Data Structures in Java

Lecture 9: Binary Search Trees.

10/7/2015

Daniel Bauer

Contents

1. Binary Search Trees

2. Implementing Maps with BSTs

Map AD I

A mapis collection of (key, value) pairs.
 Keys are unigue, values need not be.
* [wo operations:
e get(key) returns the value associated with this key

e put(key, value) (overwrites existing keys)

keyl ——| valuef
Key?2 ——| value?
Key3 +—— value3

Key4 ///l

How do we implement map operations efticiently?

Binary Search Tree Property

* Goal: Reduce finding an item to O(log N)

* For every node n with value x

» the value of all nodes in * The value of all nodes
the left subtree of n are G in the right subtree of
smaller than x. e n are larger than x.

Binary Search Tree Property

* Goal: Reduce finding an item to O(log N)

* For every node n with value x

» the value of all nodes in * The value of all nodes
the left subtree of n are G in the right subtree of
smaller than x. e n are larger than x.

This is not a search tree

Binary Search Tree (BST) ADT

A Binary Search Tree T ‘/GK
consists of
e A root node r with value riem /T\ /T\

* At most two non-empty subtrees 7,and I, connected
by a directed edge fromr.

* [;and T, satisty the BST property:
e For all nodes sin T), Sitem < litem.

e For all nodes tin 1, tiiem > litem.

 No value appears more than once in the BST.

BST operations

» insert(x) - add value x to T.

« contains(x) -checkifvaluexisinT.

» findMin() - find smallest value in T.
» findMax() -find largest value in T.

* remove(Xx) -remove an item from T.

BST operations: contains

private boolean contains(Integer x, BinaryNode t) {
if(t ==)
return 5

if(x < t.data)

return contains(x, t.left);
else if(t.data < x)

return contains(x, t.right);

else
return : // Match

BST operations: contains

private boolean contains(Integer x, BinaryNode t) {
if(t ==)
return 5

if(x < t.data)
return contains(x, t.left);

else if(t.data < x)
return contains(x, t.right);

else
return ; // Match

contains(3) ®/ @

BST operations: contains

private boolean contains(Integer x, BinaryNode t) {
if(t ==)
return 5

if(x < t.data)
return contains(x, t.left);

else if(t.data < x)
return contains(x, t.right); G
else

return ; // Match

contains(3) a @
©

BST operations: contains

private boolean contains(Integer x, BinaryNode t) {
if(t ==)
return 5

if(x < t.data)
return contains(x, t.left);

else if(t.data < x)
return contains(x, t.right);

else @
return ; // Match
contains(3) ®/

BST operations: contains

private boolean contains(Integer x, BinaryNode t) {
if(t ==)
return 5

if(x < t.data)
return contains(x, t.left);

else if(t.data < x)
return contains(x, t.right);

else
return ; // Match

contains(3)

BST operations: £indMin

private BinaryNode findMin(BinaryNode t) {
if(t ==)
return ;
else if(t.left ==)
return t;
return findMin(t.left);

}

findMax is equivalent. a

BST operations: £indMin

private BinaryNode findMin(BinaryNode t) {
if(t ==)
return 5
else if(t.left ==)

return t;
return findMin(t.left);

}

findMin()

findMax is equivalent.

BST operations: £indMin

private BinaryNode findMin(BinaryNode t) {
if(t ==)
return ;
else if(t.left ==)
return t;

return findMin(t.left);

}

findMin() (1) (2

findMax is equivalent. a

BST operations: £indMin

private BinaryNode findMin(BinaryNode t) {
if(t ==)
return 5
else if(t.left ==)

return t;
return findMin(t.left);

}

findMin()

findMax is equivalent.

BST operations: insert

Follow same steps as contains(X)
* if Xis found, do nothing.
* QOtherwise, contains stopped at node n.
Insert a new node for X as a left or right child of n.

private BinaryNode insert(Integer X,
BinaryNode t){

if(t)
return new BinaryNode(X,

J

if(x < t.data)

t.left = insert(x, t.left);
else if(t.data < x)

t.right = insert(x, t.right);

return t;

} (3
Maintains the BST property.

BST operations: insert

Follow same steps as contains(X)
* if X'is found, do nothing.
* (Otherwise, contains stopped at node n.
Insert a new node for X as a left or right child of n.

private BinaryNode insert(Integer X,

BinaryNode t){ i'ﬂSGI‘t(S)

if(t)
return new BinaryNode(X,

J

if(x < t.data)

t.left = insert(x, t.left);
else if(t.data < x)

t.right = insert(x, t.right);

return t;

}
Maintains the BST property.

