Data Structures in Java

Lecture 4: Introduction to Algorithm Analysis and Recursion

Algorithms

- An algorithm is a clearly specified set of simple instructions to be followed to solve a problem.
- Algorithm Analysis - Questions:
- Does the algorithm terminate?
- Does the algorithm solve the problem? (correctness)
- What resources does the algorithm use?
- Time / Space

Analyzing Runtime: Basics

- We usually want to compare several algorithms.
- Compare between different algorithms how the runtime $T(N)$ grows with increasing input sizes N.
- We are using Java, but the same algorithms could be implemented in any language on any machine.
- How many basic operations/"steps" does the algorithm take? All operations assumed to have the same time.

Worst and Average case

- Usually the runtime depends on the type of input (e.g. sorting is easy if the input is already sorted).
- $T_{\text {worst }}(N)$: worst case runtime for the algorithm on ANY input. The algorithm is at least this fast.
- Taverage(N): Average case analysis - expected runtime on typical input.
- $T_{\text {best }}(N)$: Occasionally we are interested in the best case analysis.

Comparing Function Growth: Big-Oh Notation

$T(N)=O(f(N))$ if there are positive constants c and n_{0} such that $T(N) \leq c f(N)$ when $N \geq n_{0}$.

Comparing Function Growth: Big-Oh Notation

$T(N)=O(f(N))$ if there are positive constants c and n_{0} such that $T(N) \leq c f(N)$ when $N \geq n_{0}$.

Comparing Function Growth: Big-Oh Notation

$T(N)=O(f(N))$ if there are positive constants c and n_{0} such that $T(N) \leq c f(N)$ when $N \geq n_{0}$.

Comparing Function Growth: Additional Notations

- Lower Bound:
$T(N)=\Omega(f(N))$ if there are positive constants c and n_{0} such that $T(N) \geq c f(N)$ when $N \geq n_{0}$.
- Tight Bound: $T(N)$ and $f(N)$ grow at the same rate

$$
T(N)=\Theta(f(N)) \quad \text { if } \quad T(N)=\Omega(f(N)) \text { and } T(N)=O(f(N)) .
$$

- Strict Upper Bound:
$T(N)=o(f(N))$ if for all positive constants c there is some n_{0} such that $T(N)<c f(N)$ when $N>n_{0}$.

Typical Growth Rates

Rules for Big-Oh (1)

If $T_{1}(N)=O(f(N))$ and $T_{2}(N)=O(g(N))$ then

$$
\begin{aligned}
& \text { 1. } \quad \begin{aligned}
T_{1}(N)+T_{2}(N)= & O(f(N)+g(N)) \\
& O(\max (f(N), g(N))
\end{aligned} \\
& \text { 2. } \quad T_{1}(N) * T_{2}(N)= O(f(N) * g(N))
\end{aligned}
$$

Rules for Big-Oh (2)

If $T(N)$ is a polynomial of degree k then

$$
T(N)=\Theta\left(N^{k}\right)
$$

For instance: $9 N^{3}+12 N^{2}-5=\Theta\left(N^{3}\right)$

$$
\log ^{k}(N)=O(N) \text { for any } k
$$

General Rules: Basic for-loops
 compute $\sum_{i=1}^{N} i^{3}$

```
public static int sum(int n){
    int partialSum = 0;
    for (int i = 1; i <= n; i++)
    partialSum += i * i * i;
    return partialSum;
}
```


General Rules: Basic for-loops
 compute $\sum_{i=1}^{N} i^{3}$

```
public static int sum(int n){
    int partialSum = 0; 1 step
    for (int i = 1; i <= n; i++)
        partialSum += i * i * i;
    return partialSum;1 step
}
```


General Rules: Basic for-loops
 compute $\sum_{i=1}^{N} i^{3}$

General Rules: Basic for-loops
 compute $\sum_{i=1}^{N} i^{3}$

General Rules: Basic for-loops
 compute $\sum_{i=1}^{N} i^{3}$

1 step (initialization)

General Rules: Basic for-loops
 compute $\sum_{i=1}^{N} i^{3}$

1 step (initialization)

 +1 step for last test

General Rules: Basic for-loops compute $\sum_{i=1}^{N} i^{3}$

1 step (initialization) +1 step for last test

(running time of statements in the loop) X (iterations)

