Data Structures in Java

Lecture 11: B-Trees.

10/14/2015

Daniel Bauer

Homework, Midterm etc.

- Homework 3 is out! Due: Friday October 23rd. Jarvis tests in preparation.
- Homework 2 grading is almost done.
- Make sure to only submit .pdf and .txt (or Github markdown .md) for theory. Put the the main directory for each homework
homework-<youruni>/3/ and not homework-<uni>/3/src/
- Sample questions for Midterm to be released this weekend.

Review: Binary Search Trees

- BST property:
- For all nodes s in $T_{1}, s_{i t e m}<r_{\text {item }}$.
- For all nodes t in $T_{1,}, t_{i t e m}>r_{\text {item }}$.

- To keep BST operations (search/insert/delete/findMin/ findMax) efficient, we need to maintain a balanced tree:
- height of the tree should be close to $\log (\mathrm{N})$.
- Example: AVL balancing condition, height difference between left and right subtree is at most 1.

M-ary Trees

- Each node can have M subnodes.
- Height of a complete M-ary tree is $\log _{M} N$.

M-ary Search Tree

- We can generalize binary search trees to M-ary search trees.

4-ary search tree:
Nodes have 1,2, or 3 data items and 0 to 4 children.

2-3-4 Trees

- A 2-3-4 Tree is a balanced 4-Ary search tree.
- Three types of internal nodes:
- a 2-node has 1 item and 2 children.

- a 3-node has 2 item and 3 children.
- a 4-node has 3 item and 4 children.

- Balance condition:

All leaves have the same depth.
(height of the left and right subtree is always identical)

contains in a 2-3-4 Tree

- At each level try to find the item: 2 steps $=O$ (c)
- If not found, follow reference down the tree. There are at most $\mathrm{O}($ height $(\mathrm{T}))=\mathrm{O}(\log \mathrm{N})$ references.

insert into a 2-3-4 Tree

- Follow the same steps as contains.
- If X is found, do nothing.
- If there is still space in the leaf that should contain X , add it.

insert into a 2-3-4 Tree

- Follow the same steps as contains.
- If X is found, do nothing.
- If there is still space in the leaf that should contain X , add it.
- What if the leaf is full?

insert: splitting nodes

- If the leaf is full, evenly split it into two nodes.
- choose median m of values.
- left node contains items $<m$, right node contains items $>m$.
- add median items to parent, keep references to new nodes left and right of it.

insert: splitting nodes

- If the leaf is full, evenly split it into two nodes.
- choose median m of values.
- left node contains items $<m$, right node contains items $>m$.
- add median items to parent, keep references to new nodes left and right of it.

insert: splitting nodes

- If the leaf is full, evenly split it into two nodes.
- choose median m of values.
- left node contains items $<m$, right node contains items $>m$.
- add median items to parent, keep references to new nodes left and right of it.

insert: splitting nodes

insert: splitting nodes

- If parent is also full, continue to split the parent until space can be found.
- If root is full, create a new root with old root as a single child.
- At most we need one pass down the tree and one pass up, so insertion is $\mathrm{O}(\log \mathrm{N})$.

insert: splitting nodes

- If parent is also full, continue to split the parent until space can be found.
- If root is full, create a new root with old root as a single child.
- At most we need one pass down the tree and one pass up, so insertion is $\mathrm{O}(\log \mathrm{N})$.

insert: splitting nodes

- If parent is also full, continue to split the parent until space can be found.
- If root is full, create a new root with old root as a single child.
- At most we need one pass down the tree and one pass up, so insertion is $\mathrm{O}(\log \mathrm{N})$.

insert: splitting nodes

- If parent is also full, continue to split the parent until space can be found.
- If root is full, create a new root with old root as a single child.
- At most we need one pass down the tree and one pass up, so insertion is $\mathrm{O}(\log \mathrm{N})$.

remove from a 2-3-4 tree

- Item in a 3- or 4-leaf can just be removed.

remove from a 2-3-4 tree

- Item in a 3- or 4-leaf can just be removed.

remove from a 2-3-4 tree

- Removal of an item v from internal node:
- Continue down the tree to find the leaf with the next highest item w. Replace v with w. Remove w from its original position recursively.

remove from a 2-3-4 tree

- Removal of an item v from internal node:
- Continue down the tree to find the leaf with the next highest item w. Replace v with w. Remove w from its original position recursively.

remove from a 2-3-4 tree

- Removal of an item form a leaf 2-node t :
- We cannot simply remove t because the parent would not be well formed.
- Move down an item from the parent of t. Replenish the parent by moving item from one of t 's siblings.

remove from a 2-3-4 tree

- Removal of an item form a leaf 2-node t :
- We cannot simply remove t because the parent would not be well formed.
- Move down an item from the parent of t. Replenish the parent by moving item from one of t 's siblings.

remove from a 2-3-4 tree

- Removal of an item form a leaf 2-node t :
- We cannot simply remove t because the parent would not be well formed.
- Move down an item from the parent of t. Replenish the parent by moving item from one of t 's siblings.