BST operations: insert

Follow same steps as contains(X)
* if X'is found, do nothing.
* (Otherwise, contains stopped at node n.
Insert a new node for X as a left or right child of n.

private BinaryNode insert(Integer X,

BinaryNode t){ i'ﬂSGI‘t(S)

if(t)
return new BinaryNode(X,

J

if(x < t.data)

t.left = insert(x, t.left);
else if(t.data < x)

t.right = insert(x, t.right);

return t;

}
Maintains the BST property.

BST operations: insert

* Follow same steps as contains(X)
* if X'is found, do nothing.
* (Otherwise, contains stopped at node n.
Insert a new node for X as a left or right child of n.

private BinaryNode insert(Integer X, .
BinaryNode t){ l'ﬂSGI‘t(S)

if(t)

return new BinaryNode(X, ,

if(x < t.data)

t.left = insert(x, t.left); e
else if(t.data < x)

t.right = insert(x, t.right); <::j;//
return t;

Maintains the BST property.

}

BST operations: insert

Follow same steps as contains(X)
* if X'is found, do nothing.
* (Otherwise, contains stopped at node n.
Insert a new node for X as a left or right child of n.

private BinaryNode insert(Integer X,

BinaryNode t){ i'ﬂSGI‘t(S)

if(t)
return new BinaryNode(X,

J

if(x < t.data)

t.left = insert(x, t.left);
else if(t.data < x)

t.right = insert(x, t.right);

return t;

}
Maintains the BST property.

BST operations: remove

e First find x following the same steps as contains(X).

e |t xisfound in a node s:
e if sis aleaf, just remove it.

e |f s has a single child t, attach t to the
parent of s, in place of s. G

Maintains the BST property. e

BST operations: remove

e First find x following the same steps as contains(X).

e |t xisfound in a node s:
e if sis aleaf, just remove it.

» if s has a single child t, attachttothe =~ remove(8)
parent of s, in place of s.

6

Maintains the BST property. e

BST operations: remove

e First find x following the same steps as contains(X).

e |t xisfound in a node s:
e if sis aleaf, just remove it.

» if s has a single child t, attachttothe =~ remove(8)
parent of s, in place of s.

Maintains the BST property.

BST operations: remove

e First find x following the same steps as contains(X).

e |t xisfound in a node s:
e if sis aleaf, just remove it.

» if s has a single child t, attachttothe =~ remove(8)
parent of s, in place of s. @

Maintains the BST property. e

BST operations: remove

e First find x following the same steps as contains(X).

e |t xisfound in a node s:
e if sis aleaf, just remove it.

» if shas asingle child t, attachttothe =~ Tremove(4)
parent of s, in place of s. e

Maintains the BST property. e

BST operations: remove

e First find x following the same steps as contains(X).

e |t xisfound in a node s:
e if sis aleaf, just remove it.

» if shas asingle child t, attachttothe =~ Tremove(4)
parent of s, in place of s. @

Maintains the BST property. e

BST operations: remove

e First find x following the same steps as contains(X).

e |t xisfound in a node s:
e if sis aleaf, just remove it.

» if shas asingle child t, attachttothe =~ Tremove(4)
parent of s, in place of s. @

Maintains the BST property. e

BST operations: remove

e First find x following the same steps as contains(X).

e |t xisfound in a node s:
e if sis aleaf, just remove it.

» if shas asingle child t, attachttothe =~ Tremove(4)
parent of s, in place of s. @

Maintains the BST property.

BST operations: remove

e First find x following the same steps as contains(X).

e |t xisfound in a node s:
e if sis aleaf, just remove it.

» if shas asingle child t, attachttothe =~ Tremove(4)
parent of s, in place of s. @

e what if s has two children?

Maintains the BST property.

BST operations: remove

e |t xis found in a node s that has two children tiet and trignt:

-ind the smallest node u in the subtree rooted In trignt.
replace value of s with value of u.

recursively remove u.

BST operations: remove

e |t xis found in a node s that has two children tiet and trignt:

-ind the smallest node u in the subtree rooted In trignt.
replace value of s with value of u.

recursively remove u.

remove(2) e

BST operations: remove

e |t xis found in a node s that has two children tiet and trignt:

-ind the smallest node u in the subtree rooted In trignt.
replace value of s with value of u.

recursively remove u.

