
Data Structures in Java
Lecture 4: Introduction to Algorithm Analysis and

Recursion

9/21/2015

1

Daniel Bauer

Algorithms
• An algorithm is a clearly specified set of simple

instructions to be followed to solve a problem.

• Algorithm Analysis — Questions:

• Does the algorithm terminate?

• Does the algorithm solve the problem? (correctness)

• What resources does the algorithm use?

• Time / Space

2

Analyzing Runtime: Basics
• We usually want to compare several algorithms.

• Compare between different algorithms how the
runtime T(N) grows with increasing input sizes N.

• We are using Java, but the same algorithms could
be implemented in any language on any machine.

• How many basic operations/“steps” does the
algorithm take? All operations assumed to have the
same time.

Worst and Average case
• Usually the runtime depends on the type of input

(e.g. sorting is easy if the input is already sorted).

• Tworst(N): worst case runtime for the algorithm on
ANY input. The algorithm is at least this fast.

• Taverage(N): Average case analysis — expected
runtime on typical input.

• Tbest(N): Occasionally we are interested in the best
case analysis.

Comparing Function Growth:
Big-Oh Notation

 if there are positive constants and
such that when .

T(N) = 10N+ 100

f(N) = N2 + 2

e.g. c = 1, n0 = 16.1

Comparing Function Growth:
Big-Oh Notation

 if there are positive constants and
such that when .

T(N) = 10N+ 100

f(N) = N2 + 2

e.g. c = 1, n0 = 16.1

“T(N) is in the
order of f(N)”

Comparing Function Growth:
Big-Oh Notation

 if there are positive constants and
such that when .

T(N) = 10N+ 100

f(N) = N2 + 2

e.g. c = 1, n0 = 16.1

“T(N) is in the
order of f(N)”

“f(N) is an
upper bound

on T(N)”

 if there are positive constants and
such that when .

Comparing Function Growth:
Additional Notations

if and .

• Lower Bound:

• Tight Bound: T(N) and f(N) grow at the same rate

if for all positive constants
• Strict Upper Bound:

there is some
such that when .

Typical Growth Rates

logarithmic
log-squared
linear

quadratic

cubic

exponential

constant

Rules for Big-Oh (1)

If and then

1.  
 
 

2.

Rules for Big-Oh (2)

If thenis a polynomial of degree

For instance:

for any .

General Rules: Basic for-loops

public static int sum(int n){
 int partialSum = 0;

 for (int i = 1; i <= n; i++)
 partialSum += i * i * i;
 return partialSum;
}

Compute

General Rules: Basic for-loops

public static int sum(int n){
 int partialSum = 0;

 for (int i = 1; i <= n; i++)
 partialSum += i * i * i;
 return partialSum;
}

1 step

1 step

Compute

General Rules: Basic for-loops

public static int sum(int n){
 int partialSum = 0;

 for (int i = 1; i <= n; i++)
 partialSum += i * i * i;
 return partialSum;
}

1 step

1 step 4 steps each

N iterations

Compute

General Rules: Basic for-loops

public static int sum(int n){
 int partialSum = 0;

 for (int i = 1; i <= n; i++)
 partialSum += i * i * i;
 return partialSum;
}

1 step

1 step 4 steps each

N iterations

Compute

2 steps each

General Rules: Basic for-loops

public static int sum(int n){
 int partialSum = 0;

 for (int i = 1; i <= n; i++)
 partialSum += i * i * i;
 return partialSum;
}

1 step

1 step 4 steps each

N iterations

Compute

2 steps each
1 step (initialization)

+1 step for last test

General Rules: Basic for-loops

public static int sum(int n){
 int partialSum = 0;

 for (int i = 1; i <= n; i++)
 partialSum += i * i * i;
 return partialSum;
}

1 step

1 step 4 steps each

N iterations

T(N) = 6 N + 4 = O(N)

Compute

2 steps each
1 step (initialization)

+1 step for last test

General Rules: Basic for-loops

public static int sum(int n){
 int partialSum = 0;

 for (int i = 1; i <= n; i++)
 partialSum += i * i * i;
 return partialSum;
}

1 step

1 step 4 steps each

N iterations

T(N) = 6 N + 4 = O(N)

Compute

2 steps each
1 step (initialization)

+1 step for last test

(running time of statements in the loop) X (iterations)

