Data Structures in Java

Lecture 4: Introduction to Algorithm Analysis and
Recursion

("‘f X 9/21/2015

/y 'Z .
[/ & ’@“ Daniel Bauer
< - »

Algorithms

 An algorithm is a clearly specified set of simple
instructions to be followed to solve a problem.

* Algorithm Analysis — Questions:
e Does the algorithm terminate”
e Does the algorithm solve the problem? (correctness)
 What resources does the algorithm use?

 Time / Space

Analyzing Runtime: Basics

 We usually want to compare several algorithms.

 Compare between different algorithms how the
runtime T(N) grows with increasing input sizes .

e We are using Java, but the same algorithms could
be Implemented Iin any language on any machine.

« How many basic operations/“steps” does the

algorithm take” All operations assumed to have the
same time.

Worst and Average case

* Usually the runtime depends on the type of input
(e.g. sorting is easy if the input is already sorted).

* Tworst(N): worst case runtime for the algorithm on
ANY input. The algorithm is at least this fast.

* Taverage(N): Average case analysis — expected
runtime on typical input.

* Trest(N): Occasionally we are interested in the best
case analysis.

Comparing Function Growth:
Big-Oh Notation

= | | | | fIN) = N2 + 2

m_

| T(N) = 10N+ 100

Comparing Function Growth:
Big-Oh Notation

= | | | | fIN) = N2 + 2

“T(N) is in the 2000 |
order of f(N)”

| T(N) = 10N+ 100

Comparing Function Growth:
Big-Oh Notation

2500 ' ' ' ' (N) = N2 + 2
“I(N) is in the 2000 |
order of f{(N)”
1500 |
“f(N) is an
upper bound _
on T(N)” o
cool | T(N)= 10N+ 100
00%110' 20 30 40 50

Comparing Function Growth:
Additional Notations

L ower Bound:

* Tight Bound: T(N) and f(N) grow at the same rate

e Strict Upper Bound:

100

eéponential N log N

N inear
- llog®(N) log-squared
logN logarithmic

20

C constant

Rules for Big-Oh (1)

Rules for Big-Oh (2)

General Rules: Basic for-loops

N
Compute »
1=1

public static int sum(int n){
int partialSum = 0;

for (int 1 = 1; 1 <= n; 1++)
partialSum += 1 * 1 * 1;
return partialSum;

¥

General Rules: Basic for-loops

N
Compute »
1=1

public static int sum(int n){
int partialSum = 0; 4 step

for (int i = 1; 1 <= n; i++)
partialSum += 1 * i * 1i;
return partialSum; step

¥

General Rules: Basic for-loops

N
Compute »
1=1

public static int sum(int n){
int partialSum = 0; 4 step

N iterations
for (int 1 = 1; 1 <= n; 1++)
partialSum += 1 * 1 * 1;

return partialSum; [{isiep 4 steps each

¥

General Rules: Basic for-loops

N
Compute »
1=1

public static int sum(int n){
int partialSum = 0; 4 step

N iterations
for (int i = 1; i <= n; i++) 2 steps each
partialSum += 1 * 1 * 1;
return partialSum; [{isiep 4 steps each

¥

General Rules: Basic for-loops

N
Compute »
1=1

public static int sum(int n){

int partialSum = 0; 4 step

1 step (initialization) N iterations

ie] S’[ep for last test for C'Lnt 1 = , 1 <= n, 'i.++) ZStepS each
partialSum += 1 * 1 * 1;
return partialSum; [{isiep 4 steps each

¥

General Rules: Basic for-loops

N
Compute »
1=1

public static int sum(int n){

int partialSum = @; 1 step N

1 step (initialization)
ie] S’[ep for last test for C'Lnt 1 = , 1 <= n, 'i.++) ZStepS each

partialSum += 1 * 1 * 1;
return partialSum; [{isiep 4 steps each

General Rules: Basic for-loops

N
Compute »
1=1

public static int sum(int n){

int partialSum = 0; 4 step

1 step (initialization) N iterations

ie] S’[ep for last test for C'Lnt 1 = , 1 <= n, 'i.++) ZStepS each
partialSum += 1 * 1 * 1;
return partialSum; [{isiep 4 steps each

¥

(N) = 6 N + 4 = O(N)

(running time of statements in the loop) X (iterations)

