Data Structures in Java

Lecture 5: Sequences and Series, Proofs

Algorithms

- An algorithm is a clearly specified set of simple instructions to be followed to solve a problem.
- Algorithm Analysis - Questions:
- Does the algorithm terminate?
- Does the algorithm solve the problem? (correctness)
- What resources does the algorithm use?
- Time / Space

Contents

1. Sequences and Series

2. Proofs

Sequences

-What are these sequences?

- $0,2,4,6,8,10, \ldots$
- $2,4,8,16,32,64, \ldots$
- $1,1 / 2,1 / 4,1 / 8,1 / 16, \ldots$

Sequences

-What are these sequences?

- $0,2,4,6,8,10, \ldots$
- $2,4,8,16,32,64, \ldots$
- $1,1 / 2,1 / 4,1 / 8,1 / 16, \ldots$

Sequences

- What are these sequences?
- $0,2,4,6,8,10, \ldots$
- $2,4,8,16,32,64, \ldots \longleftarrow$ Geometric Sequence
- $1,1 / 2,1 / 4,1 / 8,1 / 16, \ldots \quad a_{i}=a \cdot A^{i}$

Arithmetic Series

Arithmetic Series

- Arithmetic Sequence of length N, with start term a and common difference d.

$$
\{a, a+d, a+2 d, \cdots, a+(N-1) d\}
$$

Arithmetic Series

- Arithmetic Sequence of length N, with start term a and common difference d.

$$
\{a, a+d, a+2 d, \cdots, a+(N-1) d\}
$$

- Series: The sum of all elements of a sequence.

$$
\begin{aligned}
& \sum_{i=1}^{N} a+(i-1) d \\
& =a+(a+d)+(a+2 d)+\cdots+(a+(N-1) d)
\end{aligned}
$$

Sum-Formulas for Arithmetic Series

$$
\sum_{i=1}^{N} a+(i-1) d=N \cdot \frac{2 a+(N-1) d}{2}
$$

- In particular (for $a=1$ and $d=1$):

$$
\sum_{i=1}^{N} i=N \frac{N+1}{2} \approx \frac{N^{2}}{2}
$$

Geometric Series

Geometric Series

- Geometric Sequence with start term s and common ratio A.

$$
\left\{s, s \cdot A, s \cdot A^{2}, \cdots, s \cdot A^{N}\right\}
$$

Geometric Series

- Geometric Sequence with start term s and common ratio A.

$$
\left\{s, s \cdot A, s \cdot A^{2}, \cdots, s \cdot A^{N}\right\}
$$

- Geometric Series:

$$
\sum_{i=0}^{N} s \cdot A^{i}=s+s \cdot A+s \cdot A^{2}+\cdots+s \cdot A^{N}
$$

Geometric Series

- Geometric Sequence with start term s and common ratio A.

$$
\left\{s, s \cdot A, s \cdot A^{2}, \cdots, s \cdot A^{N}\right\}
$$

- Geometric Series:

$$
\sum_{i=0}^{N} s \cdot A^{i}=s+s \cdot A+s \cdot A^{2}+\cdots+s \cdot A^{N}
$$

- Often $0<A<1$ or $\mathrm{A}=2$

Sum-Formulas for Finite Geometric Series

$$
\sum_{i=0}^{N} s \cdot A^{i}=\frac{s-s \cdot A^{N+1}}{1-A}
$$

Sum-Formulas for Finite Geometric Series

$$
\sum_{i=0}^{N} s \cdot A^{i}=\frac{s-s \cdot A^{N+1}}{1-A}
$$

- In particular, if $s=1$

$$
\sum_{i=0}^{N} A^{i}=\frac{A^{N+1}-1}{A-1}
$$

Sum-Formulas for Finite Geometric Series

$$
\sum_{i=0}^{N} s \cdot A^{i}=\frac{s-s \cdot A^{N+1}}{1-A}
$$

- In particular, if $s=1$

$$
\sum_{i=0}^{N} A^{i}=\frac{A^{N+1}-1}{A-1}
$$

- In Computer Science we often have $A=2$

$$
\sum_{i=0}^{N} 2^{i}=2^{N+1}-1
$$

Sum-Formulas for Infinite Geometric Series $\sum_{i=0}^{\infty} s \cdot A^{i}=\frac{s}{1-A} \quad$ only if $0<A<1$

Sum-Formulas for Infinite Geometric Series
 $$
\sum_{i=0}^{\infty} s \cdot A^{\prime}=\frac{s}{1-A}
$$
 $$
\text { only if } 0<A<1
$$

- In particular, if $s=1$

$$
\sum_{i=0}^{\infty} A^{i}=\frac{1}{1-A} \quad \text { and } \quad \sum_{i=0}^{N} A^{i} \leq \frac{1}{1-A}
$$

Sum-Formulas for Infinite Geometric Series
 $$
\sum_{i=0}^{\infty} s \cdot A^{i}=\frac{s}{1-A}
$$
 $$
\text { only if } 0<A<1
$$

- In particular, if $s=1$

$$
\sum_{i=0}^{\infty} A^{i}=\frac{1}{1-A} \quad \text { and } \quad \sum_{i=0}^{N} A^{i} \leq \frac{1}{1-A}
$$

