Data Structures in Java

Lecture 4: Introduction to Algorithm Analysis and Recursion

9/21/2015

Daniel Bauer
Algorithms

• An algorithm is a clearly specified set of simple instructions to be followed to solve a problem.

• Algorithm Analysis — Questions:
 • Does the algorithm terminate?
 • Does the algorithm solve the problem? (correctness)
 • What resources does the algorithm use?
 • Time / Space
Analyzing Runtime: Basics

• We usually want to compare several algorithms.

• Compare between different algorithms how the runtime $T(N)$ grows with increasing input sizes N.

• We are using Java, but the same algorithms could be implemented in any language on any machine.

• How many basic operations/“steps” does the algorithm take? All operations assumed to have the same time.
Worst and Average case

• Usually the runtime depends on the type of input (e.g. sorting is easy if the input is already sorted).

• $T_{\text{worst}}(N)$: worst case runtime for the algorithm on ANY input. The algorithm is at least this fast.

• $T_{\text{average}}(N)$: Average case analysis — expected runtime on typical input.

• $T_{\text{best}}(N)$: Occasionally we are interested in the best case analysis.
Comparing Function Growth: Big-Oh Notation

$T(N) = O(f(N))$ if there are positive constants c and n_0 such that $T(N) \leq cf(N)$ when $N \geq n_0$.

- $T(N) = 10N + 100$
- $f(N) = N^2 + 2$
- $T(N) = 10N + 100$

$e.g. c = 1, \quad n_0 = 16.1$
Comparing Function Growth: Big-Oh Notation

\[T(N) = O(f(N)) \] if there are positive constants \(c \) and \(n_0 \) such that \(T(N) \leq cf(N) \) when \(N \geq n_0 \).

\[T(N) = 10N + 100 \]
\[f(N) = N^2 + 2 \]

e.g. \(c = 1 \), \(n_0 = 16.1 \)

"\(T(N) \) is in the order of \(f(N) \)"
Comparing Function Growth: Big-Oh Notation

\[T(N) = O(f(N)) \] if there are positive constants \(c \) and \(n_0 \) such that \(T(N) \leq cf(N) \) when \(N \geq n_0 \).

\[f(N) = N^2 + 2 \]

\[T(N) = 10N + 100 \]

e.g. \(c = 1, \quad n_0 = 16.1 \)
Comparing Function Growth: Additional Notations

- **Lower Bound:**
 \[T(N) = \Omega(f(N)) \] if there are positive constants \(c \) and \(n_0 \) such that \(T(N) \geq cf(N) \) when \(N \geq n_0 \).

- **Tight Bound:** \(T(N) \) and \(f(N) \) grow at the same rate if
 \[T(N) = \Theta(f(N)) \] if \(T(N) = \Omega(f(N)) \) and \(T(N) = O(f(N)) \).

- **Strict Upper Bound:**
 \[T(N) = o(f(N)) \] if for all positive constants \(c \) there is some \(n_0 \) such that \(T(N) < cf(N) \) when \(N > n_0 \).
Typical Growth Rates

- Exponential: 2^N
- Cubic: N^3
- Quadratic: N^2
- Log-squared: $\log^2(N)$
- Logarithmic: $\log N$
- Linear: N
- Constant: c
Rules for Big-Oh (1)

If $T_1(N) = O(f(N))$ and $T_2(N) = O(g(N))$ then

1. $T_1(N) + T_2(N) = O(f(N) + g(N))$
 $$O(\max(f(N), g(N)))$$

2. $T_1(N) \times T_2(N) = O(f(N) \times g(N))$
Rules for Big-Oh (2)

If \(T(N) \) is a polynomial of degree \(k \) then

\[
T(N) = \Theta(N^k)
\]

