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Algorithms
• An algorithm is a clearly specified set of simple 

instructions to be followed to solve a problem.  

• Algorithm Analysis — Questions: 

• Does the algorithm terminate?  

• Does the algorithm solve the problem? (correctness) 

• What resources does the algorithm use?  

• Time / Space
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Analyzing Runtime: Basics
• We usually want to compare several algorithms. 

• Compare between different algorithms how the 
runtime T(N)  grows with increasing input sizes N. 

• We are using Java, but the same algorithms could 
be implemented in any language on any machine. 

• How many basic operations/“steps” does the 
algorithm take? All operations assumed to have the 
same time.



Worst and Average case
• Usually the runtime depends on the type of input 

(e.g. sorting is easy if the input is already sorted).  

• Tworst(N): worst case runtime for the algorithm on 
ANY input. The algorithm is at least this fast. 

• Taverage(N): Average case analysis — expected 
runtime on typical input.   

• Tbest(N): Occasionally we are interested in the best 
case analysis.



Comparing Function Growth: 
Big-Oh Notation
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Comparing Function Growth: 
Big-Oh Notation

                       if there are positive constants    and    
such that                         when               .  

T(N) = 10N+ 100 

f(N) = N2 + 2 

e.g. c = 1,   n0 = 16.1

“T(N) is in the 
order of f(N)”



Comparing Function Growth: 
Big-Oh Notation

                       if there are positive constants    and    
such that                         when               .  

T(N) = 10N+ 100 

f(N) = N2 + 2 

e.g. c = 1,   n0 = 16.1

“T(N) is in the 
order of f(N)”

“f(N) is an 
upper bound 

on T(N)”



                       if there are positive constants    and    
such that                         when               .  

Comparing Function Growth: 
Additional Notations

if and .

• Lower Bound:

• Tight Bound: T(N) and f(N) grow at the same rate

if for all positive constants
• Strict Upper Bound:

there is some 
such that when .  



Typical Growth Rates

logarithmic
log-squared
linear

quadratic

cubic

exponential

constant



Rules for Big-Oh (1)

If and then

1.  
 
 

   
2.   



Rules for Big-Oh (2)

If thenis a polynomial of degree 

For instance:  

for any    . 
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General Rules: Basic for-loops

public static int sum(int n){
  int partialSum = 0;

 for (int i = 1; i <= n; i++)
      partialSum += i * i * i;
  return partialSum;
}

1 step

1 step 4 steps each

N iterations

T(N) = 6 N + 4 = O(N)

Compute 

2 steps each
1 step (initialization)

+1 step for last test

(running time of statements in the loop) X (iterations)

If loop runs a constant number of times: O(c)



Analyze inside-out. 

for (i=0; i < n; i++)
  for (j=0; j < n; j++) 
    k++;

General Rules: Nested Loops
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  for (j = 0; j < n; j++)
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if/else conditionals

if (condition) 
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Logarithms in the Runtime
public static int binarySearch(int[] a, int x) {
  int low = 0;
  int  high = a.length - 1;

  while ( low <= high) {
    int mid = (low + high) / 2;     

  if (a[mid] < x)
       low = mid + 1;
     else if(a[mid] > x) 
       high = mid - 1;
     else
       return mid; // found
  }
  return -1; // Not found. 
}

How many iterations of the while  loop?
Every iteration cuts remaining partition in half.



Recursion
• A recursive algorithm uses a function (or method) 

that calls itself. 

• Need to make sure there is some base case 
(otherwise causing an infinite loop). 

• The recursive call needs to make progress towards 
the base case. 

• Reduces the problem to a simpler subproblem.
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Recursive Binary Search



Fibonacci Sequence
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Fibonacci Sequence
• 1, 1, 2, 3, 5, 8, 13, 21, …  
 
 
 

• Closed form solution is complicated. 

• Instead easier to compute this algorithmically.