- For instance,

$$
\begin{aligned}
\sum_{i=0}^{\infty}\left(\frac{1}{2}\right)^{i}=\sum_{i=0}^{\infty} \frac{1}{2^{i}} & =1+\frac{1}{2}+\frac{1}{4}+\cdots \\
& =\frac{1}{1-1 / 2}=\frac{1}{1 / 2}=2
\end{aligned}
$$

Analyzing the Towers of

 Hanoi Recurrence$$
\begin{aligned}
& T(N)=2 \cdot T(N-1)+1 \\
& =2 \cdot(2 \cdot T(N-2)+1)+1=2^{2} \cdot T(N-2)+2+1 \\
& =2 \cdot\left(2^{2} \cdot T(N-3)+2+1\right)+1
\end{aligned}
$$

$$
=2^{3} \cdot T(N-3)+2^{2}+2+1=2^{3} \cdot T(N-1)+2^{2}+2^{1}+2^{0}
$$

$$
=2^{N-1} \cdot T(1)+2^{N-2}+2^{N-3} \cdots+2^{0}
$$

$$
=\sum_{k=0}^{N-1} 2^{k}=2^{N}-1
$$

geometric series

The End of The World

Legend says that, at the beginning of time, priests were given a puzzle with 64 golden disks. Once they finish moving all the disks according to the rules, the wold is said to end.

If the priests move the disks at a rate of 1 disk/second, how long will it take to solve the puzzle?

The End of The World

Legend says that, at the beginning of time, priests were given a puzzle with 64 golden disks. Once they finish moving all the disks according to the rules, the wold is said to end.

If the priests move the disks at a rate of 1 disk/second, how long will it take to solve the puzzle?

$$
T^{N}=2^{N}-1=O\left(2^{N}\right)
$$

The End of The World

Legend says that, at the beginning of time, priests were given a puzzle with 64 golden disks. Once they finish moving all the disks according to the rules, the wold is said to end.

If the priests move the disks at a rate of 1 disk/second, how long will it take to solve the puzzle?

$$
\begin{array}{rlrl}
T^{N}= & 2^{N}-1=O\left(2^{N}\right) & \\
2^{64}-1 & =18,446,744,073,709,551,615 & \text { seconds } \\
& =307,445,734,561,825,860 & & \text { minutes } \\
& =213,503,982,334,601 & & \text { days } \\
& =584,942,417,355 & & \text { years }
\end{array}
$$

Contents

1. Sequences and Series

2. Proofs

Types of Proofs

- Proof by Induction
- Proof by Contradiction
- Proof by Counterexample

Proofs by Induction

- We are proving a theorem \mathbf{T}. ("this property holds for all cases.").
- Step 1: Base case. We know that \mathbf{T} holds (trivially) for some small value.
- Step 2: Inductive step:
- Inductive Hypothesis: Assume \mathbf{T} holds for all cases up to some limit k.
- Show that \mathbf{T} also holds for $k+1$.
- This proves that \mathbf{T} holds for any k.

Proof by Induction - Example

- For the Fibonacci numbers, we prove that

$$
F_{i} \leq(5 / 3)^{i} \text { for any } i \geq 1
$$

- Base case:

$$
F_{1}=F_{2}=1<5 / 3
$$

- Inductive step:
- Assume the theorem holds for $i=1,2, \ldots, k$
- We need to show that

$$
F_{k+1}<(5 / 3)^{k+1}
$$

Proof by Induction Inductive Step

- We know that $F_{k+1}=F_{k}+F_{k-1}$ and by the inductive hypothesis:

$$
\begin{aligned}
F_{k+1} & <(5 / 3)^{k}+(5 / 3)^{k-1} \\
& <(3 / 5)(5 / 3)^{k+1}+(3 / 5)^{2}(5 / 3)^{k+1} \\
& <(3 / 5)(5 / 3)^{k+1}+(9 / 25)(5 / 3)^{k+1} \\
& <(3 / 5+9 / 25)(5 / 3)^{k+1} \\
& <(24 / 25)(5 / 3)^{k+1} \\
& <(5 / 3)^{k+1}
\end{aligned}
$$

Proof by Counter-Example

- We are proving that theorem \mathbf{T} is false. ("this property does not hold for all cases.").
- It is sufficient to show that there is a case for which T does not hold.
- Example:
- Show that $F_{i} \leq i^{2}$ is false.
- There are i for which $F_{i}>i^{2}$,e.g. $F_{13}=233>13^{2}$

Proof by Contradiction

- We want to proof that \mathbf{T} is true.
- Step 1: Assume \mathbf{T} is false.
- Step 2: Show that this assumption leads to a contradiction.

Proof by Contradiction -
 Example

- We want to proof that there is an infinite number of primes.
- Assume the number of primes is finite and the largest prime it P_{k}.
- Let the sequence of all primes be $P_{1}, P_{2}, \ldots, P_{k}$

$$
N=P_{1} P_{2} \cdots P_{k}+1
$$

- Since $N>P_{k}, N$ cannot be prime, so it must have a factorization into primes. Such a factorization cannot exist: dividing N by any $P_{1}, P_{2}, \ldots, P_{k}$ will always leave a remainder of 1 .

