Data Structures in Java

Lecture 9: Binary Search Trees.

10/7/2015

Daniel Bauer
Contents

1. Binary Search Trees

2. Implementing Maps with BSTs
Map ADT

- A *map* is a collection of *(key, value)* pairs.
- Keys are unique, values need not be.
- Two operations:
 - `get(key)` returns the value associated with this key
 - `put(key, value)` (overwrites existing keys)

How do we implement map operations efficiently?
Binary Search Tree Property

- Goal: Reduce finding an item to $O(\log N)$

- For every node n with value x
 - the value of all nodes in the left subtree of n are smaller than x.
 - The value of all nodes in the right subtree of n are larger than x.
Binary Search Tree Property

• Goal: Reduce finding an item to $O(\log N)$

• For every node n with value x

 • the value of all nodes in the left subtree of n are smaller than x.

 • The value of all nodes in the right subtree of n are larger than x.

This is not a search tree
Binary Search Tree (BST) ADT

- A *Binary Search Tree* T consists of
 - A root node r with value r_{item}
 - At most two non-empty subtrees T_l and T_r, connected by a directed edge from r.
- T_l and T_r satisfy the BST property:
 - For all nodes s in T_l, $s_{\text{item}} < r_{\text{item}}$.
 - For all nodes t in T_l, $t_{\text{item}} > r_{\text{item}}$.
- No value appears more than once in the BST.
BST operations

• `insert(x)` - add value x to T.
• `contains(x)` - check if value x is in T.
• `findMin()` - find smallest value in T.
• `findMax()` - find largest value in T.
• `remove(x)` - remove an item from T.
BST operations: contains

```java
private boolean contains( Integer x, BinaryNode t ) {
    if( t == null )
        return false;

    if( x < t.data )
        return contains( x, t.left );
    else if( t.data < x )
        return contains( x, t.right );
    else
        return true;    // Match
}
```
BST operations: `contains`

```java
private boolean contains(Integer x, BinaryNode t) {
    if (t == null)
        return false;

    if (x < t.data)
        return contains(x, t.left);
    else if (t.data < x)
        return contains(x, t.right);
    else
        return true;  // Match
}
```

contains(3)
BST operations: contains

private boolean contains(Integer x, BinaryNode t) {
 if(t == null)
 return false;
 if(x < t.data)
 return contains(x, t.left);
 else if(t.data < x)
 return contains(x, t.right);
 else
 return true; // Match
}

contains(3)
BST operations: contains

```java
private boolean contains( Integer x, BinaryNode t ) {
    if( t == null )
        return false;

    if( x < t.data )
        return contains( x, t.left );
    else if( t.data < x )
        return contains( x, t.right );
    else
        return true; // Match
}
```

contains(3)
BST operations: contains

```java
private boolean contains( Integer x, BinaryNode t ) {
    if( t == null )
        return false;

    if( x < t.data )
        return contains( x, t.left );
    else if( t.data < x )
        return contains( x, t.right );
    else
        return true;  // Match
}
```

contains(3)
BST operations: findMin

```java
private BinaryNode findMin( BinaryNode t ) {
  if ( t == null )
    return null;
  else if ( t.left == null )
    return t;
  return findMin( t.left );
}
```

findMax is equivalent.
BST operations: `findMin`

```java
private BinaryNode findMin(BinaryNode t) {
    if (t == null) {
        return null;
    } else if (t.left == null) {
        return t;
    }
    return findMin(t.left);
}
```

`findMin()`

`findMax` is equivalent.
BST operations: findMin

```java
private BinaryNode findMin( BinaryNode t ) {
    if( t == null )
        return null;
    else if( t.left == null )
        return t;
    return findMin( t.left );
}
```

findMin()

findMax is equivalent.
BST operations: findMin

```java
private BinaryNode findMin( BinaryNode t ) {
    if ( t == null )
        return null;
    else if ( t.left == null )
        return t;
    return findMin( t.left );
}
```

findMin() is equivalent to findMax.
BST operations: insert

- Follow same steps as contains(X)
- if X is found, do nothing.
- Otherwise, contains stopped at node n.
 Insert a new node for X as a left or right child of n.

```java
private BinaryNode insert( Integer x, BinaryNode t ){
    if( t == null )
        return new BinaryNode( x, null, null );

    if( x < t.data )
        t.left = insert( x, t.left );
    else if( t.data < x )
        t.right = insert( x, t.right );

    return t;
}
```

Maintains the BST property.
BST operations: insert

- Follow same steps as contains(X)
- if X is found, do nothing.
- Otherwise, contains stopped at node n. Insert a new node for X as a left or right child of n.