General Rules: Basic for-loops

public static int sum(int n){
 int partialSum = 0;

 for (int i = 1; i <= n; i++)
 partialSum += i * i * i;
 return partialSum;
}

1 step

1 step 4 steps each

N iterations

T(N) = 6 N + 4 = O(N)

Compute

2 steps each
1 step (initialization)

+1 step for last test

(running time of statements in the loop) X (iterations)

If loop runs a constant number of times: O(c)

Analyze inside-out.

for (i=0; i < n; i++)
 for (j=0; j < n; j++)
 k++;

General Rules: Nested Loops

1 step each

Analyze inside-out.

for (i=0; i < n; i++)
 for (j=0; j < n; j++)
 k++;

General Rules: Nested Loops

1 step each

N iterations

Analyze inside-out.

for (i=0; i < n; i++)
 for (j=0; j < n; j++)
 k++;

General Rules: Nested Loops

1 step each

N iterations

Analyze inside-out.

for (i=0; i < n; i++)
 for (j=0; j < n; j++)
 k++;

N iterations

General Rules: Nested Loops

General Rules:  
Consecutive Statements

for (i = 0; i < n; i++)
 a[i] = 0;
for (i=0; i < n; i++)
 for (j = 0; j < n; j++)
 a[i] += a[j] + i + j;

General Rules:  
Consecutive Statements

for (i = 0; i < n; i++)
 a[i] = 0;
for (i=0; i < n; i++)
 for (j = 0; j < n; j++)
 a[i] += a[j] + i + j;

General Rules:  
Consecutive Statements

for (i = 0; i < n; i++)
 a[i] = 0;
for (i=0; i < n; i++)
 for (j = 0; j < n; j++)
 a[i] += a[j] + i + j;

Basic Rules:  
if/else conditionals

if (condition)
 S1
else
 S2

Basic Rules:  
if/else conditionals

if (condition)
 S1
else
 S2

Logarithms in the Runtime
public static int binarySearch(int[] a, int x) {
 int low = 0;
 int high = a.length - 1;

 while (low <= high) {
 int mid = (low + high) / 2;

 if (a[mid] < x)
 low = mid + 1;
 else if(a[mid] > x)
 high = mid - 1;
 else
 return mid; // found
 }
 return -1; // Not found.
}

How many iterations of the while loop?
Every iteration cuts remaining partition in half.

Recursion
• A recursive algorithm uses a function (or method)

that calls itself.

• Need to make sure there is some base case
(otherwise causing an infinite loop).

• The recursive call needs to make progress towards
the base case.

• Reduces the problem to a simpler subproblem.

15

Recursive Binary Search

Fibonacci Sequence

17

Fibonacci Sequence
• 1, 1, 2, 3, 5, 8, 13, 21, …  
 
 
 

17

Fibonacci Sequence
• 1, 1, 2, 3, 5, 8, 13, 21, …  
 
 
  Recursive Definition

17

Fibonacci Sequence
• 1, 1, 2, 3, 5, 8, 13, 21, …  
 
 
 

• Closed form solution is complicated.

• Instead easier to compute this algorithmically.

Recursive Definition

17

Fibonacci Sequence in Java
public class Fibonacci {

 public static void main(String[] args) {
 Fibonacci fib = new Fibonacci();
 int k = Integer.parseInt(args[0]);
 System.out.println(fib.fibonacci(k));
 }

 public int fibonacci(int k) throws IllegalArgumentException{
 if (k < 1) {
 throw new IllegalArgumentException("Expecting a positive integer.");
 }
 if (k == 1 | k == 2) {
 return 1;
 } else {
 return fibonacci(k-1) + fibonacci(k-2);
 }
 }
}

18

Fibonacci in Java

19

public class Fibonacci {

 public static void main(String[] args) {
 Fibonacci fib = new Fibonacci();
 int k = Integer.parseInt(args[0]);
 System.out.println(fib.fibonacci(k));
 }

 public int fibonacci(int k) throws IllegalArgumentException{
 if (k < 1) {
 throw new IllegalArgumentException("Expecting a positive integer.");
 }
 if (k == 1 | k == 2) {
 return 1;
 } else {
 return fibonacci(k-1) + fibonacci(k-2);
 }
 }
}

Fibonacci in Java

19

public class Fibonacci {

 public static void main(String[] args) {
 Fibonacci fib = new Fibonacci();
 int k = Integer.parseInt(args[0]);
 System.out.println(fib.fibonacci(k));
 }

 public int fibonacci(int k) throws IllegalArgumentException{
 if (k < 1) {
 throw new IllegalArgumentException("Expecting a positive integer.");
 }
 if (k == 1 | k == 2) {
 return 1;
 } else {
 return fibonacci(k-1) + fibonacci(k-2);
 }
 }
}