Recursive Definition
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Fibonacci Sequence in Java
public class Fibonacci {

  public static void main(String[] args) {
    Fibonacci fib = new Fibonacci();
    int k =  Integer.parseInt(args[0]);
    System.out.println(fib.fibonacci(k));
  }

  public int fibonacci(int k) throws IllegalArgumentException{
    if (k < 1) {
      throw new IllegalArgumentException("Expecting a positive integer.");
    }
    if (k == 1 | k == 2) {
      return 1;
    } else {
      return fibonacci(k-1) + fibonacci(k-2);
      }
    }
}
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Fibonacci in Java
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Fibonacci in Java

19

public class Fibonacci {

  public static void main(String[] args) {
    Fibonacci fib = new Fibonacci();
    int k =  Integer.parseInt(args[0]);
    System.out.println(fib.fibonacci(k));
  }

  public int fibonacci(int k) throws IllegalArgumentException{
    if (k < 1) {
      throw new IllegalArgumentException("Expecting a positive integer.");
    }
    if (k == 1 | k == 2) {
      return 1;
    } else {
      return fibonacci(k-1) + fibonacci(k-2);
      }
    }
}

Base case

Recursive call - making progress



How many steps does the 
algorithm need?
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public class Fibonacci {

  public static void main(String[] args) {
    Fibonacci fib = new Fibonacci();
    int k =  Integer.parseInt(args[0]);
    System.out.println(fib.fibonacci(k));
  }
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    if (k < 1) {
      throw new IllegalArgumentException("Expecting a positive integer.");
    }
    if (k == 1 | k == 2) {
      return 1;
    } else {
      return fibonacci(k-1) + fibonacci(k-2);
      }
    }
}

Base case: 1 step   T(1) = O(c), T(2) = O(c)

Recursive calls: T(k) = O(T(k-1) + T(k-2))
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Fibonacci Solution
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Analyzing the Recursive 
Fibonacci Solution

Base case: T(1) = O(c), T(2) = O(c)
Recursive calls: T(k) = O(T(k-1) + T(k-2)) Recurrence Relation. 
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Analyzing the Recursive 
Fibonacci Solution

Base case: T(1) = O(c), T(2) = O(c)
Recursive calls: T(k) = O(T(k-1) + T(k-2))

T(N)

T(N-1) T(N-2)

T(N-3)T(N-2) T(N-4)T(N-3)

…
T(1) T(2)T(1) T(2)

T(N-4)T(N-3)

…

…

T(3) T(3)
……

… …

Recurrence Relation. 
How do we solve this? 



Fibonacci Sequence v.2
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T(k) = k

public int fibonacci(int k) throws IllegalArgumentException{

  if (k < 1) {
    throw new IllegalArgumentException("Expecting a positive integer.");
  }
  int b = 1; //k-2
  int a = 1; //k-1
  for (int i=3; i<=k; i++) {
    int new_fib = a + b;
    b = a;
    a = new_fib;
  }
  return a;
}

Dynamic programming: Cache intermediate solutions so they 
can be re-used. 



Fibonacci Sequence v.2
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T(k) = k

public int fibonacci(int k) throws IllegalArgumentException{

  if (k < 1) {
    throw new IllegalArgumentException("Expecting a positive integer.");
  }
  int b = 1; //k-2
  int a = 1; //k-1
  for (int i=3; i<=k; i++) {
    int new_fib = a + b;
    b = a;
    a = new_fib;
  }
  return a;
}

T(N) = O(N)

Dynamic programming: Cache intermediate solutions so they 
can be re-used. 



Rules for Recursion

1. Base Case  

2. Making Progress 

3. Design Rule -  Assume all recursive calls work. 

4. Compound Interest Rules - Never duplicate work 
by solving the same instance of a problem in 
separate recursive calls. 
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The Towers of Hanoi

Goal: Move all disks to the right peg 
Moves: Take any disk on top of a stack 
and move it to the top of another stack. 
No disk may be placed on a smaller 
disk. 

A B C
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The Towers of Hanoi

Insight: To move 4 disks from A to C 
1. move top three disks from A to B 
2. move fourth disk to C 
3. move top three disks from B to C  

A B C
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The Towers of Hanoi

Insight: To move 3 disks from A to B 
1. move top two disks from A to C 
2. move third disk to B 
3. move top two disks from C to B  

A B C
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The Towers of Hanoi

Insight: To move 2 disks from A to C 
1. move top one disks from A to B 
2. move third disk to C 
3. move top one disks from B to C  

A B C
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The Towers of Hanoi

To move n disks from A to C 
1. move top n-1 disks from A to B 
2. move n-th to C 
3. move top n-1 disks from B to C
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Algorithm (sketch)

A = source peg  
C = target peg 
B = “help” peg (to temporarily store disks)

Peg labels change in each recursive call.



The Towers of Hanoi

29

Need to solve this recurrence relation!

To move n disks from A to C 
1. move top n-1 disks from A to B 
2. move n-th to C 
3. move top n-1 disks from B to C