private BinaryNode insert(Integer x, BinaryNode t){
 if (t == null)
 return new BinaryNode(x, null, null);

 if(x < t.data)
 t.left = insert(x, t.left);
 else if(t.data < x)
 t.right = insert(x, t.right);

 return t;
}

Maintains the BST property.
BST operations: insert

- Follow same steps as contains(X)
- if X is found, do nothing.
- Otherwise, contains stopped at node n.
 Insert a new node for X as a left or right child of n.

```java
private BinaryNode insert( Integer x, BinaryNode t ){
  if( t == null )
    return new BinaryNode( x, null, null );

  if( x < t.data )
    t.left = insert( x, t.left );
  else if( t.data < x )
    t.right = insert( x, t.right );

  return t;
}
```

insert(5)

Maintains the BST property.
BST operations: insert

- Follow same steps as contains(X)
- if X is found, do nothing.
- Otherwise, contains stopped at node n.
 Insert a new node for X as a left or right child of n.

```
private BinaryNode insert( Integer x, BinaryNode t ){
    if( t == null )
        return new BinaryNode( x, null, null );
    if( x < t.data )
        t.left = insert( x, t.left );
    else if( t.data < x )
        t.right = insert( x, t.right );
    return t;
}
```

insert(5)

Maintains the BST property.
BST operations: insert

- Follow same steps as contains(X)
- if X is found, do nothing.
- Otherwise, contains stopped at node n.
 Insert a new node for X as a left or right child of n.

```
private BinaryNode insert( Integer x, BinaryNode t ){
  if ( t == null )
    return new BinaryNode( x, null, null );
  
  if( x < t.data )
    t.left = insert( x, t.left );
  else if( t.data < x )
    t.right = insert( x, t.right );
  
  return t;
}
```

Maintains the BST property.
BST operations: remove

- First find \(x \) following the same steps as `contains(X)`.
- If \(x \) is found in a node \(s \):
 - if \(s \) is a leaf, just remove it.
 - if \(s \) has a single child \(t \), attach \(t \) to the parent of \(s \), in place of \(s \).

Maintains the BST property.
BST operations: remove

• First find x following the same steps as contains(X).
• If x is found in a node s:
 • if s is a leaf, just remove it.
 • if s has a single child t, attach t to the parent of s, in place of s.

Maintains the BST property.
BST operations: remove

- First find x following the same steps as contains(X).
- If x is found in a node s:
 - if s is a leaf, just remove it.
 - if s has a single child t, attach t to the parent of s, in place of s.

Maintains the BST property.
BST operations: remove

• First find x following the same steps as contains(X).
• If x is found in a node s:
 • if s is a leaf, just remove it.
 • if s has a single child t, attach t to the parent of s, in place of s.

Maintains the BST property.
BST operations: remove

- First find x following the same steps as `contains(X)`.
- If x is found in a node s:
 - if s is a leaf, just remove it.
 - if s has a single child t, attach t to the parent of s, in place of s.

Maintains the BST property.
BST operations: remove

- First find x following the same steps as contains(X).
- If x is found in a node s:
 - if s is a leaf, just remove it.
 - if s has a single child t, attach t to the parent of s, in place of s.

Maintains the BST property.
BST operations: remove

- First find x following the same steps as contains(X).
- If x is found in a node s:
 - if s is a leaf, just remove it.
 - if s has a single child t, attach t to the parent of s, in place of s.

Maintains the BST property.
BST operations: remove

- First find x following the same steps as contains(X).
- If x is found in a node s:
 - if s is a leaf, just remove it.
 - if s has a single child t, attach t to the parent of s, in place of s.

Maintains the BST property.
BST operations: remove

- First find x following the same steps as contains(X).
- If x is found in a node s:
 - if s is a leaf, just remove it.
 - if s has a single child t, attach t to the parent of s, in place of s.
 - what if s has two children?

Maintains the BST property.
BST operations: remove

- If x is found in a node s that has two children t_{left} and t_{right}:
 - Find the smallest node u in the subtree rooted in t_{right}.
 - Replace value of s with value of u.
 - Recursively remove u.

To maintain the BST property, the node to replace s needs to be
- larger than any node in the left subtree
- but smaller than any node in the right subtree.
BST operations: remove

• If x is found in a node s that has two children \(t_{\text{left}} \) and \(t_{\text{right}} \):
 • Find the smallest node \(u \) in the subtree rooted in \(t_{\text{right}} \).
 • replace value of s with value of u.
 • recursively remove u.

To maintain the BST property, the node to replace s needs to be
 • larger than any node in the left subtree
 • but smaller than any node in the right subtree.
BST operations: remove

- If x is found in a node s that has two children t_{left} and t_{right}:
 - Find the smallest node u in the subtree rooted in t_{right}.
 - replace value of s with value of u.
 - recursively remove u.