General Rules: Basic for-loops
 Compute $\sum_{i=1}^{N} i^{3}$

1 step (initialization)
+1 step for last test

(running time of statements in the loop) X (iterations)
If loop runs a constant number of times: $O(c)$

General Rules: Nested Loops

Analyze inside-out.

```
for (i=0; i < n; i++)
    for (j=0; j < n; j++)
    k++;
```


General Rules: Nested Loops

Analyze inside-out.

```
for (i=0; i < n; i++)
    for (j=0; j < n; j++)
    k++;
```

1 step each $O(c)$

General Rules: Nested Loops

Analyze inside-out.

```
for (i=0; i < n; i++)
    for (j=0; j < n; j++)
        k++;
```

 N iterations \(O(N)\)
 1 step each \(O(c)\)

General Rules: Nested Loops

Analyze inside-out.

```
for (i=0; i < n; i++)
    for (j=0; j < n; j++)
        k++;
```

N iterations $O(N) * O(N)=O\left(N^{2}\right)$
N iterations $O(N)$
1 step each $O(c)$

General Rules:

 Consecutive Statements$$
\begin{aligned}
& \text { for }(i=0 ; i<n ; i++) \\
& \quad a[i]=0 ; \\
& \text { for }(i=0 ; i<n ; i++) \\
& \text { for }(j=0 ; j<n ; j++) \\
& \quad a[i]+=a[j]+i+j ;
\end{aligned}
$$

General Rules:

 Consecutive Statements

General Rules:

 Consecutive Statements$$
\begin{aligned}
& \text { for (i=0;i<n;i++) } O(N) \\
& \begin{array}{l}
\text { a[i] }=0 ; \\
\text { for }(i=0 ; i<n ; i++) \\
\text { for }(j=0 ; j<n ; j++) \\
a[i]+=a[j]+i+j ;
\end{array} \\
& \qquad \begin{array}{l}
O(N)+O\left(N^{2}\right)=O\left(N^{2}\right)
\end{array}
\end{aligned}
$$

Basic Rules: if/else conditionals

Basic Rules: if/else conditionals

$$
T(N)=O\left(\max \left(T_{S_{1}}(N), T_{S_{2}}(N)\right)+T_{\text {test }}(N)\right)
$$

Logarithms in the Runtime

```
public static int binarySearch(int[] a, int x) {
    int low = 0;
    int high = a.length - 1;
    while ( low <= high) {
        int mid = (low + high) / 2;
        if (a[mid] < x)
                low = mid + 1;
            else if(a[mid] > x)
            high = mid - 1;
            else
            return mid; // found
    }
    return -1; // Not found.
}
```

How many iterations of the while loop?
Every iteration cuts remaining partition in half.

Recursion

- A recursive algorithm uses a function (or method) that calls itself.
- Need to make sure there is some base case (otherwise causing an infinite loop).
- The recursive call needs to make progress towards the base case.
- Reduces the problem to a simpler subproblem.

Recursive Binary Search

Fibonacci Sequence

Fibonacci Sequence

- $1,1,2,3,5,8,13,21, \ldots$

Fibonacci Sequence

- $1,1,2,3,5,8,13,21, \ldots$

$$
F_{1}=1
$$

$$
F_{2}=1
$$

$$
F_{k+1}=F_{k}+F_{k-1}
$$

Fibonacci Sequence

- $1,1,2,3,5,8,13,21, \ldots$

$$
\begin{aligned}
& F_{1}=1 \\
& F_{2}=1 \\
& F_{k+1}=F_{k}+F_{k-1}
\end{aligned}
$$

- Closed form solution is complicated.
- Instead easier to compute this algorithmically.

Fibonacci Sequence in Java

```
public class Fibonacci {
    public static void main(String[] args) {
    Fibonacci fib = new Fibonacci();
    int k = Integer.parseInt(args[0]);
    System.out.println(fib.fibonacci(k));
    }
    public int fibonacci(int k) throws IllegalArgumentException{
    if (k < 1) {
        throw new IllegalArgumentException("Expecting a positive integer.");
    }
    if (k == 1 | k == 2) {
        return 1;
    } else {
        return fibonacci(k-1) + fibonacci(k-2);
        }
    }
}
```


