Data Structures in Java

| ecture 8: Trees and Iree Traversals.

10/5/2015

Daniel Bauer

Trees In Computer Science

* A lot of data comes in a hierarchical/nested structure.
 Mathematical expressions.
 Program structure.
e File systems.
* Decision trees.

* Natural Language Syntax, Taxonomies,
Family Trees, ...

Example: Expression Irees

(@+b*c)+(d*e+1)*Q

ONNGO (£ @

©
Fo_se

More Efficient Algorithms
with Trees

e Sometimes we can represent data in a tree to
speed up algorithms.

* Only need to consider part of the tree to solve
certain problems:

e Searching, Sorting,...

e Can often speed up O(N) algorithms to O(log N)
once data Is represented as a tree.

Tree ADT

e Atree T consists of

e A root noder.

e zero or more nonempty subtrees T4, T2, ... TN
* each connected by a directed edge fromr.

e Support typical collection operations: size, get,
set, add, remove, find, ...

Tree ADT

e Atree T consists of

/?\

e 7Zero or more nonempty subtrees 14,

* each connected by a directed edge fromr.

e Support typical collection operations: size, get,
set, add, remove, find, ...

Tree Terminology

/f’\@
‘.

Tree Terminology

Tree Terminology

Tree Terminology

Grandparent of E, F Parent of B, C, D
/ Children of A

Tree Terminology

Tree Terminology

depth of E =2

Tree Terminology

height = 3

Representing lrees

* Option 1: Every node has fixed number of
references to children.

/ j\\

* Problem: Only reasonable for small or constant number
of children.

Binary lrees

* For binary trees, the number of children is at most
two.

* Binary trees are very common in data structures
and algorithms.

* Binary tree algorithms are convenient to analyze.

Implementing Binary Irees

public class BinaryTree<T> {

// The BinaryTree 1s essentially just a wrapper around the
// linked structure of BinaryNodes, rooted in root.
private BinaryNode<T> root;

/**

* Represent a binary subtree.

*/
private static class BinaryNode<T>{
public T data;
oublic BinaryNode<T> left;
public BinaryNode<T> right;

Representing lrees

e Option 2: Organize siblings as a linked list.

next sibling

No
1stcth/
% Mo
1st child next sibling

* Problem: Takes longer to find a node from the root.

Siblings as Linked List

(W
@ ©

® ®
O

Siblings as Linked List

®
/@ ©
/
H—@

e

Implementing Siblings as
Linked List

public class LinkedSiblingTree<E> {

private TreeNode<E> root;

private static class TreeNode<E> {
E element;

TreeNode<E> firstChild;
TreeNode<E> nextSibling;

~Full Binary lrees

* |n a full binary tree every node

e |S either a leatf.

* or has exactly two children. °

Tk

not full

~Full Binary lrees

* |n a full binary tree every node

e |S either a leatf.

* or has exactly two children. °

cfle

Complete Binary Trees

A complete binary tree is a full binary tree in
which all levels (except possibly the last) are

completely filled.

| ©
@ 5
BGRoN

Complete Binary Trees

A complete binary tree is a full binary tree in
which all levels (except possibly the last) are

completely filled.
O

T ® o
&
ool

fuII but not complete

Complete Binary Trees

A complete binary tree is a binary tree in which all
levels (except possibly the last) are completely
filled and every node is as far left as possible.

IO,
&
& &

Complete Binary Trees

A complete binary tree is a binary tree in which all
levels (except possibly the last) are completely
filled and every node is as far left as possible.

IO,
&
& &

Complete Binary Trees

A complete binary tree is a binary tree in which all
levels (except possibly the last) are completely
filled and every node is as far left as possible.

O
©
® O

Storing Complete Binary
Trees In Arrays

A|B|C|DJ|E]|F ||
O 1 2 3 4 5

SO
SoRoN
©0O6

Structure of the tree only depends on the number of nodes.