Base case

Fibonacci in Java

19

public class Fibonacci {

 public static void main(String[] args) {
 Fibonacci fib = new Fibonacci();
 int k = Integer.parseInt(args[0]);
 System.out.println(fib.fibonacci(k));
 }

 public int fibonacci(int k) throws IllegalArgumentException{
 if (k < 1) {
 throw new IllegalArgumentException("Expecting a positive integer.");
 }
 if (k == 1 | k == 2) {
 return 1;
 } else {
 return fibonacci(k-1) + fibonacci(k-2);
 }
 }
}

Base case

Recursive call - making progress

How many steps does the
algorithm need?

20

public class Fibonacci {

 public static void main(String[] args) {
 Fibonacci fib = new Fibonacci();
 int k = Integer.parseInt(args[0]);
 System.out.println(fib.fibonacci(k));
 }

 public int fibonacci(int k) throws IllegalArgumentException{
 if (k < 1) {
 throw new IllegalArgumentException("Expecting a positive integer.");
 }
 if (k == 1 | k == 2) {
 return 1;
 } else {
 return fibonacci(k-1) + fibonacci(k-2);
 }
 }
}

How many steps does the
algorithm need?

20

public class Fibonacci {

 public static void main(String[] args) {
 Fibonacci fib = new Fibonacci();
 int k = Integer.parseInt(args[0]);
 System.out.println(fib.fibonacci(k));
 }

 public int fibonacci(int k) throws IllegalArgumentException{
 if (k < 1) {
 throw new IllegalArgumentException("Expecting a positive integer.");
 }
 if (k == 1 | k == 2) {
 return 1;
 } else {
 return fibonacci(k-1) + fibonacci(k-2);
 }
 }
}

Base case: 1 step T(1) = O(c), T(2) = O(c)

How many steps does the
algorithm need?

20

public class Fibonacci {

 public static void main(String[] args) {
 Fibonacci fib = new Fibonacci();
 int k = Integer.parseInt(args[0]);
 System.out.println(fib.fibonacci(k));
 }

 public int fibonacci(int k) throws IllegalArgumentException{
 if (k < 1) {
 throw new IllegalArgumentException("Expecting a positive integer.");
 }
 if (k == 1 | k == 2) {
 return 1;
 } else {
 return fibonacci(k-1) + fibonacci(k-2);
 }
 }
}

Base case: 1 step T(1) = O(c), T(2) = O(c)

Recursive calls: T(k) = O(T(k-1) + T(k-2))

Analyzing the Recursive
Fibonacci Solution

Base case: T(1) = O(c), T(2) = O(c)
Recursive calls: T(k) = O(T(k-1) + T(k-2))

Analyzing the Recursive
Fibonacci Solution

Base case: T(1) = O(c), T(2) = O(c)
Recursive calls: T(k) = O(T(k-1) + T(k-2)) Recurrence Relation.

How do we solve this?

Analyzing the Recursive
Fibonacci Solution

Base case: T(1) = O(c), T(2) = O(c)
Recursive calls: T(k) = O(T(k-1) + T(k-2))

T(N)

T(N-1) T(N-2)

T(N-3)T(N-2) T(N-4)T(N-3)

…
T(1) T(2)T(1) T(2)

T(N-4)T(N-3)

…

…

T(3) T(3)
……

… …

Recurrence Relation.
How do we solve this?

Fibonacci Sequence v.2

22

T(k) = k

public int fibonacci(int k) throws IllegalArgumentException{

 if (k < 1) {
 throw new IllegalArgumentException("Expecting a positive integer.");
 }
 int b = 1; //k-2
 int a = 1; //k-1
 for (int i=3; i<=k; i++) {
 int new_fib = a + b;
 b = a;
 a = new_fib;
 }
 return a;
}

Dynamic programming: Cache intermediate solutions so they
can be re-used.

Fibonacci Sequence v.2

22

T(k) = k

public int fibonacci(int k) throws IllegalArgumentException{

 if (k < 1) {
 throw new IllegalArgumentException("Expecting a positive integer.");
 }
 int b = 1; //k-2
 int a = 1; //k-1
 for (int i=3; i<=k; i++) {
 int new_fib = a + b;
 b = a;
 a = new_fib;
 }
 return a;
}

T(N) = O(N)

Dynamic programming: Cache intermediate solutions so they
can be re-used.

