Data Structures in Java

L ecture 11: B-Trees.

10/14/2015

Daniel Bauer

Homework, Midterm etc.

 Homework 3 is out! Due: Friday October 23rd.
Jarvis tests in preparation.

 Homework 2 grading is almost done.

* Make sure to only submit .pdf and .txt (or Github
markdown .md) for theory. Put the the main directory for
each homework
homework-<youruni>/3/ and not
homework-<uni>/3/src/

e Sample questions for Midterm to be released this weekend.

Review: Binary Search Trees

 BST property: ‘/GK
e For all nodes sin T}, Siem < litem.
e for all nodes tin T, tiiem > rlitem. /T\ /T\

* Jo keep BST operations (search/insert/delete/findMin/
findMax) efficient, we need to maintain a balanced tree:

* height of the tree should be close to log(N).

 Example: AVL balancing condition, height difference
between left and right subtree is at most 1.

Vl-ary [rees

e Fach node can have M subnodes.

* Height of a complete M-ary tree is log,, IV.

((() ()
QOO0 OOO0OO OO0 OOOO0

M-ary Search Tree

* \We can generalize binary search trees to M-ary

search trees.
D EE)

TN

OO O® | (@

4-ary search tree:
Nodes have 1,2, or 3 data items and 0O to 4 children.

2-3-4 lrees

e A2-3-4 Tree is a balanced 4-Ary search tree.

* Three types of internal nodes:

e a2-node has 1 item and 2 children. Ay

e a 3-node has 2 item and 3 children. @

e a4-node has 3 item and 4 children. f I Xis
j0.0)0)

<I r<x<sS s<x<t >t

 Balance condition:
All leaves have the same depth.
(height of the left and right subtree is always identical)

contains in a 2-3-4 lIree

contains(55)
/@”\/.\/@'\

©EEOOLEE) B EEE

* At each level try to find the item: 2 steps = O(c)
e |f not found, follow reference down the tree. There are
at most O(height(T)) = O(log N) references.

insert into a 2-3-4 lree

/ R

[Q@J[@Q]J ®&)) () (EE)

-ollow the same steps as contains.

e |f X Is found, do nothing.

* |f there is still space in the leaf that
should contain X, add it.

insert into a 2-3-4 lree

/ R

[Q@J[@@Q]J ®&)) () (EE)

-ollow the same steps as contains.

e |f X Is found, do nothing.

* |f there is still space in the leaf that
should contain X, add it.

- What if the leaf is full?

insert: splitting nodes

nsert(72)
/@J\/.\/'@\

OOEEHEOO®) (BE) (@) EEE

e |fthe leaf is full, evenly split it into two nodes.

* choose median m of values.

e |left node contains items < m, right node contains items >m.

 add median items to parent, keep references to new nodes left
and right of it.

insert: splitting nodes

nsert(72)
/@K/.\/'“\

0[0)©0.0)00/O)NOIONCO(-1-1I00)

e |fthe leaf is full, evenly split it into two nodes.

* choose median m of values.

e |left node contains items < m, right node contains items >m.

 add median items to parent, keep references to new nodes left
and right of it.

insert: splitting nodes

nsert(72)
/\/.\/

(0©0)©00)COOINE)] @0

e |fthe leaf is full, evenly split it into two nodes.

* choose median m of values.

e |left node contains items < m, right node contains items >m.

 add median items to parent, keep references to new nodes left
and right of it.

insert: splitting nodes

nsert(80)
K

OEEEHE OO (EE®) (@ [@][@0@

insert: sp\itting NOdes

insert(90) / \

QIO \ OO

/| RN
(9] ()G () ()) @) e0)

o |f parentis also full, continue to split the parent until space can
0e found.

* |froot is full, create a new root with old root as a single child.
At most we need one pass down the tree and one pass up, SO
insertion is O(log N).

insert: splitting nodes

insert(90)
E@O?\ PG
/ IR

OOEE®OE®) B (EE) .[@®0@]

o |f parentis also full, continue to split the parent until space can
0e found.

* |froot is full, create a new root with old root as a single child.
At most we need one pass down the tree and one pass up, SO
insertion is O(log N).

insert: splitting nodes

insert(90)

(@0?\ ol JoX)
/ SRR
OE)E@EO®®) (EE) (©E) (@) (@)

o |f parentis also full, continue to split the parent until space can
0e found.

* |froot is full, create a new root with old root as a single child.
At most we need one pass down the tree and one pass up, SO
insertion is O(log N).

insert: sp\itting NOdes

/ \ Q&

[0@][@]] ®6) @) EE @)

o |f parentis also full, continue to split the parent until space can
0e found.

* |froot is full, create a new root with old root as a single child.
At most we need one pass down the tree and one pass up, SO
insertion is O(log N).

remove from a 2-3-4 tree

remove(80) /(@ ‘]\
\

/(@OK A&

OOEE®OE®) B (EE) (-1

e [tem in a 3- or 4-leaf can just be removed.

remove from a 2-3-4 tree

remove(80) /@ ‘]\
\

/(@OK A&

OOEE®OE®) B (EE) L ®

e [tem in a 3- or 4-leaf can just be removed.

remove from a 2-3-4 tree

remove ;‘ @@
ST R

[0@][@]] 06 BE @

« Removal of an item v from internal node:
« Continue down the tree to find the leaf with the next highest
item w. Replace v with w. Remove w from its original position
recursively.

remove from a 2-3-4 tree

P

OEEEE[0O®) [®EE @IE @)

« Removal of an item v from internal node:
« Continue down the tree to find the leaf with the next highest
item w. Replace v with w. Remove w from its original position
recursively.

remove from a 2-3-4 tree

rermove g‘ @@.
ST R

[0@][@]] 0 E®EE ©

e Removal of an item form a leaf 2-node t:

* We cannot simply remove t because the parent would not be
well formed.