General Rules: Basic for-loops

N
Compute »
1=1

public static int sum(int n){

int partialSum = 0; 4 step

1 step (initialization) N iterations

ie] S’[ep for last test for C'Lnt 1 = , 1 <= n, 'i.++) ZStepS each
partialSum += 1 * 1 * 1;
return partialSum; [{isiep 4 steps each

¥

(N)=6 N+ 4 =0O(N)

(running time of statements in the loop) X (iterations)

It loop runs a constant number of times: O(c)

General Rules: Nested LoOOpS

Analyze inside-out.

for (1=0; 1 < n; 1++)

for (3=0; 7 < n; J++)
K++;

General Rules: Nested LoOOpS

Analyze inside-out.

for (1=0; 1 < n; 1++)

for (3=0; 7 < n; J++)

= 0(c)

General Rules: Nested LoOOpS

Analyze inside-out.

for (1=0; 1 < n; 1++)

for (3=0; j < n; j++) [N iterations FOJE\Y
k*ﬂ o

General Rules: Nested LoOOpS

Analyze inside-out.

O(N) + O(N) = O(N?)
for (3=0; 3 < n; j++) [MNiterations [OJO\)
= 0

for (1=0; 1 < n; 1++)

General Rules:
Consecutive Statements

for (1 =0; 1 < n; 1++)

ali] = 0;

for (1=0; 1 < n; 1++)
for (3 =0; 7 < n; J++)
al[i] += a[3] + 1 + 7;

General Rules:
Consecutive Statements

for (1 =0; 1 < nj 1++)

ali] = 0;

for (1=0; 1 < n; 1++)
for (3 =0; 7 < n; J++)
al[i] += a[3] + 1 + 7;

General Rules:
Consecutive Statements

for (1 =0; 1 < nj 1++)
ali] = 0;

for (1=0; 1 < n; 1++)
for (3 =0; 7 < n; J++)

al[i] += a[3] + 1 + 7;

Basic Rules:
if/else conditionals

Basic Rules:
if/else conditionals

L_ogarithms In the Runtime

public static int binarySearch(int[] a, int x) {
int low = 0;
int high = a.length - 1;

while (low <= high) {
int mid = (low + high) / Z;
1t Ca[lmid] < x)
low = mid + 1;
else 1fCa[md] > x)
high = mid - 1;
else
return mid; // found

3
return -1; // Not found.

How many iterations of the while loop?
Every iteration cuts remaining partition in half.

Recursion

* A recursive algorithm uses a function (or method)
that calls itsel.

e Need to make sure there Is some base case
(otherwise causing an infinite loop).

* [he recursive call needs to make progress towards
the base case.

 Reduces the problem to a simpler subproblem.

15

Recursive Binary Search

Fibonaccl seqguence

Fibonaccl seqguence

e 1,1,2,3,5,8, 13, 21, ...

Fibonaccl seqguence

e 1.1,2,3, 5 8,13, 21, ... :
Fi, =1 :
B Recursive Definition
Fr, =1

Fri1 = Fy + Fi

17

Fibonaccl Sequence

e 1,1,2,3,5,8, 13, 21, ... ;

F =1

=1 Recursive Definition

Frpy1 = Fp + Fpq
* Closed form solution is complicated.

* |nstead easier to compute this algorithmically.

17

Fibonaccl Seqguence in Java

public class Fibonacci {

public static void main(String[]) 1
Fibonacci fib = new Fibonacci();
int k = Integer.parselnt(args[0]);
System.out.println(fib.fibonacci(k));

}

public int fibonacci(int k) throws IllegalArgumentException{
1f (k < 1) {
throw new IllegalArgumentException("Expecting a positive integer.");
}
1f (k == | k == 2) {
return 1;
} else {
return fibonacci(k-1) + fibonacci(k-2);

Fibonaccl In Java

public class Fibonacci {

public static void main(String[]) 1
Fibonacci fib = new Fibonacci();
int k = Integer.parselnt(args[0]);
System.out.println(fib.fibonacci(k));

}

public int fibonacci(int k) throws IllegalArgumentException{
1f (k < 1) {
throw new IllegalArgumentException("Expecting a positive integer.");
}
1f (k == | k == 2) {
return 1;
} else {
return fibonacci(k-1) + fibonacci(k-2);

Fibonaccl In Java

public class Fibonacci {

public static void main(String[]) 1
Fibonacci fib = new Fibonacci();
int k = Integer.parselnt(args[0]);
System.out.println(fib.fibonacci(k));

