
Lecture1: Overview
9/9/2015

Daniel Bauer

Contents

1. Organizational Overview

2. Introduction to Data Structures

3. Abstract Data Types

2

Instructors
• Section 1:

• Daniel Bauer (bauer@cs.columbia.edu)

• Office hours: Mon 4:00pm-5:00pm  
 7LW3 CEPSR  
 (or by appointment)

• Section 2:

• Larry Stead (lss2168@columbia.edu)

• Office hours: After class or by appointment
3

mailto:bauer@cs.columbia.edu
mailto:lss2168@columbia.edu

Class Coordination
• The two sections will be mostly synced

• TAs are shared between the sections

• can go to anybody’s office hours or recitation

• Same homework for each section

• One piazza account shared between the sections

4

Course Overview
• Lectures:  

Section 1: Mon & Wed, 5:40pm - 6:55pm, 301 Pupin 
Section 2: Tue & Thu, 5:40pm - 6:55pm, 614 Schermerhorn

• Course Website:  
http://www.cs.columbia.edu/~bauer/cs3134

• GitHub used for homework, code examples.

• used for questions / discussions / announcements.

• Slides and Gradebook on Courseworks.

• Task for this week: Make sure you can access all resources! 
5

http://www.cs.columbia.edu/~bauer/cs3134

Instructional Assistants

• IA hours, starting next week: Announced on course
website.

• Will probably have three recitation sessions.  
Office hours (at least) on all other days of the week.

6

Linan Qiu (lq2137@columbia.edu)
Anna Lawson

Evan Tarrh
Joshua Keough
Nick Mariconda

Ken Aizawa

Kunal Jasty
Ruicong Xie 

Harsha Vemuri
Lily Wang 

Zeynep Ejder

mailto:lq2137@columbia.edu

Prerequisites
• Knowledge of Java (e.g. W1004 - Introduction to

Computer Science and Programming in Java)

• Basic discrete math.

• Have some method for developing Java code -
whatever works for you

• Eclipse, IntelliJ, SublimeText, Emacs, Vim

7

Textbook
• Weiss, Mark Allen (2012). 

Data structures and Algorithm Analysis in Java.
3rd ed. Prentice Hall.

• ISBN: 9780132576277

• Errata:  
http://users.cis.fiu.edu/~weiss/dsaajava3/
errata.html

• Source code:  
http://users.cis.fiu.edu/~weiss/dsaajava3/code/

8

http://users.cis.fiu.edu/~weiss/dsaajava3/errata.html
http://users.cis.fiu.edu/~weiss/dsaajava3/code/

Deliverables and Grading
• 50% - 7 homework assignments, weakest dropped  

 + homework 0 (ungraded).

• 20% - In-class midterm (late October).

• 25% - Final exam.

• 5% - Participation  
 (class attendance/participation,  
 activity on Piazza).

• Grading Range A+ to F

9

Expectations
• Attend class, participate!

• Do reading assignments.

• Start homework early.

• Get help when you need it and help others on Piazza.

• Make sure you have the registration status you want!

• Academic Honesty - read the statement on course
website carefully. You MUST submit original work!

10

Asking Questions

11

of interest to 
other

students?

ask in classInstructor
Instructor office hours

TA hours

Y

urgent clarification  
question in class

Y

organization

N
about homework 

grading?

recitation session

about course content
or organization?

course content

N

YN

N Y

Instructor office hours
TA

about course
content?

TA
TA hours

Contents

1. Organizational Overview

2. Introduction to Data Structures

3. Abstract Data Types

12

Why should I take Data
Structures?

• Requirement.

• Core software engineering skills.

• Develop problem solving skills using a “top-down”
approach.

• Coding interviews usually focus on data structures
and algorithms.

13

Data Structures

• Data Structures: Ways of representing and
organizing data so that they can be used
efficiently.

• Tasks: organize, search, filter, update, add, delete,
combine

14

Digital Data

15

Text

Video

TablesSocial 
Networks

Audio

Bio data

Maps

Images

…

Example Applications
• Document Retrieval

• Machine Learning

• Microarray Data Analysis

• Route Planning

• Computer Graphics

16

17

Algorithms + Data Structures
= Programs

• Niklaus Wirth, 1976 (inventor of Pascal)

• Problem solving requires:

1. Creating the right data model for
thinking about a problem.

2. Devising the appropriate methods to
solve the problem.

18

Example: Finding an Entry x
in a Sorted List

19

0 5 10 13 15 23 42 217 1024 4929

• Approach 1: Linear search. Start at position 0, scan list until  
we reach the correct entry.

A =

• In the worst case, we need length(A) steps to find the entry!

Example: Finding an Entry x
in a Sorted List

20

0 5 10 13 15 23 42 217 1024 4929

• Approach 2: Use the property that the list is sorted.
• Find entry y in the middle if A: y = A[A.length/2]
• if (y == x) we found the entry.
• if (y < x) continue search on second half of A.
• if (y > x) continue search on first half of A.

A = 23 x = 10241024

•In the worst case we need log2(length(A)) steps.

Big Data

• Ever faster hardware available, more memory.

• Amazon cloud has machines with 244Gigs of
main memory!

• Can now store and process huge data sets.

• Ironically, algorithmic efficiency matters even more!

21

Levels of Abstraction
• Hardware, bit representations

• Assembly language, registers, memory
abstraction

• Higher-level languages  
(Java, C++, Python, …)

• Applications, User interfaces

22

L1: MV EDX, 00 
 INC EDX
 CMP EDX, 10  
 JLE L1

public class Dag<E>  
extends Graph<E> {…} 

010101
010101
001011
100101
001101

Contents

1. Organizational Overview

2. Introduction to Data Structures

3. Abstract Data Types

23

Data Types

• Basic data types: booleans, bytes, integers, floats,
characters…

• Simple abstractions: Array, String

• More complex data types (this class): Lists,
Stacks, Trees, Sets, Graphs

24

Abstract Data Types
• An Abstract Data Type (ADT) is an collection of

data together with a set of operations.

• ADT specification does not mention how operations
are implemented.

• Example:

• Set ADT might provide “add”, “remove”,
“contains”, “union”, and “intersection”
operations.

25

ADTs vs. Data Structures

• An abstract data type is a well-defined collection of
data with a well-defined set of operations on it.

• A data structure is an actual implementation of a
particular abstract data type.

26

ADTs in Java
• ADTs can be specified as interfaces. Interfaces

define behavior, but say nothing about
implementation or performance issues

• ADTs can be implemented as classes. Careful
class design hides implementation details from
users, enabling “plug and play”.

• Encourage re-usability of components!

27

ADTs in Java
• Example: Java Strings

• We can call methods such as length()
and concat(String str).

• We don’t have to know how Strings are
stored in memory or how methods are
implemented.

• How many bytes does it take to represent a
character?

28

Some ADTs we will study
• Lists

• Stacks

• Queues

• Priority Queues (Heaps)

• Search Trees

• Graphs

29

