
Data Structures in Java
Lecture 8: Trees and Tree Traversals.

10/5/2015

1

Daniel Bauer

Trees in Computer Science
• A lot of data comes in a hierarchical/nested structure.

• Mathematical expressions.

• Program structure.

• File systems.

• Decision trees.

• Natural Language Syntax, Taxonomies,  
Family Trees, …

Example: Expression Trees

+

+ *

a

b c

d e

f

g* +

*

(a + b * c) + (d * e + f) * g

More Efficient Algorithms
with Trees

• Sometimes we can represent data in a tree to
speed up algorithms.

• Only need to consider part of the tree to solve
certain problems:

• Searching, Sorting,…

• Can often speed up O(N) algorithms to O(log N)
once data is represented as a tree.  

Tree ADT

• A tree T consists of

• A root node r.

• zero or more nonempty subtrees T1, T2, … TN,

• each connected by a directed edge from r.

• Support typical collection operations: size, get,
set, add, remove, find, …

T

Tree ADT

• A tree T consists of

• A root node r.

• zero or more nonempty subtrees T1, T2, … TN,

• each connected by a directed edge from r.

• Support typical collection operations: size, get,
set, add, remove, find, …

r

T1 T2 Tn

Tree Terminology
A

B C

E F

G

D

Root

Leaves

Tree Terminology
A

B C

E F

G

D

Parent of B, C, D

Children of A

Tree Terminology
A

B C

E F

G

D Siblings

Tree Terminology
A

B C

E F

G

D

Parent of B, C, D

Children of A

Grandchildren of A

Grandparent of E, F

Tree Terminology
A

B C

E F

G

D

Path from A to E. Length = 2

Path from n1 to nk : the sequence of nodes
nk, n2, …, nk, such that ni is the parent of ni+1 for 1≤i<k.

Length of a path: k-1 = number of edges on the path

Tree Terminology
A

B C

E F

G

D

Path from A to E

Depth of nk: the length of the path from root to nk.

depth of E = 2

Tree Terminology
A

B C

E F

G

D

Height of tree T: the length of the longest path from
root to a leaf.

height = 3

Representing Trees
• Option 1: Every node has fixed number of

references to children.

n0

n1 n2 n3

• Problem: Only reasonable for small or constant number
of children.

Binary Trees

• For binary trees, the number of children is at most
two.

• Binary trees are very common in data structures
and algorithms.

• Binary tree algorithms are convenient to analyze.

Implementing Binary Trees
public class BinaryTree<T> {

 // The BinaryTree is essentially just a wrapper around the
 // linked structure of BinaryNodes, rooted in root.
 private BinaryNode<T> root;

 /**
 * Represent a binary subtree.
 */
 private static class BinaryNode<T>{
 public T data;
 public BinaryNode<T> left;
 public BinaryNode<T> right;
 …
 }
 …
}

Representing Trees
• Option 2: Organize siblings as a linked list.

n0

n1 n2 n3

1st child next sibling

• Problem: Takes longer to find a node from the root.

1st child next sibling

Siblings as Linked List

G

C

A

DB

E F

Siblings as Linked List

G

C

A

DB

E F

Implementing Siblings as
Linked List

public class LinkedSiblingTree<E> {

 private TreeNode<E> root;

 private static class TreeNode<E> {
 E element;
 TreeNode<E> firstChild;
 TreeNode<E> nextSibling;
 …
 }

 ...
}

Full Binary Trees
• In a full binary tree every node

• is either a leaf.

• or has exactly two children.  
 
 
 
 
 

G

C

A

D

B

E

F

not full

Full Binary Trees

G

C

A

D

B

E

F

full

• In a full binary tree every node

• is either a leaf.

• or has exactly two children.  
 
 
 
 
 

Complete Binary Trees

G

C

A

D

B

E

F

• A complete binary tree is a full binary tree in
which all levels (except possibly the last) are
completely filled.

Complete Binary Trees

G

C

A

D

B

E

F

full, but not complete

• A complete binary tree is a full binary tree in
which all levels (except possibly the last) are
completely filled.

Complete Binary Trees

C

A

D

B

E

• A complete binary tree is a binary tree in which all
levels (except possibly the last) are completely
filled and every node is as far left as possible.

Complete Binary Trees

C

A

D

B

E

complete

• A complete binary tree is a binary tree in which all
levels (except possibly the last) are completely
filled and every node is as far left as possible.

Complete Binary Trees

C

A

D

B

E

complete but not full

• A complete binary tree is a binary tree in which all
levels (except possibly the last) are completely
filled and every node is as far left as possible.

F

Storing Complete Binary
Trees in Arrays

C

A

D

B

E F

A B C D E F

0 1 2 3 4 5

Structure of the tree only depends on the number of nodes.