Fibonacci in Java

```
public class Fibonacci {
    public static void main(String[] args) {
        Fibonacci fib = new Fibonacci();
    int k = Integer.parseInt(args[0]);
    System.out.println(fib.fibonacci(k));
    }
    public int fibonacci(int k) throws IllegalArgumentException{
    if (k < 1) {
        throw new IllegalArgumentException("Expecting a positive integer.");
    }
    if (k == 1 | k == 2) {
        return 1;
    } else {
        return fibonacci(k-1) + fibonacci(k-2);
        }
    }
}
```


Fibonacci in Java

```
public class Fibonacci {
    public static void main(String[] args) {
        Fibonacci fib = new Fibonacci();
    int k = Integer.parseInt(args[0]);
    System.out.println(fib.fibonacci(k));
    }
    public int fibonacci(int k) throws IllegalArgumentException{
    if (k < 1) {
        throw new IllegalArgumentException("Expecting a positive integer.");
    }
    if (k == 1 | k == 2) { Base case
        return 1;
    } else {
        return fibonacci(k-1) + fibonacci(k-2);
        }
    }
}
```


Fibonacci in Java

```
public class Fibonacci {
    public static void main(String[] args) {
        Fibonacci fib = new Fibonacci();
    int k = Integer.parseInt(args[0]);
    System.out.println(fib.fibonacci(k));
    }
    public int fibonacci(int k) throws IllegalArgumentException{
    if (k < 1) {
        throw new IllegalArgumentException("Expecting a positive integer.");
    }
    if (k == 1 | k == 2) { Base case
        return 1;
    } else {
        return fibonacci(k-1) + fibonacci(k-2);
        }
    }
                            Recursive call - making progress
}
```


How many steps does the algorithm need?

```
public class Fibonacci {
    public static void main(String[] args) {
    Fibonacci fib = new Fibonacci();
    int k = Integer.parseInt(args[0]);
    System.out.println(fib.fibonacci(k));
    }
    public int fibonacci(int k) throws IllegalArgumentException{
    if (k < 1) {
        throw new IllegalArgumentException("Expecting a positive integer.");
    }
    if (k == 1 | k == 2) {
        return 1;
    } else {
        return fibonacci(k-1) + fibonacci(k-2);
        }
    }
}
```


How many steps does the algorithm need?

```
public class Fibonacci {
    public static void main(String[] args) {
    Fibonacci fib = new Fibonacci();
    int k = Integer.parseInt(args[0]);
    System.out.println(fib.fibonacci(k));
    }
    public int fibonacci(int k) throws IllegalArgumentException{
    if (k < 1) {
        throw new IllegalArgumentException("Expecting a positive integer.");
    }
    if (k == 1 | k == 2) { Base case: 1 step T(1)=O(c),T(2)=O(c)
        return 1;
    } else {
        return fibonacci(k-1) + fibonacci(k-2);
        }
    }
}
```


How many steps does the algorithm need?

```
public class Fibonacci {
    public static void main(String[] args) {
    Fibonacci fib = new Fibonacci();
    int k = Integer.parseInt(args[0]);
    System.out.println(fib.fibonacci(k));
    }
    public int fibonacci(int k) throws IllegalArgumentException{
    if (k < 1) {
        throw new IllegalArgumentException("Expecting a positive integer.");
    }
    if (k == 1 | k == 2) { Base case: 1 step T(1)=O(c),T(2)=O(c)
        return 1;
    } else {
        return fibonacci(k-1) + fibonacci(k-2);
        }
    }
    Recursive calls: T(k)=O(T(k-1) +T(k-2))
```

\}

Analyzing the Recursive Fibonacci Solution

Recursive calls: $T(k)=O(T(k-1)+T(k-2))$
Base case: $T(1)=O(c), T(2)=O(c)$

Analyzing the Recursive Fibonacci Solution

Recurrence Relation. How do we solve this?

Analyzing the Recursive Fibonacci Solution

Recursive calls: $T(k)=O(T(k-1)+T(k-2))$
 Base case: $\mathrm{T}(1)=\mathrm{O}(\mathrm{c}), \mathrm{T}(2)=\mathrm{O}(\mathrm{c})$

Recurrence Relation.

Fibonacci Sequence v. 2

```
public int fibonacci(int k) throws IllegalArgumentException{
    if (k < 1) {
        throw new IllegalArgumentException("Expecting a positive integer.");
    }
    int b = 1; //k-2
    int a = 1; //k-1
    for (int i=3; i<=k; i++) {
        int new_fib = a + b;
        b = a;
        a = new_fib;
    }
    return a;
```

\}

Dynamic programming: Cache intermediate solutions so they can be re-used.

