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Algorithms

 An algorithm is a clearly specified set of simple
instructions to be followed to solve a problem.

* Algorithm Analysis — Questions:
e Does the algorithm terminate”
e Does the algorithm solve the problem? (correctness)
 What resources does the algorithm use?

 Time / Space



Analyzing Runtime: Basics

 We usually want to compare several algorithms.

 Compare between different algorithms how the
runtime T(N) grows with increasing input sizes .

e We are using Java, but the same algorithms could
be Implemented Iin any language on any machine.

« How many basic operations/“steps” does the

algorithm take” All operations assumed to have the
same time.



Worst and Average case

* Usually the runtime depends on the type of input
(e.g. sorting is easy if the input is already sorted).

* Tworst(N): worst case runtime for the algorithm on
ANY input. The algorithm is at least this fast.

* Taverage(N): Average case analysis — expected
runtime on typical input.

* Trest(N): Occasionally we are interested in the best
case analysis.
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Comparing Function Growth:
Additional Notations

L ower Bound:

* Tight Bound: T(N) and f(N) grow at the same rate

e Strict Upper Bound:



100

eéponential N log N

N inear
- llog®(N) log-squared
logN  logarithmic
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C constant



Rules for Big-Oh (1)




Rules for Big-Oh (2)




General Rules: Basic for-loops

N
Compute »
1=1

public static int sum(int n){
int partialSum = 0;

for (int 1 = 1; 1 <= n; 1++)
partialSum += 1 * 1 * 1;
return partialSum;
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General Rules: Basic for-loops

N
Compute »
1=1

public static int sum(int n){

int partialSum = 0; 4 step

1 step (initialization) N iterations

ie] S’[ep for last test for C'Lnt 1 = , 1 <= n, 'i.++) ZStepS each
partialSum += 1 * 1 * 1;
return partialSum; [{isiep 4 steps each

¥

(N)=6 N+ 4 =0O(N)

(running time of statements in the loop) X (iterations)

It loop runs a constant number of times: O(c)



General Rules: Nested LoOOpS
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General Rules: Nested LoOOpS

Analyze inside-out.

O(N) + O(N) = O(N?)
for (3=0; 3 < n; j++) [MNiterations [OJO\)
= 0

for (1=0; 1 < n; 1++)
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Basic Rules:
if/else conditionals




Basic Rules:
if/else conditionals




L_ogarithms In the Runtime

public static int binarySearch(int[] a, int x) {
int low = 0;
int high = a.length - 1;

while ( low <= high) {
int mid = (low + high) / Z;
1t Ca[lmid] < x)
low = mid + 1;
else 1fCa[md] > x)
high = mid - 1;
else
return mid; // found

3
return -1; // Not found.

How many iterations of the while loop?
Every iteration cuts remaining partition in half.




Recursion

* A recursive algorithm uses a function (or method)
that calls itsel.

e Need to make sure there Is some base case
(otherwise causing an infinite loop).

* [he recursive call needs to make progress towards
the base case.

 Reduces the problem to a simpler subproblem.

15



Recursive Binary Search
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Fibonaccl seqguence

e 1.1,2,3, 5 8,13, 21, ... :
Fi, =1 :
B Recursive Definition
Fr, =1

Fri1 = Fy + Fi
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Fibonaccl Sequence

e 1,1,2,3,5,8, 13, 21, ... ;

F =1

=1 Recursive Definition

Frpy1 = Fp + Fpq
* Closed form solution is complicated.

* |nstead easier to compute this algorithmically.

17



Fibonaccl Seqguence in Java

public class Fibonacci {

public static void main(String[] ) 1
Fibonacci fib = new Fibonacci();
int k = Integer.parselnt(args[0]);
System.out.println(fib.fibonacci(k));

}

public int fibonacci(int k) throws IllegalArgumentException{
1f (k < 1) {
throw new IllegalArgumentException("Expecting a positive integer.");
}
1f (k == | k == 2) {
return 1;
} else {
return fibonacci(k-1) + fibonacci(k-2);
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Fibonaccl In Java

public class Fibonacci {

public static void main(String[] ) 1
Fibonacci fib = new Fibonacci();
int k = Integer.parselInt(args[0]);
System.out.println(fib.fibonacci(k));

}

public int fibonacci(int k) throws IllegalArgumentException{
1f (k < 1) {

throw new IllegalArgumentException("Expecting a positive integer.");

}
it (k==11k==201 |Base case

return 1;
} else {
return fibonacci(k-1) + fibonacci(k-2);

Recursive call - making progress




HOwW many steps does the
algorithm need?”
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HOwW many steps does the
algorithm need?”

public class Fibonacci {

public static void main(String[] ) 1
Fibonacci fib = new Fibonacci();
int k = Integer.parselInt(args[0]);
System.out.println(fib.fibonacci(k));

}

public int fibonacci(int k) throws IllegalArgumentException{
if (k < 1) {

throw new IllegalArgumentException("Expecting a positive integer.");

}
if (k— 1 k= {Basecase: 1step T(1)=0(c), T(2) = O(c)

return 1;

} else {
return fibonacci(k-1) + fibonacci(k-2);

. ' Recursive calls: T(k) = O(T(k-1) + T(k-2))
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Analyzing the Recursive
Fibonacci Solution
_ \Recurrence Relation.

T(N How do we solve this?
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Fibonaccl Sequence V.2

public int fibonacci(int k) throws IllegalArgumentException{

) 1

new IllegalArgumentException("Expecting a positive 1integer.");

s //k-2
int a ; //k-1
for (int 1=3; 1<=k; 1++) {
int new_fib = a + b;
b = a;
a = new_fib;

¥

return a,;

Dynamic programming: Cache intermediate solutions so they
can be re-used.

22
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Rules for Recursion

. Base Case

. Making Progress
. Design Rule - Assume all recursive calls work.

. Compound Interest Rules - Never duplicate work
by solving the same instance of a problem in
separate recursive calls.

23



The Towers of Hanol

A B C
Goal: Move all disks to the right peg
Moves: Take any disk on top of a stack
and move it to the top of another stack.

No disk may be placed on a smaller
disk.
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The Towers of Hanol
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B C
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The Towers of Hanol

Algorithm (sketch)

To move n disks from A to C
1. move top n-7 disks from A to B

2. move n-thto C
3. move top n-1 disks from B to C

A = source peg
C = target peg
B = “help” peg (to temporarily store disks)

Peg labels change in each recursive call.

28



The Towers of Hanol

To move n disks from A to C
1. move top n-7 disks from A to B
2. move n-thto C
3. move top n-1 disks from B to C

T(N)=2-T(N—1) +1

T(1) = 1

Need to solve this recurrence relation!

29



