Data Structures in Java

Lecture 8: Trees and Tree Traversals.

10/5/2015

Daniel Bauer

Trees in Computer Science

- A lot of data comes in a hierarchical/nested structure.
- Mathematical expressions.
- Program structure.
- File systems.
- Decision trees.
- Natural Language Syntax, Taxonomies, Family Trees, ...

Example: Expression Trees

$$
\left(a+b^{*} c\right)+\left(d^{*} e+f\right)^{*} g
$$

More Efficient Algorithms with Trees

- Sometimes we can represent data in a tree to speed up algorithms.
- Only need to consider part of the tree to solve certain problems:
- Searching, Sorting,...
- Can often speed up $\mathrm{O}(\mathrm{N})$ algorithms to $\mathrm{O}(\log \mathrm{N})$ once data is represented as a tree.

Tree ADT

- A tree T consists of
- A root node r.

- zero or more nonempty subtrees $T_{1}, T_{2}, \ldots T_{N}$,
- each connected by a directed edge from r.
- Support typical collection operations: size, get, set, add, remove, find, ...

Tree ADT

- A tree T consists of
- A root node r.

- zero or more nonempty subtrees $T_{1}, T_{2}, \ldots T_{N}$,
- each connected by a directed edge from r.
- Support typical collection operations: size, get, set, add, remove, find, ...

Tree Terminology

Path from n_{1} to n_{k} : the sequence of nodes $n_{k}, n_{2}, \ldots, n_{k}$, such that n_{i} is the parent of n_{i+1} for $1 \leq i<k$.

Length of a path: $k-1=$ number of edges on the path

Tree Terminology

Depth of n_{k} : the length of the path from root to n_{k}.

Tree Terminology

Height of tree \mathbf{T} : the length of the longest path from root to a leaf.

Representing Trees

- Option 1: Every node has fixed number of references to children.

- Problem: Only reasonable for small or constant number of children.

Binary Trees

- For binary trees, the number of children is at most two.
- Binary trees are very common in data structures and algorithms.
- Binary tree algorithms are convenient to analyze.

Implementing Binary Trees

public class BinaryTree<T> \{

// The BinaryTree is essentially just a wrapper around the // linked structure of BinaryNodes, rooted in root. private BinaryNode<T> root;
/**

* Represent a binary subtree.
*/
private static class BinaryNode<T>\{ public T data; public BinaryNode<T> left; public BinaryNode<T> right;
\}

Representing Trees

- Option 2: Organize siblings as a linked list.

- Problem: Takes longer to find a node from the root.

Siblings as Linked List

Siblings as Linked List

Implementing Siblings as Linked List

```
public class LinkedSiblingTree<E> {
    private TreeNode<E> root;
    private static class TreeNode<E> {
    E element;
    TreeNode<E> firstChild;
    TreeNode<E> nextSibling;
    }
```

\}

Full Binary Trees

- In a full binary tree every node
- is either a leaf.
- or has exactly two children.

not full

Full Binary Trees

- In a full binary tree every node
- is either a leaf.
- or has exactly two children.

full

Complete Binary Trees

- A complete binary tree is a full binary tree in which all levels (except possibly the last) are completely filled.

Complete Binary Trees

- A complete binary tree is a full binary tree in which all levels (except possibly the last) are completely filled.

Complete Binary Trees

- A complete binary tree is a binary tree in which all levels (except possibly the last) are completely filled and every node is as far left as possible.

Complete Binary Trees

- A complete binary tree is a binary tree in which all levels (except possibly the last) are completely filled and every node is as far left as possible.

Complete Binary Trees

- A complete binary tree is a binary tree in which all levels (except possibly the last) are completely filled and every node is as far left as possible.

Storing Complete Binary Trees in Arrays

A	B	C	D	E	F		
0	1	2	3	4	5		

Structure of the tree only depends on the number of nodes.

Example Binary Tree: Expression Trees

Tree Traversals: In-order

Tree Traversals: Post-order

1. Process left child
$a b c^{*}+d e^{*} f+g^{*}+$
2. Process right child 3. Process root

Tree Traversals: Pre-order

1. Process root

$$
++a^{*} b c^{*}+{ }^{*} d e f g
$$

2. Process left child
3. Process right child

Tree Traversals and Stacks

- Keep nodes that still need to be processed on a stack.

Tree Traversals and Stacks

- Keep nodes that still need to be processed on a stack.

Tree Traversals and Stacks

- Keep nodes that still need to be processed on a stack.

Tree Traversals and Stacks

- Keep nodes that still need to be processed on a stack.

Tree Traversals and Stacks

- Keep nodes that still need to be processed on a stack.

Tree Traversals and Stacks

- Keep nodes that still need to be processed on a stack.

Tree Traversals and Stacks

- Keep nodes that still need to be processed on a stack.

Tree Traversals and Stacks

- Keep nodes that still need to be processed on a stack.

Tree Traversals and Stacks

- Keep nodes that still need to be processed on a stack.

$$
\rightarrow+\begin{array}{|}
+ \\
+ \\
\hline
\end{array}
$$

Tree Traversals and Stacks

- Keep nodes that still need to be processed on a stack.

Tree Traversal using Recursion

- We often use recursion to traverse trees (making use of Java's method call stack implicitly).

```
public void printTree(int indent ) {
    for (i=0;i<indent;i++)
        System.out.print(" ");
    System.out.println( data); // Node
    if( left != null )
        left.printTree(indent + 1); // Left
    if( right != null )
    right.printTree(indent + 1); // Right
}
```


Bare-bones Implementation of a Binary Tree

- Public methods in BinaryTree usually call recursive methods, implementation either in BinaryNode or in BinaryTree.
- (sample code)

Constructing Expression Trees using a Stack 52723 * $1+$

- for c in input
- if c is an operand, push a tree
- if c is an operator:

- pop the top 2 trees t_{1} and t_{2}
- push

- pop the result.

Constructing Expression Trees using a Stack 5 [27 2 3 * $1+$

- for c in input
- if c is an operand, push a tree
- if c is an operator:

- pop the top 2 trees t_{1} and t_{2}
- push

- pop the result.

Constructing Expression Trees using a Stack 527 2 3 * 1 +

- for c in input
- if c is an operand, push a tree
- if c is an operator:
- pop the top 2 trees t_{1} and t_{2}
- push

- pop the result.

Constructing Expression Trees using a Stack 52723^{*} * +

- for c in input
- if c is an operand, push a tree
- if c is an operator:

- pop the top 2 trees t_{1} and t_{2}
- push

- pop the result.

Constructing Expression Trees using a Stack 52723 * / +

- for c in input
- if c is an operand, push a tree
- if c is an operator:
- pop the top 2 trees t_{1} and t_{2}
- push

- pop the result.

Constructing Expression Trees using a Stack $\left.\begin{array}{llll}5 & 27 & 2 & 3\end{array} \right\rvert\, /+$

- for c in input
- if c is an operand, push a tree
- if c is an operator:
- pop the top 2 trees t_{1} and t_{2}
- push

- pop the result.

Constructing Expression Trees using a Stack 52723 * / +

- for c in input
- if c is an operand, push a tree
- if c is an operator:
- pop the top 2 trees t_{1} and t_{2}
- push

- pop the result.

