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Homework, Midterm etc.
• Homework 3 is out! Due: Friday October 23rd.  

Jarvis tests in preparation. 

• Homework 2 grading is almost done.  

• Make sure to only submit .pdf and .txt (or Github 
markdown .md) for theory. Put the the main directory for 
each homework  
homework-<youruni>/3/  and not   
homework-<uni>/3/src/ 

• Sample questions for Midterm to be released this weekend. 



Review: Binary Search Trees
• BST property: 

• For all nodes s in Tl, sitem < ritem.  
• For all nodes t in Tl, titem > ritem.  

• To keep BST operations (search/insert/delete/findMin/
findMax) efficient, we need to maintain a balanced tree: 

• height of the tree should be close to log(N). 
• Example: AVL balancing condition, height difference 

between left and right subtree is at most 1.
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M-ary Trees
• Each node can have M subnodes.  

• Height of a complete M-ary tree is             . 



M-ary Search Tree
• We can generalize binary search trees to M-ary 

search trees. 
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4-ary search tree:  
Nodes have 1,2, or 3 data items and 0 to 4 children.



2-3-4 Trees
• A 2-3-4 Tree is a balanced 4-Ary search tree. 

• Three types of internal nodes:  
• a 2-node has 1 item and 2 children. 
• a 3-node has 2 item and 3 children.  
• a 4-node has 3 item and 4 children.  
 

• Balance condition:  
All leaves have the same depth.  
(height of the left and right subtree is always identical)
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contains in a 2-3-4 Tree
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contains(55)
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• At each level try to find the item:   2 steps = O(c) 
• If not found, follow reference down the tree. There are 

at most O(height(T)) = O(log N) references.



insert into a 2-3-4 Tree
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insert(34)

• Follow the same steps as contains.    
• If X is found, do nothing.  
• If there is still space in the leaf that  

should contain X, add it.
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insert into a 2-3-4 Tree
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insert(34)

• Follow the same steps as contains.    
• If X is found, do nothing.  
• If there is still space in the leaf that  

should contain X, add it.
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• What if the leaf is full? 



insert: splitting nodes
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insert(72)

• If the leaf is full, evenly split it into two nodes. 
• choose median m of values. 
• left node contains items < m, right node contains items >m. 
• add median items to parent, keep references to new nodes left 

and right of it. 
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insert: splitting nodes
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• If the leaf is full, evenly split it into two nodes. 
• choose median m of values. 
• left node contains items < m, right node contains items >m. 
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insert: splitting nodes
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insert(72)

• If the leaf is full, evenly split it into two nodes. 
• choose median m of values. 
• left node contains items < m, right node contains items >m. 
• add median items to parent, keep references to new nodes left 

and right of it. 
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insert: splitting nodes
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insert: splitting nodes
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insert(90)

• If parent is also full, continue to split the parent until space can 
be found.  

• If root is full, create a new root with old root as a single child. 
• At most we need one pass down the tree and one pass up, so 

insertion is O(log N).
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insert: splitting nodes
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insert(90)

• If parent is also full, continue to split the parent until space can 
be found.  

• If root is full, create a new root with old root as a single child. 
• At most we need one pass down the tree and one pass up, so 

insertion is O(log N).
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insert: splitting nodes
53
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insert(90)

• If parent is also full, continue to split the parent until space can 
be found.  

• If root is full, create a new root with old root as a single child. 
• At most we need one pass down the tree and one pass up, so 

insertion is O(log N).

34 72

73

75 9080

7970



insert: splitting nodes
53

3827 60
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insert(90)

• If parent is also full, continue to split the parent until space can 
be found.  

• If root is full, create a new root with old root as a single child. 
• At most we need one pass down the tree and one pass up, so 

insertion is O(log N).
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remove from a 2-3-4 tree
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remove(80)

• Item in a 3- or 4-leaf can just be removed.  
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remove from a 2-3-4 tree
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remove from a 2-3-4 tree
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remove(53)

• Removal of an item v from internal node:  
• Continue down the tree to find the leaf with the next highest 

item w. Replace v with w. Remove w from its original position 
recursively.
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remove from a 2-3-4 tree
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remove(53)

• Removal of an item v from internal node:  
• Continue down the tree to find the leaf with the next highest 

item w. Replace v with w. Remove w from its original position 
recursively.
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remove from a 2-3-4 tree
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remove(59)

