12

0 + f(i) % 11

i 1

1

2

4

3

9

4

5

5

3

9

6

3

7

5

8

9 …



Quadratic Probing Theorem
IfTableSize is prime, then the first                     cells visited by 
quadratic probing are distinct.  
Therefore we can always find an empty cell if the table is at 
most half full. 



Quadratic Probing Theorem
IfTableSize is prime, then the first                     cells visited by 
quadratic probing are distinct.  
Therefore we can always find an empty cell if the table is at 
most half full. 

• Let TableSize be some prime greater than 3. 
• Let hash(x) = h 
• If there was a slot visited twice during the first                 

probing steps, then there must be two numbers  
 
   such that



Quadratic Probing Theorem (2)
Proof by contradiction: 
If there is an index visited twice during the first                 
probing steps, then there must be two numbers  
 
   such that



Quadratic Probing Theorem (2)
Proof by contradiction: 
If there is an index visited twice during the first                 
probing steps, then there must be two numbers  
 
   such that

either

or or



Quadratic Probing Theorem (2)
Proof by contradiction: 
If there is an index visited twice during the first                 
probing steps, then there must be two numbers  
 
   such that

either

or or

impossible because TableSize 
is prime

impossible because i < j
impossible because  

i<j≤TableSize/2 



Quadratic Probing Theorem (2)
Proof by contradiction: 
If there is an index visited twice during the first                 
probing steps, then there must be two numbers  
 
   such that

either

or or

impossible because TableSize 
is prime

impossible because i < j
impossible because  

i<j≤TableSize/2 

Contradiction! 
The assumption must be false!



Double Hashing

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)40
x % 11 7

hash2(key)

5 - x % 5

Compute a second hash function to  
determine a linear offset for this key.



Double Hashing

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)84
x % 11 7

hash2(key)

5 - x % 5

4

f(1) = 1 · hash2(x) =1

84

Compute a second hash function to  
determine a linear offset for this key.



Double Hashing

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)62
x % 11 7

hash2(key)

5 - x % 5

3

f(1) = 1 · hash2(x) =3

84

62

Compute a second hash function to  
determine a linear offset for this key.



Double Hashing

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)29
x % 11 7

hash2(key)

5 - x % 5

1

f(1) = 1 · hash2(x) =1

84

62

f(2) = 2 · hash2(x) =2

29

Compute a second hash function to  
determine a linear offset for this key.



Choosing a Secondary Hash 
Function

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)22
x % 11

0

hash2(key)

x % 11

0 84

62
29

• Need to choose hash2  wisely! 
• What happens with the following function?

22



Choosing a Secondary Hash 
Function

0
1
2
3
4
5
6
7 40
8
9

10

hash(key)11
x % 11

hash2(key)

x % 11

0 84

62
29

• Need to choose hash2  wisely! 
• What what happen with the following function?

22
f(1) = 1 · hash2(x) =0
f(2) = 2 · hash2(x) =0

…



• A good choice for integers is                                                                                      

• As with quadratic hashing, we need to choose the 
table size to be prime (otherwise cells become 
unreachable too quickly). 

• Properly implemented, double hashing produces a 
good distribution of keys over table cells. 

Double Hashing



• Separate Chaining Hash Tables become inefficient if the 
load factor becomes too large (lists become too long). 

• Hash Tables with Linear Probing become inefficient if 
the load factor approaches 1 (primary clustering) and 
eventually fill up. 

• Hash Tables with Quadratic Probing and Double 
Hashing can have failed inserts if the table is more than 
half full. 

• Need to copy data to a new table. 

Rehashing



• Allocate a new table of twice the size as the original one. 

• For probing hash tables, we cannot simply copy entries to the 
new array.  

• Different modulo wraparound won’t cause the same 
collisions.  

• Since the hash function is based on the TableSize,keys won’t 
be in the correct cell, anyway. 

• Remove all N items and re-insert into the new table.  
This operation takes O(N), but this cost is only incurred in the 
rare case when rehashing is needed.

Rehashing



• Remove all N items and re-insert into the new table. 

• Every insert is O(1), so rehashing takes O(N).  

• But rehashing is relatively rare, we need to do it 
only after every TableSize/2 inserts.

Rehashing Running Time