For instance:

\[
9N^3 + 12N^2 - 5 = \Theta(N^3)
\]

\[
\log^k(N) = O(N) \text{ for any } k.
\]
General Rules: Basic *for*-loops

Compute \[\sum_{i=1}^{N} i^3\]

```java
public static int sum(int n){
    int partialSum = 0;
    for (int i = 1; i <= n; i++)
        partialSum += i * i * i;
    return partialSum;
}
```
General Rules: Basic *for*-loops

Compute $\sum_{i=1}^{N} i^3$

```java
public static int sum(int n){
    int partialSum = 0;  // 1 step
    for (int i = 1; i <= n; i++)
        partialSum += i * i * i;
    return partialSum;  // 1 step
}
```
General Rules: Basic \textit{for}-loops

Compute \(\sum_{i=1}^{N} i^3 \)

```
public static int sum(int n){
    int partialSum = 0;  // 1 step
    for (int i = 1; i <= n; i++)
        partialSum += i * i * i;
    return partialSum;  // 1 step
}
```
General Rules: Basic *for*-loops

Compute $\sum_{i=1}^{N} i^3$

```java
public static int sum(int n){
    int partialSum = 0; // 1 step
    for (int i = 1; i <= n; i++) // 2 steps each
        partialSum += i * i * i;
    return partialSum; // 1 step
}
```
General Rules: Basic *for*-loops

Compute \[\sum_{i=1}^{N} i^3 \]

```java
public static int sum(int n){
    int partialSum = 0; // 1 step (initialization)
    for (int i = 1; i <= n; i++) // N iterations
    {
        partialSum += i * i * i; // 2 steps each
    }
    return partialSum; // 1 step
}
```

1 step (initialization) + 1 step for last test
General Rules: Basic *for*-loops

Compute $\sum_{i=1}^{N} i^3$

```java
public static int sum(int n) {
    int partialSum = 0;  // 1 step (initialization)
    for (int i = 1; i <= n; i++) {
        partialSum += i * i * i;  // 2 steps each
    }
    return partialSum;  // 1 step
}
```

$T(N) = 6N + 4 = O(N)$
General Rules: Basic \textit{for}-loops

Compute $\sum_{i=1}^{N} i^3$

```
public static int sum(int n){
    int partialSum = 0;
    for (int i = 1; i <= n; i++)
        partialSum += i * i * i;
    return partialSum;
}
```

$T(N) = 6N + 4 = O(N)$

\textit{(running time of statements in the loop)} \times \textit{(iterations)}
General Rules: Basic *for*-loops

Compute \[\sum_{i=1}^{N} i^3 \]

```java
public static int sum(int n){
    int partialSum = 0;
    for (int i = 1; i <= n; i++)
        partialSum += i * i * i;
    return partialSum;
}
```

\[T(N) = 6N + 4 = O(N) \]

(running time of statements in the loop) X (iterations)

If loop runs a constant number of times: \(O(c) \)
General Rules: Nested Loops

Analyze inside-out.

```plaintext
for (i=0; i < n; i++)
  for (j=0; j < n; j++)
    k++;
```
General Rules: Nested Loops

Analyze inside-out.

```c
for (i=0; i < n; i++)
  for (j=0; j < n; j++)
    k++;
```

1 step each \(O(c) \)
General Rules: Nested Loops

Analyze inside-out.

\begin{verbatim}
for (i=0; i < n; i++)
 for (j=0; j < n; j++)
 k++;
\end{verbatim}

N iterations \(O(N) \)

1 step each \(O(c) \)
General Rules: Nested Loops

Analyze inside-out.

```
for (i=0; i < n; i++)
    for (j=0; j < n; j++)
        k++;
```

\[N \text{ iterations} \quad O(N) \times O(N) = O(N^2) \]

\[N \text{ iterations} \quad O(N) \]

\[1 \text{ step each} \quad O(c) \]
General Rules: Consecutive Statements

```plaintext
for (i = 0; i < n; i++)
    a[i] = 0;
for (i=0; i < n; i++)
    for (j = 0; j < n; j++)
        a[i] += a[j] + i + j;
```
General Rules:
Consecutive Statements