• Removal of an item form a leaf 2-node t: 
• We cannot simply remove t because the parent would not be 

well formed.  
• Move down an item from the parent of t. Replenish the parent 

by moving item from one of t’s siblings.  
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remove from a 2-3-4 tree
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• Removal of an item form a leaf 2-node t: 
• We cannot simply remove t because the parent would not be 

well formed.  
• Move down an item from the parent of t. Replenish the parent 
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remove from a 2-3-4 tree
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remove(59)

• Removal of an item form a leaf 2-node t: 
• We cannot simply remove t because the parent would not be 

well formed.  
• Move down an item from the parent of t. Replenish the parent 

by moving item from one of t’s siblings.  
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What if no sibling is a 3 or 4 node?



remove from a 2-3-4 tree
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remove(72)

• Removal of a an item in a leaf 2-node that has no 3- or 4-node 
siblings: 
• Fuse the sibling node with one of the parent nodes. 
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remove from a 2-3-4 tree
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• Removal of a an item in a leaf 2-node that has no 3- or 4-node 
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remove from a 2-3-4 tree
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remove(72)

• Removal of a an item in a leaf 2-node that has no 3- or 4-node 
siblings: 
• Fuse the sibling node with one of the parent nodes. 
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All modifications to fix the tree are local and therefore O(c). 
Remove runs in O(log N).



B-Trees
• A B-Tree is a generalization of the 2-3-4 tree to  

M-ary search trees. 

• Every internal node (except for the root) has  
                    children and contains             values. 

• All leaves contain                    values (usually L=M-1) 

• All leaves have the same depth.  

• Often used to store large tables 
on hard disk drives.  
(databases, file systems)
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Memory Hierarchy
CPU  

registers

CPU caches

Main Memory

Disk Storage

< 1KB

8MB

64GB (or less)

>500GB

5 ns

10 ns

100 ns

5 ms = 5 x 106 ns

Typical Memory Size Typical Access Times 

Memory access is much faster than disk access. 
 200 accesses/second



Large BST on Disk (1)
• Assume we have a very large database table, 

represented as a binary search tree: 

• 10 million items, 256 bytes each. 

• 6 disk accesses per second (shared system). 

• Assume no caching, every lookup requires disk 
access.



Large BST on Disk (2)
• Disk access time for finding a node in an 

unbalanced BST: 

• depth of searched node is N in the worst case:  
•   10 million items -> 10 million disk accesses 
•   10 million / 6 accesses per second ≈ 19 days! 

• Expected depth is 1.38 log N 
• 1.38 log2 10 x 106 items ≈ 32  disk accesses 
• 32 / 6 accesses per second ≈ 5 seconds



Large BST on Disk (2)

• Even for AVL Tree the worst case and average case 
will be around log N. 

• About 24 disk accesses in 4 sec. 



Storing B-Trees on Disk
• We can use B-Trees to reduce the number of disk 

accesses. Basic idea:  

• Read an entire B-Tree node (containing M items) into 
memory in single disk access. Find the next reference 
using binary search. 

• Worst case height of the B-Tree  
is about  
because the minimum number 
of items in each node is M/2.  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Hard Disk Drive Layout
• A sector is the minimal unit of data 

that can be read from the disk. 

• Typical physical sector size:  
512 byte (modern drives: 4096 byte) 

• Blocks are logical units of adjacent 
sectors (defined by the operating 
system).  
Typical block sizes are  
1KB, 2KB, 4KB, 8KB. 



Estimating the ideal M for a 
B-Tree

• Assume 8KB= 8,192 byte block size. 

• Every data item is 256 byte. 

• An M-ary B-Tree contains at most M-1 data items + 
M block addresses of other trees (a 8 byte pointer 
each). 

• How big can we make the nodes?  

 M * 8 bytes

(M-1)*256 bytes
…



Calculating Access Time
• We representing 10,000,000 items in a B-Tree with M=32 

• The tree has a worst-case height of   

• Worst-case time to find an item is  
6 accesses / 6 disk accesses per second = 1 second



B+ Trees
• Only leafs store full (key, value) pairs.  

• Internal nodes only contain keys to help find the 
right leaf.  

• Insert/removal only at leafs (slightly simpler, see 
book).

Weiss, Data Structures and Algorithms in Java, 3rd Ed. 



B+ Trees on Disk
• Assume keys are 32 bytes. 

• We can fit at most M=205 keys in each node.  

• Worst case time for 1 million keys:  

• 3 accesses / 6 seconds per access = .5 seconds


