
Data Structures in Java
Lecture 6: Stacks.

9/28/2015

1

Daniel Bauer

Reminder: Recitation
Session tonight

• Thursday session permanently moved to Monday.

• 7:35 - Schermerhorn 614

• This week: Homework 1 review.

Homework
• Thank you for submitting homework 1!

• Homework 2 out tonight.

The Stack ADT
• A Stack S is a sequence of N objects  

A0, A1, A2, …, AN-1 with three operations:

• void push(x) - append element x to the end (on “top”) of S.

• Object top() / peek() = returns the last element of S.

• Object pop() - remove and return the last element from S.

• Stacks are also known as Last In First Out (LIFO) storage.

The Stack ADT
• A Stack S is a sequence of N objects  

A0, A1, A2, …, AN-1 with three operations:

• void push(x) - append element x to the end (on “top”) of S.

• Object top() / peek() = returns the last element of S.

• Object pop() - remove and return the last element from S.

• Stacks are also known as Last In First Out (LIFO) storage.

Stack Example

5Top

Stack Example

5

push(42)

42Top

Stack Example

5

push(42)

42

push(23)

Top 23

Stack Example

5

push(42)

42

push(23)

Top 23 top() 23

Stack Example

5

push(42)

42

push(23)

Top

23 top() 23

3

push(3)

Stack Example

5

push(42)

42

push(23)

Top 23 top() 23

push(3)

pop() 3

Implementing Stacks
• Think of a Stack as a specialized List:

• push: Inserts only allowed at the end of the list.

• pop: Remove only allowed at the end of the list.

• Can implement Stack using any List implementation.

Implementing Stacks
• Think of a Stack as a specialized List:

• push: Inserts only allowed at the end of the list.

• pop: Remove only allowed at the end of the list.

• Can implement Stack using any List implementation.

• push and pop run in O(1) time with ArrayList or
LinkedList.

A Stack Interface
interface Stack<T> {
 /* Push a new item x on top of the stack */
 public void push(T x);
 /* Remove and return the top item of the stack */
 public T pop();
 /* Return the top item of the stack without removing it */
 public T top();
}

Using MyLinkedList to
implement Stack

public class LinkedListStack<T> extends MyLinkedList<T>
 implements Stack<T> {

 public void push(T x) {
 add(size(), x);
 }

 public T pop() {
 return remove(size()-1);
 }

 public T top() {
 return get(size()-1);
 }
}

Direct Implementation Using
an Array

(sample code)

Application: Balancing
Symbols

• Compilers need to check for syntax errors.

• Need to make sure braces, brackets, parentheses
are well nested.

• What’s wrong with this code:

for(int i=0;i<=topOfStack;i++) {
 sb.append(theArray[i} + " "];
sb.append("]");

Balancing Symbols
for(int i=0;i<=topOfStack;i++) {
 sb.append(theArray[i} + " "];
sb.append("]");

(

push(“(“)

Balancing Symbols
for(int i=0;i<=topOfStack;i++) {
 sb.append(theArray[i} + " "];
sb.append("]");

push(“(“) pop(“(“)

Balancing Symbols
for(int i=0;i<=topOfStack;i++) {
 sb.append(theArray[i} + " "];
sb.append("]");

push(“(“) pop(“(“) push(“{“)

{

Balancing Symbols
for(int i=0;i<=topOfStack;i++) {
 sb.append(theArray[i} + " "];
sb.append("]");

push(“(“) pop(“(“) push(“{“)

{

(

push(“(“)

Balancing Symbols
for(int i=0;i<=topOfStack;i++) {
 sb.append(theArray[i} + " "];
sb.append("]");

push(“(“) pop(“(“) push(“{“)

{

(

push(“(“) push(“[“)

[

Balancing Symbols
for(int i=0;i<=topOfStack;i++) {
 sb.append(theArray[i} + " "];
sb.append("]");

push(“(“) pop(“(“) push(“{“)

{

(

push(“(“) push(“[“)

[

Postfix Expressions
• How would you do the following calculation using a

simple calculator:

5 + 27 / (2 * 3)

remember
intermediate

results

Postfix Expressions
• How would you do the following calculation using a

simple calculator:

5 + 27 / (2 * 3)
2 * 3 = 6

remember
intermediate

results

Postfix Expressions
• How would you do the following calculation using a

simple calculator:

5 + 27 / (2 * 3)
2 * 3 = 6

27 / 6 = 4.5

remember
intermediate

results

Postfix Expressions
• How would you do the following calculation using a

simple calculator:

5 + 27 / (2 * 3)
2 * 3 = 6

27 / 6 = 4.5
5 + 4.5 = 9.5

remember
intermediate

results

Postfix Expressions
• How would you do the following calculation using a

simple calculator:

5 + 27 / (2 * 3)
2 * 3 = 6

27 / 6 = 4.5
5 + 4.5 = 9.5

remember
intermediate

results

5 27 2 3 * / +

Evaluating Postfix
Expressions

5 + 27 / (2 * 3)

5 27 2 3 * / +

• for c in input
• if c is an operand, push it
• if c is an operator x:

• pop the top 2 operands
a1 and a2

• push a3 = a2 x a1
• pop the result.