Fibonacci Sequence v. 2

```
public int fibonacci(int k) throws IllegalArgumentException{
    if (k < 1) {
        throw new IllegalArgumentException("Expecting a positive integer.");
    }
    int b = 1; //k-2
    int a = 1; //k-1
    for (int i=3; i<=k; i++) {
        int new_fib = a + b;
        b = a;
        a = new_fib;
    }
    return a;
```

\}

Dynamic programming: Cache intermediate solutions so they can be re-used.

Rules for Recursion

1. Base Case
2. Making Progress
3. Design Rule - Assume all recursive calls work.
4. Compound Interest Rules - Never duplicate work by solving the same instance of a problem in separate recursive calls.

The Towers of Hanoi

Goal: Move all disks to the right peg Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.

The Towers of Hanoi

Goal: Move all disks to the right peg Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.

The Towers of Hanoi

Goal: Move all disks to the right peg Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.

The Towers of Hanoi

Goal: Move all disks to the right peg Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.

The Towers of Hanoi

Goal: Move all disks to the right peg Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.

The Towers of Hanoi

Goal: Move all disks to the right peg Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.

The Towers of Hanoi

Goal: Move all disks to the right peg Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.

The Towers of Hanoi

Goal: Move all disks to the right peg Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.

The Towers of Hanoi

Goal: Move all disks to the right peg Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.

The Towers of Hanoi

Goal: Move all disks to the right peg Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.

The Towers of Hanoi

Goal: Move all disks to the right peg Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.

The Towers of Hanoi

Goal: Move all disks to the right peg Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.

The Towers of Hanoi

Goal: Move all disks to the right peg Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.

The Towers of Hanoi

Goal: Move all disks to the right peg Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.

The Towers of Hanoi

Goal: Move all disks to the right peg Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.

The Towers of Hanoi

Goal: Move all disks to the right peg Moves: Take any disk on top of a stack and move it to the top of another stack. No disk may be placed on a smaller disk.

The Towers of Hanoi

Insight: To move 4 disks from A to C

1. move top three disks from A to B
2. move fourth disk to C
3. move top three disks from B to C

The Towers of Hanoi

Insight: To move 4 disks from A to C

1. move top three disks from A to B
2. move fourth disk to C
3. move top three disks from B to C

The Towers of Hanoi

Insight: To move 4 disks from A to C

1. move top three disks from A to B
2. move fourth disk to C
3. move top three disks from B to C

The Towers of Hanoi

Insight: To move 4 disks from A to C

1. move top three disks from A to B
2. move fourth disk to C
3. move top three disks from B to C

The Towers of Hanoi

Insight: To move 3 disks from A to B

1. move top two disks from A to C
2. move third disk to B
3. move top two disks from C to B

The Towers of Hanoi

Insight: To move 3 disks from A to B

1. move top two disks from A to C
2. move third disk to B
3. move top two disks from C to B

The Towers of Hanoi

Insight: To move 3 disks from A to B

1. move top two disks from A to C
2. move third disk to B
3. move top two disks from C to B

The Towers of Hanoi

Insight: To move 3 disks from A to B

1. move top two disks from A to C
2. move third disk to B
3. move top two disks from C to B

The Towers of Hanoi

Insight: To move 2 disks from A to C

1. move top one disks from A to B
2. move third disk to C
3. move top one disks from B to C

The Towers of Hanoi

Insight: To move 2 disks from A to C

1. move top one disks from A to B
2. move third disk to C
3. move top one disks from B to C

The Towers of Hanoi

Insight: To move 2 disks from A to C

1. move top one disks from A to B
2. move third disk to C
3. move top one disks from B to C

The Towers of Hanoi

Insight: To move 2 disks from A to C

1. move top one disks from A to B
2. move third disk to C
3. move top one disks from B to C

The Towers of Hanoi

Algorithm (sketch)

To move n disks from A to C

1. move top $n-1$ disks from A to B
2. move n-th to C
3. move top $n-1$ disks from B to C

A = source peg
C = target peg
B = "help" peg (to temporarily store disks)
Peg labels change in each recursive call.

The Towers of Hanoi

To move n disks from A to C

1. move top $n-1$ disks from A to B
2. move n-th to C
3. move top $n-1$ disks from B to C

$$
T(N)=2 \cdot T(N-1)+1
$$

$$
T(1)=1
$$

Need to solve this recurrence relation!

