
Data Structures in Java
Lecture 11: B-Trees.

10/14/2015

Daniel Bauer

Homework, Midterm etc.
• Homework 3 is out! Due: Friday October 23rd.  

Jarvis tests in preparation.

• Homework 2 grading is almost done.

• Make sure to only submit .pdf and .txt (or Github
markdown .md) for theory. Put the the main directory for
each homework  
homework-<youruni>/3/ and not  
homework-<uni>/3/src/

• Sample questions for Midterm to be released this weekend. 

Review: Binary Search Trees
• BST property:

• For all nodes s in Tl, sitem < ritem.
• For all nodes t in Tl, titem > ritem.  

• To keep BST operations (search/insert/delete/findMin/
findMax) efficient, we need to maintain a balanced tree:

• height of the tree should be close to log(N).
• Example: AVL balancing condition, height difference

between left and right subtree is at most 1.

r

Tl Tr

M-ary Trees
• Each node can have M subnodes.

• Height of a complete M-ary tree is .

M-ary Search Tree
• We can generalize binary search trees to M-ary

search trees.

1

207

21

23

9 102 3

.

4-ary search tree:
Nodes have 1,2, or 3 data items and 0 to 4 children.

2-3-4 Trees
• A 2-3-4 Tree is a balanced 4-Ary search tree.

• Three types of internal nodes:
• a 2-node has 1 item and 2 children.
• a 3-node has 2 item and 3 children.
• a 4-node has 3 item and 4 children.  
 

• Balance condition:  
All leaves have the same depth.  
(height of the left and right subtree is always identical)

r s

r

r s t

x<r x>r

<r r<x<s x>s

<r r<x<s s<x<t >t

contains in a 2-3-4 Tree
53

3827 7060

2516 3633 4641 48 5955 6865 7573 79

contains(55)
53

60

55

• At each level try to find the item: 2 steps = O(c)
• If not found, follow reference down the tree. There are

at most O(height(T)) = O(log N) references.

insert into a 2-3-4 Tree
53

3827 7060

2516 3633 4641 48 5955 6865 7573 79

insert(34)

• Follow the same steps as contains.
• If X is found, do nothing.
• If there is still space in the leaf that  

should contain X, add it.

53

38

insert into a 2-3-4 Tree
53

3827 7060

2516 3633 4641 48 5955 6865 7573 79

insert(34)

• Follow the same steps as contains.
• If X is found, do nothing.
• If there is still space in the leaf that  

should contain X, add it.

53

38

34

• What if the leaf is full?

insert: splitting nodes
53

3827 7060

2516 3633 4641 48 5955 6865

insert(72)

• If the leaf is full, evenly split it into two nodes.
• choose median m of values.
• left node contains items < m, right node contains items >m.
• add median items to parent, keep references to new nodes left

and right of it.

53

34

70

73 75 79

insert: splitting nodes
53

3827 7060

2516 3633 4641 48 5955 6865

insert(72)

• If the leaf is full, evenly split it into two nodes.
• choose median m of values.
• left node contains items < m, right node contains items >m.
• add median items to parent, keep references to new nodes left

and right of it.

53

34

70

72 75 7973

insert: splitting nodes
53

3827 7060

2516 3633 4641 48 5955 6865

insert(72)

• If the leaf is full, evenly split it into two nodes.
• choose median m of values.
• left node contains items < m, right node contains items >m.
• add median items to parent, keep references to new nodes left

and right of it.

53

34

70

75 7972

73

insert: splitting nodes
53

3827 7060

2516 3633 4641 48 5955 6865

insert(80) 53

34 75 79

73

72 80

insert: splitting nodes
53

3827 7060

2516 3633 4641 48 5955 6865

insert(90)

• If parent is also full, continue to split the parent until space can
be found.

• If root is full, create a new root with old root as a single child.
• At most we need one pass down the tree and one pass up, so

insertion is O(log N).

34 72 75 79 80

73

insert: splitting nodes
53

3827 7060

2516 3633 4641 48 5955 6865

insert(90)

• If parent is also full, continue to split the parent until space can
be found.

• If root is full, create a new root with old root as a single child.
• At most we need one pass down the tree and one pass up, so

insertion is O(log N).

34 72

73

75 79 80 90

insert: splitting nodes
53

3827 7060

2516 3633 4641 48 5955 6865

insert(90)

• If parent is also full, continue to split the parent until space can
be found.

• If root is full, create a new root with old root as a single child.
• At most we need one pass down the tree and one pass up, so

insertion is O(log N).

34 72

73

75 9080

7970

insert: splitting nodes
53

3827 60

2516 3633 4641 48 5955 6865

insert(90)

• If parent is also full, continue to split the parent until space can
be found.

• If root is full, create a new root with old root as a single child.
• At most we need one pass down the tree and one pass up, so

insertion is O(log N).

34 72

73

75 9080

79

70

remove from a 2-3-4 tree
53

3827

70

60

2516 3633 4641 48 5955 6865

remove(80)

• Item in a 3- or 4-leaf can just be removed.

34 72

73

75 80 90

79

remove from a 2-3-4 tree
53

3827

70

60

2516 3633 4641 48 5955 6865

remove(80)

• Item in a 3- or 4-leaf can just be removed.

34 72

73

75 90

79

remove from a 2-3-4 tree
53

3827

70

60

2516 3633 4641 48 5955 6865

remove(53)

• Removal of an item v from internal node:
• Continue down the tree to find the leaf with the next highest

item w. Replace v with w. Remove w from its original position
recursively.