Evaluating Postfix
Expressions

5 + 27 / (2 * 3)

5 27 2 3 * / +

5

push(5)

• for c in input
• if c is an operand, push it
• if c is an operator x:

• pop the top 2 operands
a1 and a2

• push a3 = a2 x a1
• pop the result.

Evaluating Postfix
Expressions

5 + 27 / (2 * 3)

5 27 2 3 * / +

5

27

• for c in input
• if c is an operand, push it
• if c is an operator x:

• pop the top 2 operands
a1 and a2

• push a3 = a2 x a1
• pop the result.

push(27)

Evaluating Postfix
Expressions

5 + 27 / (2 * 3)

5 27 2 3 * / +

5

27

2

• for c in input
• if c is an operand, push it
• if c is an operator x:

• pop the top 2 operands
a1 and a2

• push a3 = a2 x a1
• pop the result.

push(2)

Evaluating Postfix
Expressions

5 + 27 / (2 * 3)

5 27 2 3 * / +

5

27

2

3

• for c in input
• if c is an operand, push it
• if c is an operator x:

• pop the top 2 operands
a1 and a2

• push a3 = a2 x a1
• pop the result.

push(3)

Evaluating Postfix
Expressions

5 + 27 / (2 * 3)

5 27 2 3 * / +

5

27

• for c in input
• if c is an operand, push it
• if c is an operator x:

• pop the top 2 operands
a1 and a2

• push a3 = a2 x a1
• pop the result.

pop() -> 3 
pop() -> 2
push(2*3)

6

Evaluating Postfix
Expressions

5 + 27 / (2 * 3)

5 27 2 3 * / +

5

• for c in input
• if c is an operand, push it
• if c is an operator x:

• pop the top 2 operands
a1 and a2

• push a3 = a2 x a1
• pop the result.

pop() -> 6 
pop() -> 27
push(27/6)

4.5

Evaluating Postfix
Expressions

5 + 27 / (2 * 3)

5 27 2 3 * / +

• for c in input
• if c is an operand, push it
• if c is an operator x:

• pop the top 2 operands
a1 and a2

• push a3 = a2 x a1
• pop the result.

pop() -> 4.5  
pop() -> 5
push(5 + 4.5)

9

Converting Infix to Postfix
Notation

a + b * c + (d * e + f) * gInput :

Output :

Converting Infix to Postfix
Notation

a + b * c + (d * e + f) * g

a b c * + d e * f + g * +

Input :

Output :

Converting Infix to Postfix
Notation

a + b * c + d

Output:

Input:

Order of Precedence:  
+ = 1 
* = 2

Idea: keep lower-precedence operators on the stack.

Converting Infix to Postfix
Notation

a + b * c + d

Output:

Input:

a

Order of Precedence:  
+ = 1 
* = 2

Idea: keep lower-precedence operators on the stack.

Converting Infix to Postfix
Notation

a + b * c + d

Output:

Input:

a

+

Order of Precedence:  
+ = 1 
* = 2

Idea: keep lower-precedence operators on the stack.

Converting Infix to Postfix
Notation

a + b * c + d

Output:

Input:

a

+

b

Order of Precedence:  
+ = 1 
* = 2

Idea: keep lower-precedence operators on the stack.

Converting Infix to Postfix
Notation

a + b * c + d

Output:

Input:

a

+

b

* Order of Precedence:  
+ = 1 
* = 2

Idea: keep lower-precedence operators on the stack.

* has higher priority than +,  
so we want * in the output first. Keep pushing.

Converting Infix to Postfix
Notation

a + b * c + d

Output:

Input:

a

+

b

*

c

Order of Precedence:  
+ = 1 
* = 2

Idea: keep lower-precedence operators on the stack.

Converting Infix to Postfix
Notation

a + b * c + d

Output:

Input:

a

+

b

*

c

Order of Precedence:  
+ = 1 
* = 2

Idea: keep lower-precedence operators on the stack.

Converting Infix to Postfix
Notation

a + b * c + d

Output:

Input:

a

+

b c *

Order of Precedence:  
+ = 1 
* = 2

Idea: keep lower-precedence operators on the stack.