Example Binary lree:
EXpression Irees

Iree lraversals: In-order

- S

(2 ()
OO () O

lo
oo Ae

Tree lraversals: Post-orger

- S

(2 ()
OO () O

Iree lraversals: Pre-order

- T

(2 ()
OO () O

lo
oo Ae

Tree Traversals and Stacks

 Keep nodes that still need to be processed on a stack.

+

(2 ()
OO () O

. G0 A T

Tree Traversals and Stacks

 Keep nodes that still need to be processed on a stack.

ONNGO (£ @

+

|

Tree Traversals and Stacks

 Keep nodes that still need to be processed on a stack.
(& °

0 (£ @

+

|

Tree Traversals and Stacks

 Keep nodes that still need to be processed on a stack.

(2)

M Depending on traversal order ‘
(in-/post order), keep node on stack

or pop it. Let's do post order.

ONNGO (£ @

oRolNG O

+

|

@ ©

Tree Traversals and Stacks

 Keep nodes that still need to be processed on a stack.

—+ *

|

(@)

(2)

@

Tree Traversals and Stacks

 Keep nodes that still need to be processed on a stack.

Q ab
(42 ()

ONNGO (£ @

—+ *

|

Tree Traversals and Stacks

 Keep nodes that still need to be processed on a stack.

—+ *

|

(@)

Q ab
(42 ()

@

Tree Traversals and Stacks

 Keep nodes that still need to be processed on a stack.

Q abc
(42 ()

ONNGO (£ @

—+ *

|

Tree Traversals and Stacks

 Keep nodes that still need to be processed on a stack.

Q abc *

O (£ O

+

|

Tree Traversals and Stacks

 Keep nodes that still need to be processed on a stack.

Q abc * +

(£ @

ITree lraversal using Recursion

* \We often use recursion to traverse trees (making use of
Java’s method call stack implicitly).

public void printTree(int indent) {
for (1=0;1<1ndent;1++)
System.out.print(” ");

System.out.println(data); // Node

1f(left !=)

left.printTree(indent + 1); // Left
1fC right !'=)
right.printTree(indent + 1); // Right

30

Bare-bones Implementation
of a Binary Tree

* Public methods in BinaryTree usually call recursive methods,
Implementation either in BinaryNode or in BinaryTree.

 (sample code)

Constructing Expression

Trees using a Stack
5/ 27 2 3 * | +

e for c in input
* |f Cc IS an operand, push a tree

e |f c IS an operator: @

 pop the top 2 trees t1 and to

e push
{1 {1

e pop the result.

Constructing Expression

Trees using a Stack

5

&®

2/

2 3 * | +

e for cininput

e |f cis an operand, push a tree

e |f CcIs an operator:

()

 pop the top 2 trees t1 and to

e push
{1 {1

e pop the result.

Constructing Expression

Trees using a Stack

5

0/0/C

2/

2 3 * | +

e for cininput

e |f cis an operand, push a tree

e |f CcIs an operator:

()

 pop the top 2 trees t1 and to

e push
{1 {1

e pop the result.

Constructing Expression

Trees using a Stack

5

0/0/0C/O

2/

2 131" | +

e for cininput

e |f cis an operand, push a tree

e |f CcIs an operator:

()

 pop the top 2 trees t1 and to

e push
{1 {1

e pop the result.

Constructing Expression

Trees using a Stack

5

()

)

©

&®

2/

2 317/ +

e for cininput

e |f cis an operand, push a tree

e |f CcIs an operator:

()

 pop the top 2 trees t1 and to

e push
{1 {1

e pop the result.

Constructing Expression

Trees using a Stack

5

2/

2 3 *|/1+

e for cininput

e |f cis an operand, push a tree

e |f CcIs an operator:

()

 pop the top 2 trees t1 and to

e push
{1 {1

e pop the result.

Constructing Expression

Trees using a Stack

5

2/

2 3 * [+

e for cininput

e |f cis an operand, push a tree

e |f CcIs an operator:

()

 pop the top 2 trees t1 and to

e push
{1 {1

e pop the result.