34 72

73

75 90

79

remove from a 2-3-4 tree

3827

70

60

2516 3633 4641 48 59

55

6865

remove(53)

• Removal of an item v from internal node:
• Continue down the tree to find the leaf with the next highest

item w. Replace v with w. Remove w from its original position
recursively.

34 72

73

75 90

79

remove from a 2-3-4 tree

3827

70

60

2516 3633 4641 48 59 6865

remove(59)

• Removal of an item form a leaf 2-node t:
• We cannot simply remove t because the parent would not be

well formed.
• Move down an item from the parent of t. Replenish the parent

by moving item from one of t’s siblings.

34 72

73

75 90

79

55

remove from a 2-3-4 tree

3827

70

60

2516 3633 4641 48 6865

remove(59)

• Removal of an item form a leaf 2-node t:
• We cannot simply remove t because the parent would not be

well formed.
• Move down an item from the parent of t. Replenish the parent

by moving item from one of t’s siblings.

34 72

73

75 90

79

55

remove from a 2-3-4 tree

3827

70

602516 3633 4641 48 68

65

remove(59)

• Removal of an item form a leaf 2-node t:
• We cannot simply remove t because the parent would not be

well formed.
• Move down an item from the parent of t. Replenish the parent

by moving item from one of t’s siblings.

34 72

73

75 90

79

55

What if no sibling is a 3 or 4 node?

remove from a 2-3-4 tree

3827

70

602516 3633 4641 48 68

65

remove(72)

• Removal of a an item in a leaf 2-node that has no 3- or 4-node
siblings:
• Fuse the sibling node with one of the parent nodes.

34 72

73

75 90

79

55

remove from a 2-3-4 tree

3827

70

602516 3633 4641 48 68

65

remove(72)

• Removal of a an item in a leaf 2-node that has no 3- or 4-node
siblings:
• Fuse the sibling node with one of the parent nodes.

34

73

75 90

79

55

remove from a 2-3-4 tree

3827

70

602516 3633 4641 48 68

65

remove(72)

• Removal of a an item in a leaf 2-node that has no 3- or 4-node
siblings:
• Fuse the sibling node with one of the parent nodes.

34 73 75 90

79

55

remove from a 2-3-4 tree

3827

70

602516 3633 4641 48 68

65

remove(72)

• Removal of a an item in a leaf 2-node that has no 3- or 4-node
siblings:
• Fuse the sibling node with one of the parent nodes.

34 73 75 90

79

55

All modifications to fix the tree are local and therefore O(c).
Remove runs in O(log N).

B-Trees
• A B-Tree is a generalization of the 2-3-4 tree to  

M-ary search trees.

• Every internal node (except for the root) has  
 children and contains values.

• All leaves contain values (usually L=M-1)

• All leaves have the same depth.

• Often used to store large tables 
on hard disk drives.  
(databases, file systems)

3827

2516 3633 4641 4834

Memory Hierarchy
CPU

registers

CPU caches

Main Memory

Disk Storage

< 1KB

8MB

64GB (or less)

>500GB

5 ns

10 ns

100 ns

5 ms = 5 x 106 ns

Typical Memory Size Typical Access Times

Memory access is much faster than disk access.
 200 accesses/second

Large BST on Disk (1)
• Assume we have a very large database table,

represented as a binary search tree:

• 10 million items, 256 bytes each.

• 6 disk accesses per second (shared system).

• Assume no caching, every lookup requires disk
access.

Large BST on Disk (2)
• Disk access time for finding a node in an

unbalanced BST:

• depth of searched node is N in the worst case:
• 10 million items -> 10 million disk accesses
• 10 million / 6 accesses per second ≈ 19 days!

• Expected depth is 1.38 log N
• 1.38 log2 10 x 106 items ≈ 32 disk accesses
• 32 / 6 accesses per second ≈ 5 seconds

Large BST on Disk (2)

• Even for AVL Tree the worst case and average case
will be around log N.

• About 24 disk accesses in 4 sec.

Storing B-Trees on Disk
• We can use B-Trees to reduce the number of disk

accesses. Basic idea:

• Read an entire B-Tree node (containing M items) into
memory in single disk access. Find the next reference
using binary search.

• Worst case height of the B-Tree  
is about  
because the minimum number 
of items in each node is M/2.  

38

2516 36 4641 48

27

33 34

Hard Disk Drive Layout
• A sector is the minimal unit of data

that can be read from the disk.

• Typical physical sector size:  
512 byte (modern drives: 4096 byte)

• Blocks are logical units of adjacent
sectors (defined by the operating
system).  
Typical block sizes are  
1KB, 2KB, 4KB, 8KB.

Estimating the ideal M for a
B-Tree

• Assume 8KB= 8,192 byte block size.

• Every data item is 256 byte.

• An M-ary B-Tree contains at most M-1 data items +
M block addresses of other trees (a 8 byte pointer
each).

• How big can we make the nodes?

 M * 8 bytes

(M-1)*256 bytes
…

Calculating Access Time
• We representing 10,000,000 items in a B-Tree with M=32

• The tree has a worst-case height of

• Worst-case time to find an item is  
6 accesses / 6 disk accesses per second = 1 second

B+ Trees
• Only leafs store full (key, value) pairs.

• Internal nodes only contain keys to help find the
right leaf.

• Insert/removal only at leafs (slightly simpler, see
book).

Weiss, Data Structures and Algorithms in Java, 3rd Ed.

B+ Trees on Disk
• Assume keys are 32 bytes.

• We can fit at most M=205 keys in each node.

• Worst case time for 1 million keys:  

• 3 accesses / 6 seconds per access = .5 seconds