To maintain the BST property, the node to replace s needs to be
- larger than any node in the left subtree
- but smaller than any node in the right subtree.
BST operations: remove

- If x is found in a node s that has two children t_{left} and t_{right}:
 - Find the smallest node u in the subtree rooted in t_{right}.
 - replace value of s with value of u.
 - recursively remove u.

To maintain the BST property, the node to replace s needs to be
 - larger than any node in the left subtree
 - but smaller than any node in the right subtree.
BST operations: remove

- If x is found in a node s that has two children t\text{left} and t\text{right}:
 - Find the smallest node u in the subtree rooted in t\text{right}.
 - replace value of s with value of u.
 - recursively remove u.

To maintain the BST property, the node to replace s needs to be
- larger than any node in the left subtree
- but smaller than any node in the right subtree.
BST operations: remove

- If x is found in a node s that has two children t_{left} and t_{right}:
 - Find the smallest node u in the subtree rooted in t_{right}.
 - replace value of s with value of u.
 - recursively remove u.

To maintain the BST property, the node to replace s needs to be
 • larger than any node in the left subtree
 • but smaller than any node in the right subtree.
BST operations: remove

• Why not just replace s with the root of t_left?

remove(3)
BST operations: remove

- Why not just replace s with the root of t_{left}?
Implementing remove

```java
private BinaryNode remove( Integer x, BinaryNode t ){
    if( t == null )
        return t; // Item not found; do nothing

    if (x < t.data )
        t.left = remove( x, t.left );
    else if(t.data < x )
        t.right = remove( x, t.right );

    else //found x
        if( t.left != null && t.right != null ) { // 2 children
            t.element = findMin( t.right ).element;
            t.right = remove( t.element, t.right );
        } else
            if (t.left != null) // 1 or 0 children.
                return t.left;
            else
                return t.right;
}
```
Running Time Analysis

• How long do the BST operations take?

• Given a BST T, we need a single pass down the tree to access some node s in $\text{depth}(s)$ steps.

• What is the best/expected/worst-case depth of a node in any BST?
Worst and Best Case Height of a BST

- Assume we have a BST with N nodes.

- Worst case: T does not branch $\text{height}(T) = N$

- Best case: $\text{height}(T) = \log N$

![Complete binary tree diagram](attachment:image.png)

complete binary tree.
Random BSTs

• Assume we have N elements. All $N!$ permutations of these elements are equally likely.

• We insert items in the order of any permutation into an initially empty BST. What is the average depth of a node?
Randomly generated BST
N=500, average depth = 9.89

Theoretical analysis of random BSTs: Average depth of a node in a random BST of N nodes is about

\[2 \log N = O(\log N) \]

Source: Weiss, Data Structures and Algorithm Analysis in Java, 3rd Edition
What about Different Sequences of Operations?

- The expected depth of a random BST (insertions of a random permutation of elements) is $O(\log N)$.

- But what happens if there are also random deletions?

- Deletion produces shorter right subtrees.
What about Different Sequences of Operations?

• The expected depth of a random BST (insertions of a random permutation of elements) is $O(\log N)$.

• But what happens if there are also random deletions?

• Deletion produces shorter right subtrees.
Random Insertions and Deletions

• After $\Theta(N^2)$ alternating insertion/deletion pairs, the expected depth is $\Theta(\sqrt{N}) = \Theta(N^{1/2})$.
Contents

1. Binary Search Trees

2. Implementing Maps with BSTs
Map ADT

- A map is a collection of (key, value) pairs.
- Keys are unique, values need not be.
- Two operations:
 - `get(key)` returns the value associated with this key
 - `put(key, value)` (overwrites existing keys)

How do we implement map operations efficiently?
Arrays as Maps

- When keys are integers, arrays provide a convenient way of implementing maps.
- Time for `get` and `put` is $O(1)$.
- What if we don’t have integer keys?
Comparing Complex Items

• So far, our BSTs contained **Integers**.

• One Goal of BSTs: Implement efficient lookup for Map keys and sorted Sets.

 ![Diagram](image)

 - We can implement generic BSTs that can contain any kind of element, including (key, value) pairs.

 - But we must be able to sort the elements, i.e. compare them using `<`, `>`, and `=`. The (key, value) pair class should implement Comparable.
Example (key/value) Pair Implementation

```java
private class Pair<K extends Comparable<K>, V> implements Comparable<Pair<K, ?>> {

    public K key;
    public V value;

    public Pair(K theKey, V theValue) {
        key = theKey; value = theValue;
    }

    @Override
    public int compareTo(Pair<K, ?> other) {
        return key.compareTo(other.key);
    }
}
```
Implementing Maps with BSTs

(see example code)