\begin{align*}
\text{for } (i = 0; i < n; i++) & \quad \mathcal{O}(N) \\
& \quad a[i] = 0; \\
\text{for } (i=0; i < n; i++) & \quad \mathcal{O}(N^2) \\
& \quad \text{for } (j = 0; j < n; j++) \\
& \quad \quad a[i] += a[j] + i + j;
\end{align*}
General Rules: Consecutive Statements

\[
\begin{align*}
\text{for } (i = 0; i < n; i++) & \quad O(N) \\
a[i] = 0; & \\
\text{for } (i=0; i < n; i++) & \quad O(N^2) \\
\quad \text{for } (j = 0; j < n; j++) & \\
\quad \quad a[i] += a[j] + i + j; & \\
\end{align*}
\]

\[O(N) + O(N^2) = O(N^2)\]
Basic Rules:
if/else conditionals

```
if (condition)
    S1
else
    S2
```
Basic Rules:
if/else conditionals

\[
T(N) = O\left(\max(T_{S_1}(N), T_{S_2}(N)) + T_{\text{test}}(N)\right)
\]
public static int binarySearch(int[] a, int x) {
 int low = 0;
 int high = a.length - 1;

 while (low <= high) {
 int mid = (low + high) / 2;
 if (a[mid] < x)
 low = mid + 1;
 else if (a[mid] > x)
 high = mid - 1;
 else
 return mid; // found
 }
 return -1; // Not found.
}

How many iterations of the while loop?
Every iteration cuts remaining partition in half.
Recursion

• A recursive algorithm uses a function (or method) that calls itself.

• Need to make sure there is some base case (otherwise causing an infinite loop).

• The recursive call needs to make progress towards the base case.

 • Reduces the problem to a simpler subproblem.
Recursive Binary Search
Fibonacci Sequence
Fibonacci Sequence

• 1, 1, 2, 3, 5, 8, 13, 21, …
Fibonacci Sequence

- 1, 1, 2, 3, 5, 8, 13, 21, …

\[
\begin{align*}
F_1 &= 1 \\
F_2 &= 1 \\
F_{k+1} &= F_k + F_{k-1}
\end{align*}
\]

Recursive Definition
Fibonacci Sequence

• 1, 1, 2, 3, 5, 8, 13, 21, …

\[
F_1 = 1 \\
F_2 = 1 \\
F_{k+1} = F_k + F_{k-1}
\]

Recursive Definition

• Closed form solution is complicated.

• Instead easier to compute this algorithmically.
public class Fibonacci {

 public static void main(String[] args) {
 Fibonacci fib = new Fibonacci();
 int k = Integer.parseInt(args[0]);
 System.out.println(fib.fibonacci(k));
 }

 public int fibonacci(int k) throws IllegalArgumentException{
 if (k < 1) {
 throw new IllegalArgumentException("Expecting a positive integer.");
 }
 if (k == 1 || k == 2) {
 return 1;
 } else {
 return fibonacci(k-1) + fibonacci(k-2);
 }
 }
}
public class Fibonacci {

 public static void main(String[] args) {
 Fibonacci fib = new Fibonacci();
 int k = Integer.parseInt(args[0]);
 System.out.println(fib.fibonacci(k));
 }

 public int fibonacci(int k) throws IllegalArgumentException{
 if (k < 1) {
 throw new IllegalArgumentException("Expecting a positive integer.");
 }
 if (k == 1 | k == 2) {
 return 1;
 } else {
 return fibonacci(k-1) + fibonacci(k-2);
 }
 }
}
public class Fibonacci {

 public static void main(String[] args) {
 Fibonacci fib = new Fibonacci();
 int k = Integer.parseInt(args[0]);
 System.out.println(fib.fibonacci(k));
 }

 public int fibonacci(int k) throws IllegalArgumentException{
 if (k < 1) {
 throw new IllegalArgumentException("Expecting a positive integer.");
 }
 if (k == 1 | k == 2) { Base case
 return 1;
 } else {
 return fibonacci(k-1) + fibonacci(k-2);
 }
 }
}
public class Fibonacci {