What if no sibling is a 3 or 4 node?

remove from a 2-3-4 tree

- Removal of a an item in a leaf 2-node that has no 3- or 4-node siblings:
- Fuse the sibling node with one of the parent nodes.

remove from a 2-3-4 tree

- Removal of a an item in a leaf 2-node that has no 3- or 4-node siblings:
- Fuse the sibling node with one of the parent nodes.

remove from a 2-3-4 tree

- Removal of a an item in a leaf 2-node that has no 3- or 4-node siblings:
- Fuse the sibling node with one of the parent nodes.

remove from a 2-3-4 tree

- Removal of a an item in a leaf 2-node that has no 3- or 4-node siblings:
- Fuse the sibling node with one of the parent nodes.

All modifications to fix the tree are local and therefore O (c). Remove runs in $\mathrm{O}(\log \mathrm{N})$.

B-Trees

- A B-Tree is a generalization of the 2-3-4 tree to M-ary search trees.
- Every internal node (except for the root) has $\left\lceil\frac{M}{2}\right\rceil \leq d \leq M$ children and contains $\quad d-1$ values.
- All leaves contain $\left\lceil\frac{L}{2}\right\rceil \leq d \leq L$ values (usually $\mathrm{L}=\mathrm{M}-1$)
- All leaves have the same depth.
- Often used to store large tables on hard disk drives.
(databases, file systems)

Memory Hierarchy

Typical Memory Size
$<1 \mathrm{~KB}$

8MB

Disk Storage .

$5 \mathrm{~ms}=5 \times 10^{6} \mathrm{~ns}$ 200 accesses/second

Memory access is much faster than disk access.

Large BST on Disk (1)

- Assume we have a very large database table, represented as a binary search tree:
- 10 million items, 256 bytes each.
- 6 disk accesses per second (shared system).
- Assume no caching, every lookup requires disk access.

Large BST on Disk (2)

- Disk access time for finding a node in an unbalanced BST:
- depth of searched node is N in the worst case:
- 10 million items -> 10 million disk accesses
- 10 million / 6 accesses per second ≈ 19 days!
- Expected depth is $1.38 \log N$
- $1.38 \log _{2} 10 \times 10^{6}$ items ≈ 32 disk accesses
- 32 / 6 accesses per second ≈ 5 seconds

Large BST on Disk (2)

- Even for AVL Tree the worst case and average case will be around $\log N$.
- About 24 disk accesses in 4 sec.

Storing B-Trees on Disk

- We can use B-Trees to reduce the number of disk accesses. Basic idea:
- Read an entire B-Tree node (containing M items) into memory in single disk access. Find the next reference using binary search.
- Worst case height of the B-Tree is about $\log _{\frac{M}{2}} N$ because the ${ }^{2}$ minimum number of items in each node is $\mathrm{M} / 2$.

Hard Disk Drive Layout

- A sector is the minimal unit of data
 that can be read from the disk.
- Typical physical sector size:

512 byte (modern drives: 4096 byte)

- Blocks are logical units of adjacent sectors (defined by the operating system).
Typical block sizes are $1 \mathrm{~KB}, 2 \mathrm{~KB}, 4 \mathrm{~KB}, 8 \mathrm{~KB}$.

Estimating the ideal M for a

 B-Tree- Assume $8 \mathrm{~KB}=8,192$ byte block size.
- Every data item is 256 byte.

- An M-ary B-Tree contains at most $M-1$ data items + M block addresses of other trees (a 8 byte pointer each).
- How big can we make the nodes?

$$
\begin{aligned}
(M-1) \cdot 256 \text { byte }+M \cdot 8 \text { byte } & =8,192 \text { byte } \\
M & =32
\end{aligned}
$$

Calculating Access Time

- We representing 10,000,000 items in a B-Tree with $\mathrm{M}=32$
- The tree has a worst-case height of $\log _{\frac{M}{2}} N$

$$
\log _{\frac{32}{2}} 10,000,000 \approx 6
$$

- Worst-case time to find an item is 6 accesses $/ 6$ disk accesses per second $=1$ second

B+ Trees

- Only leafs store full (key, value) pairs.
- Internal nodes only contain keys to help find the right leaf.
- Insert/removal only at leafs (slightly simpler, see book).

Weiss, Data Structures and Algorithms in Java, 3rd Ed.

B+ Trees on Disk

- Assume keys are 32 bytes.

$$
(M-1) \cdot 32 \text { byte }+M \cdot 8 \text { byte }=8,192 \text { byte }
$$

- We can fit at most $\mathrm{M}=205$ keys in each node.
- Worst case time for 1 million keys:

$$
\log _{\frac{205}{2}} 10,000,000=3
$$

- 3 accesses $/ 6$ seconds per access $=.5$ seconds