Rules for Recursion

1. Base Case

2. Making Progress

3. Design Rule - Assume all recursive calls work.

4. Compound Interest Rules - Never duplicate work
by solving the same instance of a problem in
separate recursive calls.

23

The Towers of Hanoi

Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.
No disk may be placed on a smaller
disk.

A B C

24

The Towers of Hanoi

Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.
No disk may be placed on a smaller
disk.

A B C

24

The Towers of Hanoi

Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.
No disk may be placed on a smaller
disk.

A B C

24

The Towers of Hanoi

Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.
No disk may be placed on a smaller
disk.

A B C

24

The Towers of Hanoi

Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.
No disk may be placed on a smaller
disk.

A B C

24

The Towers of Hanoi

Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.
No disk may be placed on a smaller
disk.

A B C

24

The Towers of Hanoi

Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.
No disk may be placed on a smaller
disk.

A B C

24

The Towers of Hanoi

Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.
No disk may be placed on a smaller
disk.

A B C

24

The Towers of Hanoi

Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.
No disk may be placed on a smaller
disk.

A B C

24

The Towers of Hanoi

Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.
No disk may be placed on a smaller
disk.

A B C

24

The Towers of Hanoi

Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.
No disk may be placed on a smaller
disk.

A B C

24

The Towers of Hanoi

Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.
No disk may be placed on a smaller
disk.

A B C

24

The Towers of Hanoi

Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.
No disk may be placed on a smaller
disk.

A B C

24

The Towers of Hanoi

Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.
No disk may be placed on a smaller
disk.

A B C

24

The Towers of Hanoi

Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.
No disk may be placed on a smaller
disk.

A B C

24

The Towers of Hanoi

Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.
No disk may be placed on a smaller
disk.

A B C

24

The Towers of Hanoi

Insight: To move 4 disks from A to C
1. move top three disks from A to B
2. move fourth disk to C
3. move top three disks from B to C  

A B C

25

The Towers of Hanoi

Insight: To move 4 disks from A to C
1. move top three disks from A to B
2. move fourth disk to C
3. move top three disks from B to C  

A B C

25

The Towers of Hanoi

Insight: To move 4 disks from A to C
1. move top three disks from A to B
2. move fourth disk to C
3. move top three disks from B to C  

A B C

25

The Towers of Hanoi

Insight: To move 4 disks from A to C
1. move top three disks from A to B
2. move fourth disk to C
3. move top three disks from B to C  

A B C

25

The Towers of Hanoi

Insight: To move 3 disks from A to B
1. move top two disks from A to C
2. move third disk to B
3. move top two disks from C to B  

A B C

26

The Towers of Hanoi

Insight: To move 3 disks from A to B
1. move top two disks from A to C
2. move third disk to B
3. move top two disks from C to B  

A B C

26

The Towers of Hanoi

Insight: To move 3 disks from A to B
1. move top two disks from A to C
2. move third disk to B
3. move top two disks from C to B  

A B C

26

The Towers of Hanoi

Insight: To move 3 disks from A to B
1. move top two disks from A to C
2. move third disk to B
3. move top two disks from C to B  

A B C

26

The Towers of Hanoi

Insight: To move 2 disks from A to C
1. move top one disks from A to B
2. move third disk to C
3. move top one disks from B to C  

A B C

27

The Towers of Hanoi

Insight: To move 2 disks from A to C
1. move top one disks from A to B
2. move third disk to C
3. move top one disks from B to C  

A B C

27

The Towers of Hanoi

Insight: To move 2 disks from A to C
1. move top one disks from A to B
2. move third disk to C
3. move top one disks from B to C  

A B C

27

The Towers of Hanoi

Insight: To move 2 disks from A to C
1. move top one disks from A to B
2. move third disk to C
3. move top one disks from B to C  

A B C

27

The Towers of Hanoi

To move n disks from A to C
1. move top n-1 disks from A to B
2. move n-th to C
3. move top n-1 disks from B to C

28

Algorithm (sketch)

A = source peg  
C = target peg
B = “help” peg (to temporarily store disks)

Peg labels change in each recursive call.

The Towers of Hanoi

29

Need to solve this recurrence relation!

To move n disks from A to C
1. move top n-1 disks from A to B
2. move n-th to C
3. move top n-1 disks from B to C