Example Binary Tree:
Expression Trees

+

+ *

a

b c

d e

f

g* +

*

Tree Traversals: In-order

+

+ *

a

b c

d e

f

g* +

*

(a + b * c) + (d * e + f) * g1. Process left child
2. Process root
3. Process right child

Tree Traversals: Post-order

+

+ *

a

b c

d e

f

g* +

*

1. Process left child
2. Process right child
3. Process root

a b c * + d e * f + g * +

Tree Traversals: Pre-order

+

+ *

a

b c

d e

f

g* +

*

1. Process root
2. Process left child
3. Process right child

+ + a * b c * + * d e f g

Tree Traversals and Stacks

+

+ *

a

b c

d e

f

g* +

*

• Keep nodes that still need to be processed on a stack.

+

+

Tree Traversals and Stacks

+

+ *

a

b c

d e

f

g* +

*

• Keep nodes that still need to be processed on a stack.

+
+

+

Tree Traversals and Stacks

+

+ *

a

b c

d e

f

g* +

*

• Keep nodes that still need to be processed on a stack.

+
+

a

a

Tree Traversals and Stacks

+

+ *

a

b c

d e

f

g* +

*

• Keep nodes that still need to be processed on a stack.

+
+

a

Depending on traversal order  
(in-/post order), keep node on stack  
or pop it. Let’s do post order.

+

Tree Traversals and Stacks

+

+ *

a

b c

d e

f

g* +

*

• Keep nodes that still need to be processed on a stack.

+
+

a

*
*

Tree Traversals and Stacks

+

+ *

a

b c

d e

f

g* +

*

• Keep nodes that still need to be processed on a stack.

+
+

a

*
b

b

Tree Traversals and Stacks

+

+ *

a

b c

d e

f

g* +

*

• Keep nodes that still need to be processed on a stack.

+
+

a

*

b

*

Tree Traversals and Stacks

+

+ *

a

b c

d e

f

g* +

*

• Keep nodes that still need to be processed on a stack.

+
+

a

*

b

c

c

Tree Traversals and Stacks

+

+ *

a

b c

d e

f

g* +

*

• Keep nodes that still need to be processed on a stack.

+
+

a b c

*

*

Tree Traversals and Stacks

+

+ *

a

b c

d e

f

g* +

*

• Keep nodes that still need to be processed on a stack.

+

a b c *

+

+

Tree Traversal using Recursion
• We often use recursion to traverse trees (making use of

Java’s method call stack implicitly).

 public void printTree(int indent) {
 for (i=0;i<indent;i++)
 System.out.print(" ");

 System.out.println(data); // Node
 if(left != null)
 left.printTree(indent + 1); // Left
 if(right != null)
 right.printTree(indent + 1); // Right
 }

30

Bare-bones Implementation
of a Binary Tree

• Public methods in BinaryTree usually call recursive methods,
implementation either in BinaryNode or in BinaryTree.

• (sample code)

Constructing Expression
Trees using a Stack

5 27 2 3 * / +
• for c in input

• if c is an operand, push a tree  

• if c is an operator:
• pop the top 2 trees t1 and t2
• push

• pop the result.

c

c

t1 t1

5

Constructing Expression
Trees using a Stack

5 27 2 3 * / +
• for c in input

• if c is an operand, push a tree  

• if c is an operator:
• pop the top 2 trees t1 and t2
• push

• pop the result.

c

c

t1 t1

5

27

Constructing Expression
Trees using a Stack

5 27 2 3 * / +
• for c in input

• if c is an operand, push a tree  

• if c is an operator:
• pop the top 2 trees t1 and t2
• push

• pop the result.

c

c

t1 t1

5

27

2

Constructing Expression
Trees using a Stack

5 27 2 3 * / +
• for c in input

• if c is an operand, push a tree  

• if c is an operator:
• pop the top 2 trees t1 and t2
• push

• pop the result.

c

c

t1 t1

5

27

2

3

Constructing Expression
Trees using a Stack

5 27 2 3 * / +
• for c in input

• if c is an operand, push a tree  

• if c is an operator:
• pop the top 2 trees t1 and t2
• push

• pop the result.

c

c

t1 t1

5

27

32

*

Constructing Expression
Trees using a Stack

5 27 2 3 * / +
• for c in input

• if c is an operand, push a tree  

• if c is an operator:
• pop the top 2 trees t1 and t2
• push

• pop the result.

c

c

t1 t1

5

32

*

/

27

Constructing Expression
Trees using a Stack

5 27 2 3 * / +
• for c in input

• if c is an operand, push a tree  

• if c is an operator:
• pop the top 2 trees t1 and t2
• push

• pop the result.

c

c

t1 t1

32

*

/

27

+

5