+ has lower priority than *, so we need to pop * and write it to the output first.

Converting Infix to Postfix
Notation

a + b * c + d

Output:

Input:

a b c * +

Order of Precedence:  
+ = 1 
* = 2

Idea: keep lower-precedence operators on the stack.

Need to pop the first + too to keep sequential order.

Converting Infix to Postfix
Notation

a + b * c + d

Output:

Input:

a b c * +

+

Order of Precedence:  
+ = 1 
* = 2

Idea: keep lower-precedence operators on the stack.

Then push the new +

Converting Infix to Postfix
Notation

a + b * c + d

Output:

Input:

a b c * +

+

d

Order of Precedence:  
+ = 1 
* = 2

Idea: keep lower-precedence operators on the stack.

Then push the new +

Converting Infix to Postfix
Notation

a + b * c + d

Output:

Input:

a b c * + d +

Order of Precedence:  
+ = 1 
* = 2

Idea: keep lower-precedence operators on the stack.

Pop remaining stack elements.

• for c in input
• if c is an operand: print c
• if c is “+”, “*”:

• while stack is not empty and
 priority(stack.top()) ≥ priority(c):

• print stack.pop()
• push c

• while stack is not empty:  
 print stack.pop()

Converting Infix to Postfix  
Algorithm Sketch

Converting Infix to Postfix
Dealing with ()

a * (b + c) * d + e

Output:

Input:

a

Order of Precedence:  
+ = 1 
* = 2

Idea: Put “(“ on stack. When “)” is seen, reduce stack until
matching “(“.

Converting Infix to Postfix
Dealing with ()

a * (b + c) * d + e

Output:

Input:

a

*

Order of Precedence:  
+ = 1 
* = 2

Idea: Put “(“ on stack. When “)” is seen, reduce stack until
matching “(“.

Converting Infix to Postfix
Dealing with ()

a * (b + c) * d + e

Output:

Input:

a

*

Order of Precedence:  
+ = 1 
* = 2

Idea: Put “(“ on stack. When “)” is seen, reduce stack until
matching “(“.

(

Converting Infix to Postfix
Dealing with ()

a * (b + c) * d + e

Output:

Input:

a

*

b

Order of Precedence:  
+ = 1 
* = 2

Idea: Put “(“ on stack. When “)” is seen, reduce stack until
matching “(“.

(

Converting Infix to Postfix
Dealing with ()

a * (b + c) * d + e

Output:

Input:

a

*

b

Order of Precedence:  
+ = 1 
* = 2

Idea: Put “(“ on stack. When “)” is seen, reduce stack until
matching “(“.

(

+

Converting Infix to Postfix
Dealing with ()

a * (b + c) * d + e

Output:

Input:

a

*

b c

Order of Precedence:  
+ = 1 
* = 2

Idea: Put “(“ on stack. When “)” is seen, reduce stack until
matching “(“.

(

+

Converting Infix to Postfix
Dealing with ()

a * (b + c) * d + e

Output:

Input:

a

*

b c

Order of Precedence:  
+ = 1 
* = 2

Idea: Put “(“ on stack. When “)” is seen, reduce stack until
matching “(“.

(

+

Converting Infix to Postfix
Dealing with ()

a * (b + c) * d + e

Output:

Input:

a

*

b c +

Order of Precedence:  
+ = 1 
* = 2

Idea: Put “(“ on stack. When “)” is seen, reduce stack until
matching “(“.

(

Converting Infix to Postfix
Dealing with ()

a * (b + c) * d + e

Output:

Input:

a

*

b c +

Order of Precedence:  
+ = 1 
* = 2

Idea: Put “(“ on stack. When “)” is seen, reduce stack until
matching “(“.

Converting Infix to Postfix
Dealing with ()

a * (b + c) * d + e

Output:

Input:

a

*

b c +

Order of Precedence:  
+ = 1 
* = 2

Idea: Put “(“ on stack. When “)” is seen, reduce stack until
matching “(“.

Converting Infix to Postfix
Dealing with ()

a * (b + c) * d + e

Output:

Input:

a b c + *

Order of Precedence:  
+ = 1 
* = 2

Idea: Put “(“ on stack. When “)” is seen, reduce stack until
matching “(“.

Converting Infix to Postfix
Dealing with ()

a * (b + c) * d + e

Output:

Input:

a b c + *

Order of Precedence:  
+ = 1 
* = 2

Idea: Put “(“ on stack. When “)” is seen, reduce stack until
matching “(“.

*

Converting Infix to Postfix
Dealing with ()

a * (b + c) * d + e

Output:

Input:

a b c + * d

Order of Precedence:  
+ = 1 
* = 2

Idea: Put “(“ on stack. When “)” is seen, reduce stack until
matching “(“.