}

public int fibonacci(int k) throws IllegalArgumentException{
1f (k < 1) {

throw new IllegalArgumentException("Expecting a positive integer.");

}
if (k==11k==2){ Base case

return 1;
} else {
return fibonacci(k-1) + fibonacci(k-2);

Fibonaccl In Java

public class Fibonacci {

public static void main(String[]) 1
Fibonacci fib = new Fibonacci();
int k = Integer.parselInt(args[0]);
System.out.println(fib.fibonacci(k));

}

public int fibonacci(int k) throws IllegalArgumentException{
1f (k < 1) {

throw new IllegalArgumentException("Expecting a positive integer.");

}
it (k==11k==201 |Base case

return 1;
} else {
return fibonacci(k-1) + fibonacci(k-2);

Recursive call - making progress

HOwW many steps does the
algorithm need?”

public class Fibonacci {

public static void main(String[]) 1
Fibonacci fib = new Fibonacci();
int k = Integer.parselInt(args[0]);
System.out.println(fib.fibonacci(k));

}

public int fibonacci(int k) throws IllegalArgumentException{
1f (k < 1) {
throw new IllegalArgumentException("Expecting a positive integer.");
¥
1f (k == | k == 2) {
return 1;
} else {
return fibonacci(k-1) + fibonacci(k-2);

HOwW many steps does the
algorithm need?”

public class Fibonacci {

public static void main(String[]) 1
Fibonacci fib = new Fibonacci();
int k = Integer.parselInt(args[0]);
System.out.println(fib.fibonacci(k));

}

public int fibonacci(int k) throws IllegalArgumentException{
if (k < 1) {

throw new IllegalArgumentException("Expecting a positive integer.");

-y {Base case: 1step T(1) = O(c), T(2) = O(c)

)

fibonacci(k-1) + fibonacci(k-2);

HOwW many steps does the
algorithm need?”

public class Fibonacci {

public static void main(String[]) 1
Fibonacci fib = new Fibonacci();
int k = Integer.parselInt(args[0]);
System.out.println(fib.fibonacci(k));

}

public int fibonacci(int k) throws IllegalArgumentException{
if (k < 1) {

throw new IllegalArgumentException("Expecting a positive integer.");

}
if (k— 1 k= {Basecase: 1step T(1)=0(c), T(2) = O(c)

return 1;

} else {
return fibonacci(k-1) + fibonacci(k-2);

. ' Recursive calls: T(k) = O(T(k-1) + T(k-2))

Analyzing the Recursive
Fibonacci Solution

Analyzing the Recursive
Fibonacci Solution

_ \ Recurrence RelatiOn.
How do we solve this?

Analyzing the Recursive
Fibonacci Solution
_ \Recurrence Relation.

T(N How do we solve this?

/N

T(N- 1) T(N—2

TNG) TN (N 3) \4>
\ :

e
T(N-3) T(N-4) 5
T(3) | PR
Ty) 1@

Fibonaccl Sequence V.2

public int fibonacci(int k) throws IllegalArgumentException{

) 1

new IllegalArgumentException("Expecting a positive 1integer.");

s //k-2
int a ; //k-1
for (int 1=3; 1<=k; 1++) {
int new_fib = a + b;
b = a;
a = new_fib;

¥

return a,;

Dynamic programming: Cache intermediate solutions so they
can be re-used.

22

Fibonaccl Sequence V.2

public int fibonacci(int k) throws IllegalArgumentException{

) 1

new IllegalArgumentException("Expecting a positive 1integer.");

s //k-2
int a ; //k-1
for (int 1=3; 1<=k; 1++) {
int new_fib = a + b;
b = a;
a = new_fib;

¥

return a,;

Dynamic programming: Cache intermediate solutions so they
can be re-used.

22

Rules for Recursion

. Base Case

. Making Progress
. Design Rule - Assume all recursive calls work.

. Compound Interest Rules - Never duplicate work
by solving the same instance of a problem in
separate recursive calls.

23

The Towers of Hanol

A B C
Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.

No disk may be placed on a smaller
disk.

24

The Towers of Hanol

A B C

Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.

No disk may be placed on a smaller
disk.

24

The Towers of Hanol

-ll

Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.

No disk may be placed on a smaller
disk.

24

The Towers of Hanol

Lo
A B C
Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.

No disk may be placed on a smaller
disk.

24

The Towers of Hanol

A B C
Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.