 public static void main(String[] args) {
 Fibonacci fib = new Fibonacci();
 int k = Integer.parseInt(args[0]);
 System.out.println(fib.fibonacci(k));
 }

 public int fibonacci(int k) throws IllegalArgumentException {
 if (k < 1) {
 throw new IllegalArgumentException("Expecting a positive integer.");
 } else if (k == 1 || k == 2) {
 return 1;
 } else {
 return fibonacci(k - 1) + fibonacci(k - 2);
 }
 }
}
How many steps does the algorithm need?

```java
public class Fibonacci {

    public static void main(String[] args) {
        Fibonacci fib = new Fibonacci();
        int k = Integer.parseInt(args[0]);
        System.out.println(fib.fibonacci(k));
    }

    public int fibonacci(int k) throws IllegalArgumentException{
        if (k < 1) {
            throw new IllegalArgumentException("Expecting a positive integer.");
        }
        if (k == 1 | k == 2) {
            return 1;
        } else {
            return fibonacci(k-1) + fibonacci(k-2);
        }
    }
}
```
How many steps does the algorithm need?

```java
public class Fibonacci {

    public static void main(String[] args) {
        Fibonacci fib = new Fibonacci();
        int k = Integer.parseInt(args[0]);
        System.out.println(fib.fibonacci(k));
    }

    public int fibonacci(int k) throws IllegalArgumentException{
        if (k < 1) {
            throw new IllegalArgumentException("Expecting a positive integer.");
        }
        if (k == 1 || k == 2) {
            return 1;
        } else {
            return fibonacci(k-1) + fibonacci(k-2);
        }
    }
}
```

Base case: 1 step \(T(1) = O(c), T(2) = O(c) \)
How many steps does the algorithm need?

```java
public class Fibonacci {

    public static void main(String[] args) {
        Fibonacci fib = new Fibonacci();
        int k = Integer.parseInt(args[0]);
        System.out.println(fib.fibonacci(k));
    }

    public int fibonacci(int k) throws IllegalArgumentException{
        if (k < 1) {
            throw new IllegalArgumentException("Expecting a positive integer.");
        }
        if (k == 1 || k == 2) {
            return 1;
        } else {
            return fibonacci(k-1) + fibonacci(k-2);
        }
    }
}
```

Base case: 1 step \(T(1) = O(c), T(2) = O(c) \)

Recursive calls: \(T(k) = O(T(k-1) + T(k-2)) \)
Analyzing the Recursive Fibonacci Solution

Recursive calls: \(T(k) = O(T(k-1) + T(k-2)) \)
Base case: \(T(1) = O(c), T(2) = O(c) \)
Analyzing the Recursive Fibonacci Solution

Recursive calls: $T(k) = O(T(k-1) + T(k-2))$
Base case: $T(1) = O(c), T(2) = O(c)$
Analyzing the Recursive Fibonacci Solution

Base case: \(T(1) = O(c) \), \(T(2) = O(c) \)

Recursive calls: \(T(k) = O(T(k-1) + T(k-2)) \)

Recurrence Relation. How do we solve this?
Fibonacci Sequence v.2

```java
public int fibonacci(int k) throws IllegalArgumentException{
    if (k < 1) {
        throw new IllegalArgumentException("Expecting a positive integer.");
    }
    int b = 1;  //k-2
    int a = 1;  //k-1
    for (int i=3; i<=k; i++) {
        int new_fib = a + b;
        b = a;
        a = new_fib;
    }
    return a;
}
```

Dynamic programming: Cache intermediate solutions so they can be re-used.
Fibonacci Sequence v.2

```
public int fibonacci(int k) throws IllegalArgumentException{
    if (k < 1) {
        throw new IllegalArgumentException("Expecting a positive integer.");
    }
    int b = 1; // k-2
    int a = 1; // k-1
    for (int i=3; i<=k; i++) {
        int new_fib = a + b;
        b = a;
        a = new_fib;
    }
    return a;
}
```