: (&

remove(2) e

BST operations: remove

e |t xis found in a node s that has two children tiet and trignt:

* Find the smallest node u in the subtree rooted In trignt.
e replace value of s with value of u.
* recursively remove u.

remove(2)

BST operations: remove

e |t xis found in a node s that has two children tiet and trignt:

-ind the smallest node u in the subtree rooted In trignt.
replace value of s with value of u.

recursively remove u.

: (&

remove(2) (:

BST operations: remove

e |t xis found in a node s that has two children tiet and trignt:

-ind the smallest node u in the subtree rooted In trignt.
replace value of s with value of u.

recursively remove u.

: (&

remove(2)

BST operations: remove

* Why not just replace s with the root of tief?

S

remove(3)

BST operations: remove

* Why not just replace s with the root of tief?

%

remove(3) <:>

mplementing remove

private BinaryNode remove(Integer X, BinaryNode t){
if(t)

return t; // Item not found; do nothing

if (x < t.data)

t.left = remove(x, t.left);
else if(t.data < x)

t.right = remove(x, t.right);

else //found x
if(t.left != && t.right I=) { // 2 children
t.element = findMin(t.right).element;
t.right = remove(t.element, t.right);
} else

if (t.left !=) // 1 or @ children.
return t.left;

else
return t.right;

Running ime Analysis

 How long do the BST operations take?

 Given a BST T, we need a single pass down the
tree to access some node s in depth(s) steps.

 What is the best/expected/worst-case depth of a
node in any BST?

Worst and Best Case Height
of a BST

e Assume we have a BST with N nodes.

e \Worst case: T does not e Best case:

branch height(T)=N height(T)=log N

A8

complete binary tree.

ORORORO

Random BSTs

 Assume we have N elements. All N/ permutations
of these elements are equally likely.

 We insert items in the order of any permutation into

an initially empty BST. What is the average depth of
a node”

(1234] [1243] 234 1] (312 4]

Randomly generated BST
N=500, average depth = 9.89

Theoretical analysis of random BSTs: Average depth of a node
in a random BST of N nodes is about

2log N = O(log N)

Source: Weiss, Data Structures and Algorithm Analysis in Java, 3rd Edition

What about Different
Seqguences of Operations?

* The expected depth of a random BST (insertions of
a random permutation of elements) is O(log IV) .

remove(2)

* But what happens if there are also random G
deletions? /

* Deletion produces shorter right
subtrees.

What about Different
Seqguences of Operations?

* The expected depth of a random BST (insertions of
a random permutation of elements) is O(log N) .

remove(2)

* But what happens if there are also random G
deletions? /

N @
* Deletion produces shorter right
subtrees. G @

Random Insertions and Deletions

* After @(Iv?) alternating insertion/deletion pairs,
the expected depth is O(,/(N)) = O(N/2)

' " |
N=500, randomly generated as before.
500*500 = 250,000 random insertion/
deletion pairs

Source: Weiss, Data Structures and Algorithm Analysis in Java, 3rd Edition

Contents

1. Binary Search Trees

2. Implementing Maps with BSTs

Map AD I

A mapis collection of (key, value) pairs.
 Keys are unigue, values need not be.
* [wo operations:
e get(key) returns the value associated with this key

e put(key, value) (overwrites existing keys)

keyl ——| valuef
Key?2 ——| value?
Key3 +—— value3

Key4 ///l

How do we implement map operations efticiently?

Arrays as Maps

 \When keys are integers, arrays provide a
convenient way of implementing maps.

* Time for get and put is O(1).

A B D | C
O 2 3 4 5 O

 What it we don't have integer keys?

Comparing Complex ltems

e SO far, our BSTs contained Integers.

 One Goal of BSTs: Implement efficient lookup for Map keys and
sorted Sets.

key1 — valuei
key?2 —{ value?

 We can implement generic BSTs that can contain any kind of
element, including (key,value) pairs.

 But we must be able to sort the elements, i.e. compare them using

<, >, and =. The (key, value) pair class should implement
Comparable.

Example (key/value) Pair
Implementation

private class Pair<K extends Comparable<K>,V>
implements Comparable<Pair<K, ?>>{
public K key;
public V value;

public Pair(K , V) {

key = theKey; value = theValue;
¥

@Override
public int compareTo(Pair<K,?>) {
return key.compareTo(other.key);

¥

Implementing Maps with
BSTS

(see example code)