*

Converting Infix to Postfix
Dealing with ()

a * (b + c) * d + e

Output:

Input:

a b c + * d

Order of Precedence:  
+ = 1 
* = 2

Idea: Put “(“ on stack. When “)” is seen, reduce stack until
matching “(“.

*

Converting Infix to Postfix
Dealing with ()

a * (b + c) * d + e

Output:

Input:

a b c + * d *

Order of Precedence:  
+ = 1 
* = 2

Idea: Put “(“ on stack. When “)” is seen, reduce stack until
matching “(“.

Converting Infix to Postfix
Dealing with ()

a * (b + c) * d + e

Output:

Input:

a b c + * d *

Order of Precedence:  
+ = 1 
* = 2

Idea: Put “(“ on stack. When “)” is seen, reduce stack until
matching “(“.

+

Converting Infix to Postfix
Dealing with ()

a * (b + c) * d + e

Output:

Input:

a b c + * d *

Order of Precedence:  
+ = 1 
* = 2

Idea: Put “(“ on stack. When “)” is seen, reduce stack until
matching “(“.

e

+

Converting Infix to Postfix
Dealing with ()

a * (b + c) * d + e

Output:

Input:

a b c + * d *

Order of Precedence:  
+ = 1 
* = 2

Idea: Put “(“ on stack. When “)” is seen, reduce stack until
matching “(“.

e +

Stacks in Hardware

• Stack as a memory abstraction:

• CPU implement a hardware stack (use register to
point to “top” location in main memory).

• CPU operations push, pop will write/get value
and increase or decrease register with a single
byte code instruction.

Stack Machines
• Most modern computers are register machines.  

To compute 2+3:
• mov eax,2
• move ebx,3
• add eax,abx which stores the result in eax

• In a Stack Machine:
• push 2
• push 3
• add which stores the result back on the stack. 

• Hardware stack machines are rare, but most virtual
machines (including JVM) are stack machines.

What’s wrong with this program?
public class Factorial {

 public static int factorial(int n) {
 return factorial(n-1) * n;
 }

 public static void main(String[] args) {
 System.out.println(factorial(10));
 }
}

$ javac Factorial.java
$ java Factorial  
Exception in thread "main" java.lang.StackOverflowError
 at InfiniteRecursion.factorial(Factorial.java:4)
 at InfiniteRecursion.factorial(Factorial.java:4)
 at InfiniteRecursion.factorial(Factorial.java:4)
…

Method Call Stacks
• Every function keeps an activation record on the

method call stack.

• Represent current state of execution of this function.

• Includes instruction pointer, value of variables,
parameters, intermediate results.

public static void main
String[] args = {}
Instruction pointer

public static int factorial(int n) {
 return factorial(n-1) * n;
}

public static void main(String[] args) {
 System.out.println(factorial(10));
}

Method Call Stacks (2)
• When a function is called

• Execution of the current function is suspended.

• A new activation record is pushed to the stack.

• The new function is run.

public static void main
String[] args = {}
Instruction pointer

public static void factorial
n=10

public static int factorial(int n) {
 return factorial(n-1) * n;
}

public static void main(String[] args) {
 System.out.println(factorial(10));
}

Instruction pointer

Runaway Recursion
• Recursion will quickly grow the method call stack.

• Execution of the current function is suspended.

public static void main
String[] args = {}
Instruction pointer

public static void factorial
n=10

public static int factorial(int n) {
 return factorial(n-1) * n;
}

public static void main(String[] args) {
 System.out.println(factorial(10));
}

Instruction pointer

public static void factorial
n=9
Instruction pointer

Fixing Runaway Recursion

• We forgot to add the base case: 
 
 
 
 

• Still can get stack overflows for large n.

 public static int factorial(int n) {
 if (i == 1)
 return 1;
 return factorial(n-1) * n;
 }

Rewriting Recursion
• This is a stupid use for recursion.

• In general, any recursion can be removed, but this will
often lead to unreadable code.

• But recursion is often more readable.

 public static int factorial(int n) {
 if (i == 1)
 return 1;
 return factorial(n-1) * n;
 }

public static int factorial(int n) {
 int result = 1;
 for (i = 1; i<=n; i++)
 result = result * i;
}

Tail Recursion
• Compilers can detect and remove some types of

recursion.

• A method is tail recursive if the last thing it does is call
itself. Compilers can turn this into a loop.
 public static long factorial(long n) {
 return facRec(n, 1);
 }

 public static long facRec(long n, long result) {
 if (n==1)
 return result;
 else
 return facRec(n-1, result * n);
 }