Dynamic programming: Cache intermediate solutions so they can be re-used.
Rules for Recursion

1. Base Case

2. Making Progress

3. Design Rule - Assume all recursive calls work.

4. Compound Interest Rules - Never duplicate work by solving the same instance of a problem in separate recursive calls.
The Towers of Hanoi

Goal: Move all disks to the right peg

Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.
The Towers of Hanoi

Goal: Move all disks to the right peg

Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.
The Towers of Hanoi

Goal: Move all disks to the right peg

Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.
The Towers of Hanoi

Goal: Move all disks to the right peg

Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.
The Towers of Hanoi

Goal: Move all disks to the right peg

Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.
The Towers of Hanoi

Goal: Move all disks to the right peg

Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.
The Towers of Hanoi

Goal: Move all disks to the right peg

Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.
The Towers of Hanoi

Goal: Move all disks to the right peg

Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.
The Towers of Hanoi

Goal: Move all disks to the right peg

Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.
The Towers of Hanoi

Goal: Move all disks to the right peg

Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.
The Towers of Hanoi

Goal: Move all disks to the right peg

Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.
The Towers of Hanoi

Goal: Move all disks to the right peg

Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.
The Towers of Hanoi

Goal: Move all disks to the right peg

Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.
The Towers of Hanoi

Goal: Move all disks to the right peg

Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.
The Towers of Hanoi

Goal: Move all disks to the right peg

Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.
The Towers of Hanoi

Goal: Move all disks to the right peg

Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.
The Towers of Hanoi

Insight: To move 4 disks from A to C
1. move top three disks from A to B
2. move fourth disk to C
3. move top three disks from B to C
The Towers of Hanoi

Insight: To move 4 disks from A to C
1. move top three disks from A to B
2. move fourth disk to C
3. move top three disks from B to C
The Towers of Hanoi

Insight: To move 4 disks from A to C
1. move top three disks from A to B
2. move fourth disk to C
3. move top three disks from B to C
The Towers of Hanoi

Insight: To move 4 disks from A to C
1. move top three disks from A to B
2. move fourth disk to C
3. move top three disks from B to C
The Towers of Hanoi

Insight: To move 3 disks from A to B
1. move top two disks from A to C
2. move third disk to B
3. move top two disks from C to B
The Towers of Hanoi

Insight: To move 3 disks from A to B
1. move top two disks from A to C
2. move third disk to B
3. move top two disks from C to B
The Towers of Hanoi

Insight: To move 3 disks from A to B
1. move top two disks from A to C
2. move third disk to B
3. move top two disks from C to B
The Towers of Hanoi

Insight: To move 3 disks from A to B
1. move top two disks from A to C
2. move third disk to B
3. move top two disks from C to B
The Towers of Hanoi

Insight: To move 2 disks from A to C
1. move top one disks from A to B
2. move third disk to C
3. move top one disks from B to C
The Towers of Hanoi

Insight: To move 2 disks from A to C

1. move top one disks from A to B
2. move third disk to C
3. move top one disks from B to C
The Towers of Hanoi

Insight: To move 2 disks from A to C
1. move top one disks from A to B
2. move third disk to C
3. move top one disks from B to C
The Towers of Hanoi

Insight: To move 2 disks from A to C
1. move top one disks from A to B
2. move third disk to C
3. move top one disks from B to C
The Towers of Hanoi

Algorithm (sketch)

To move n disks from A to C
1. move top $n-1$ disks from A to B
2. move n-th to C
3. move top $n-1$ disks from B to C

A = source peg
C = target peg
B = “help” peg (to temporarily store disks)

Peg labels change in each recursive call.
The Towers of Hanoi

To move n disks from A to C
1. move top $n-1$ disks from A to B
2. move n-th to C
3. move top $n-1$ disks from B to C

$T(N) = 2 \cdot T(N - 1) + 1$

$T(1) = 1$

Need to solve this recurrence relation!