No disk may be placed on a smaller
disk.

24

The Towers of Hanol

A B C
Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.

No disk may be placed on a smaller
disk.

24

The Towers of Hanol

A B C

Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.

No disk may be placed on a smaller
disk.

24

The Towers of Hanol

A B C

Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.

No disk may be placed on a smaller
disk.

24

The Towers of Hanol

A B C
Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.

No disk may be placed on a smaller
disk.

24

The Towers of Hanol

A B C
Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.

No disk may be placed on a smaller
disk.

24

The Towers of Hanol

A B C
Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.

No disk may be placed on a smaller
disk.

24

The Towers of Hanol

A B C
Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.

No disk may be placed on a smaller
disk.

24

The Towers of Hanol

_ &
A B C
Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.

No disk may be placed on a smaller
disk.

24

The Towers of Hanol

LlL

Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.

No disk may be placed on a smaller
disk.

24

The Towers of Hanol

A B C

Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.

No disk may be placed on a smaller
disk.

24

The Towers of Hanol

|
iR

A B C
Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.

No disk may be placed on a smaller
disk.

24

The Towers of Hanol

A

B C

Insight: To move 4 disks from Ato C

1.
2.
3.

Move
Move

op t
‘ourt

Move

op t

nree disks from A to B
N disk to C

nree disks from B to C

25

The Towers of Hanol

A B C

Insight: To move 4 disks from Ato C

1.
2.
3.

Move
Move

op t
‘ourt

Move

op t

nree disks from A to B
N disk to C

nree disks from B to C

25

The Towers of Hanol

1.
2.
3.

A

Move
Move

op t
‘ourt

Move

op t

B C
Insight: To move 4 disks from Ato C

nree disks from A to B
N disk to C

nree disks from B to C

25

The Towers of Hanol

|
R,

A

B C

Insight: To move 4 disks from Ato C

1.
2.
3.

Move
Move

op t
‘ourt

Move

op t

nree disks from A to B
N disk to C

nree disks from B to C

25

The Towers of Hanol

A

B C

Insight: To move 3 disks from Ato B

1.
2.
3.

TIOVE
TOVE

TOVE

to
thi
to

0 two disks from A to C
rd disk to B

0 two disks from C to B

20

The Towers of Hanol

1.
2.
3.

A
Insight: To move 3 disks from Ato B

TIOVE
TOVE

TOVE

to
thi
to

e
B C

0 two disks from A to C
rd disk to B

0 two disks from C to B

20

The Towers of Hanol

A

B C

Insight: To move 3 disks from Ato B

1.
2.
3.

TIOVE
TOVE

TOVE

to
thi
to

0 two disks from A to C
rd disk to B

0 two disks from C to B

20

The Towers of Hanol

L

Insight: To move 3 d|sks from Ato B

1.
2.
3.

TIOVE
TOVE

TOVE

to
thi
to

0 two disks from A to C
rd disk to B

0 two disks from C to B

20

The Towers of Hanol

A

B C

Insight: To move 2 disks from Ato C

1.
2.
3.

TIOVE
TOVE

TOVE

to
thi
to

0 one disks from Ato B
rd disk to C

0 one disks from Bto C

27

The Towers of Hanol

-

C

Insight: To move 2 d|sks from Ato C

1.
2.
3.

TIOVE
TOVE

TOVE

to
thi
to

0 one disks from Ato B
rd disk to C

0 one disks from Bto C

27

The Towers of Hanol

Al L

Insight: To move 2 d|sks from Ato C

1.
2.
3.

TIOVE
TOVE

TOVE

to
thi
to

0 one disks from Ato B
rd disk to C

0 one disks from Bto C

27

The Towers of Hanol

1.
2.
3.

A
Insight: To move 2 disks from Ato C

TIOVE
TOVE

TOVE

to
thi
to

D
B C

0 one disks from Ato B
rd disk to C

0 one disks from Bto C

27

The Towers of Hanol

Algorithm (sketch)

To move n disks from A to C
1. move top n-7 disks from A to B

2. move n-thto C
3. move top n-1 disks from B to C

A = source peg
C = target peg
B = “help” peg (to temporarily store disks)

Peg labels change in each recursive call.

28

The Towers of Hanol

To move n disks from A to C
1. move top n-7 disks from A to B
2. move n-thto C
3. move top n-1 disks from B to C

T(N)=2-T(N—1) +1

T(1) = 1

Need to solve this recurrence relation!

29