 Move down an item from the parent of t. Replenish the parent
by moving item from one of ts siblings.

remove from a 2-3-4 tree

remove(59

s AN

&) ® E®

/N NN

(D) e Ql®

e Removal of an item form a leaf 2-node t:

* We cannot simply remove t because the parent would not be
well formed.

 Move down an item from the parent of t. Replenish the parent
by moving item from one of ts siblings.

remove from a 2-3-4 tree

remove(59

s AN

® ® E

A RN RN

00)©00) 000 OGO,

e Removal of an item form a leaf 2-node t:

* We cannot simply remove t because the parent would not be
well formed.

 Move down an item from the parent of t. Replenish the parent
by moving item from one of ts siblings.

What if no sibling is a 3 or 4 node?

remove from a 2-3-4 tree

remove [j@z‘ @@
ST R

[0@][@]] ® @ @0 @

e Removal of a an item in a leaf 2-node that has no 3- or 4-node
siblings:
* Fuse the sibling node with one of the parent nodes.

remove from a 2-3-4 tree

remove(/2) /@

&) ® ®

AN BN
@) (@

(D) e

e Removal of a an item in a leaf 2-node that has no 3- or 4-node
siblings:
* Fuse the sibling node with one of the parent nodes.

remove from a 2-3-4 tree

remove(72) (9 ()
SN RN

OOEXEIOOE) @ @ @ ©

e Removal of a an item in a leaf 2-node that has no 3- or 4-node
siblings:
* Fuse the sibling node with one of the parent nodes.

remove frOm a 2-3-4 tree

QIO

/| \ AR

(D) e CIOR©,

« Removal of a an item in a leaf 2-node that has no 3- or 4-node
siblings:
* Fuse the sibling node with one of the parent nodes.
All moditications to fix the tree are local and therefore O(c).
Remove runs in O(log N).

B-lrees

A B-Tree is a generalization of the 2-3-4 tree to
M-ary search trees.

EJ\\/fery internal node (except for the root) has
(7W <d < M children and contains d — 1values.

L
All leaves contain [7] < d < Lvalues (usually L=M-1)

All leaves have the same depth.

Often used to store large tables @

on hard disk drives.
(databases, file systems) |

(9E &6

Vlemory Hierarchy

Typical Memory Size Typical Access Times

< 1KB 5 ns
SMB 10 NS
4G|B (or le 100 NS

s =5x10%ns
ses/second

Memory access is much faster than disk access.

| arge BST on Disk (1)

 Assume we have a very large database table,
represented as a binary search tree:

* 10 million items, 256 bytes each.
* 6 disk accesses per second (shared system).

 Assume no caching, every lookup requires disk
aCCesSs.

| arge BST on Disk (2)

* Disk access time for finding a node in an
unbalanced BST:

* depth of searched node is N in the worst case:

e 10 mi
e 10 mi

ion items -> 10 million disk accesses
ion / 6 accesses per second = 19 days!

 Expected depthis 1.38 log N

e 1.381logs 10 x 10° items = 32 disk accesses
e 32 /6 accesses per second =~ 5 seconds

| arge BST on Disk (2)

 Even for AVL Tree the worst case and average case
will be around log N.

e About 24 disk accesses In 4 sec.

Storing B-Trees on Disk

e \WWe can use B-Trees to reduce the number of disk
accesses. Basic idea:

 Read an entire B-Tree node (containing M items) into
memory in single disk access. Find the next reference
using binary search.

* \Worst case height of the B-Tree
is about logu N
because the minimum number

of items in each node is M/2. /@ \
(9E [E)EE)

Hard Disk Drive Layout

e A sector is the minimal unit of data

Track/ that can be read from the disk.
Cylinder

* Jypical physical sector size:
512 byte (modern drives: 4096 byte)

Sector

- Blocks are logical units of adjacent

% rieads sectors (defined by the operating
e system).

Typical block sizes are
1KB, 2KB, 4KB, 8KB.

Estimating the ideal M for a

B-lree
(M-1)*256 bytes
Assume 8KB= 8,192 byte block size. l l
M * 8 bytes

Every data item is 256 byte.

An M-ary B-Tree contains at most M-7 data items +
M block addresses of other trees (a 8 byte pointer
each).

ow big can we make the nodes?
(M — 1) - 256 byte + M - 8 byte = 8,192 byte

M = 32

Calculating Access Time

 We representing 10,000,000 items in a B-Tree with M=32

* The tree has a worst-case height of 109% N

logs2 10,000,000 ~ 6

* \Worst-case time to find an item is
6 accesses / 6 disk accesses per second = 1 second

B+ [rees

* Only leafs store full (key, value) pairs.

* |nternal nodes only contain keys to help find the

right leaf.
* Insert/removal only at leafs (slightly simpler, see
book).
41|[66|(87
8 || 18][26(]|35 4815154 721178|83 92|97
2|8 ||18][26(|35]||41|(48(|51||54 66|(72(|78||83 87192197
4 [110/]20][28|(36|(42(|49(|52||56 687317984 89((93(98
6 |(12/]22(|30|(37(|44(|50|(53(|58 6974|8185 901 (95|99
14/124||31||38||46 59 701176
16 321139

Weiss, Data Structures and Algorithms in Java, 3rd Ed.

Bt Irees on Disk

 Assume keys are 32 bytes.

(M — 1) - 32 byte + M - 8 byte = 8,192 byte
 We can fit at most M=205 keys in each node.

e Worst case time for 1 million keys:
log 20s 10,000,000 = 3

3 accesses /6 seconds per access = .5 seconds

