
Data Structures in Java
Java Review

9/14/2015

1

Daniel Bauer
and Larry Stead

Disclaimer

• This Data Structures class (and Jarvis!) uses Java 8.

Java Review - Contents (1)
• Writing and Running Java Programs.

• Structure of a Program:

• Packages, Files, Classes.

• Static/Non-Static Methods, visibility modifiers, method
calls.

• Primitive Types and Objects, References, Memory
Management, Operators.

• Control Structures.

• Object Oriented Programming

• Classes and Instance Objects.

• Fields, Methods.

• Inheritance, Polymorphism.

• Interfaces Abstract Classes.

• Private static/non-static classes.

• Generic types.

Java Review - Contents (2)

Resources
• Java API reference - http://docs.oracle.com/javase/

8/docs/api/index.html

• “Java Trails” tutorial - https://docs.oracle.com/
javase/tutorial/

• Schildt: Java Complete Reference - https://
clio.columbia.edu/catalog/10929278

• Horstmann: Big Java, Early Objects

http://docs.oracle.com/javase/8/docs/api/index.html
https://docs.oracle.com/javase/tutorial/
https://clio.columbia.edu/catalog/10929278

Compiling and Running
Java Code

$javac MyClass.java $javac *.java

$java MyClass

MyClass.java

or

MyClass.class

Source File(s)

“ByteCode” Class Files

MyClass must contain a public static main method.

Java Files
• Source files have a “.java” suffix, like “compute.java”

• The java compiler, “javac”, compiles a source file into
a “byte code” binary “.class” file, like “compute.class”.

• Generally, one public class per file.

• The java runtime tool, “java” executes/interprets a
collection of “.class” files.

• You can “run” a class that contains a static main
method.

Java Program
• A Java program consists of one or more class

definitions (not to be confused with “.class” files).
These classes can refer to other classes

• Java comes with a huge library of classes

• 3rd party classes can also be used

• Exactly one class must have a “main” method. This
is where program execution will begin

Building more Complex
Projects

• Class files are sometimes collected into “.jar” files(an
archive format like ‘tar’)

• For non-trivial programs, running these tools by hand
becomes too complex, and some kind of “system
building” tool is used, like ‘make’, ‘ant’, ‘maven’, or
‘gradle’. These can be quite tedious to setup.

• An IDE like Eclipse will do builds for you.

• For homework Jarvis will build and test your programs.
Please make sure to build and test locally before
committing homework.

Java Comments
• Three types of comments in Java

• // - rest of line is ignored

• /* ... */ - inside is ignored

• easy way to comment out a block of code

• does NOT nest

• /** .. */ - treated as comments by compiler,
but used by Javadoc documentation builder

10

Javadoc

11

/** Doc about the class */
class Foo {
/** Doc about this variable */
int bar;

/** Doc about this method */
void baz() { ... }

}

Classes
• A class defines a blueprint/design for objects

• Once a class is defined, any number of objects may be
“instantiated” or “built” by using the “new” operator,
much like a car factory can crank out an arbitrary
number cars based on a design.

• Each class instance can hold data values unique to
it(instance variables)

• Class instances may also refer to data shared among
all instances

Class Definition
• A class consists of:

• package declaration(to keep things simple, we will not
use this)

• package imports

• Class name

• zero or more field definitions, “class”(static) or “instance”

• zero of more method definitions, “class”(static) or
“instance”

Java Packages
• exploit uniqueness of internet domain names to guarantee unique class names

• the “fully qualified name” is

• edu.columbia.cs.lstead.Vector2D

• Verbose to reference in another class, so do

• import edu.columbia.cs.lstead.Vector2D

• new Vector2D();

• can import everything in a package with “*

• import java.net.*;

• java.lang.* is imported automatically

14

Methods
• Generalization of a function(sqrt vs random)

• A class method (aka static method) can access local and class
(static) variables.

• A instance method can access local, class, and instance variables

• This lets an instance of a class bundle together state and actions

• A method is a series of statements.

• Statements are built out of Expressions

• Expressions are built from literals, variables, and operators

Access Control
• package pkg; class Foo{} - accessible within pkg

package

• package pkg; public class Foo{} - accessible
anywhere

• public member - accessible anywhere class is accessible

• protected member - accessible within the package and in
subclasses

• private member - only accessible within the class

• will mainly use ‘public’ or ‘private’

16

Rect class
public class Rect{

private int x,y,w,h;

public Rect(int x, int y, int w, int h){
this.x = x; this.y = y;
this.w = w; this.h = h;

 }

public int area(){
return w * h;

 }
 
public void move(int x, int y){
this. x = x; this.y = y;

}
}

‘Mutable’ vs ‘Immutable’

• Rect is ‘mutable’

• the move() method can change the ‘saved state’
of a Rect instance

• an ‘immutable’ Rect would be

• When is ‘immutable’ desirable?

public class Rect{
 final x,y, w, h;
…

Java Types
• A type is a set of things, like 32 bit integers, 64 bit

integers, unicode characters…

• There are two “types of type” in Java

• Primitive

• Reference

• Debatable - newer languages don’t do this

• Why does Java?

Primitives vs References
• Primitives

• 7 predefined by Java, not extendable

• Also known as an “immediate” or “unboxed”

• References

• A reference “refers” to an Object

• An “array” defines a reference type

• A “class” defines a reference type

• New classes and arrays can be defined by the developer

Primitives and their Class
“Wrappers”

• Wrapper classes have
useful methods for the
data type

• Can have arrays of primitives

Primitive, Wrapper

boolean, Boolean
char, Character
short, Short
int, Integer
long, Long
float, Float
double, Double

Autoboxing
// automatically convert from
‘int’ to ‘Integer’
int x = 34
Integer y = x

// automatically convert from
‘Integer’ to ‘int’
Integer x = 45
int y = x

// be careful - this will generate
a lot of garbage

for(Integer j = 0; j<1000000; j++)
 …

Arrays
• Some differences from C arrays

• int a[10] won’t work, must use “new” to get storage

• int a[] = new int[10]

• 2d arrays

• int a[][] = new int[5][6] is not a linear array in
memory - it is an “array of arrays”

• a 2d array can be “rectangular” or “ragged”

• “int[] a”, and “int a[]” are both valid declarations

Arrays
• Can have arrays of Primitives and Object References

• Many useful array methods can be found on
java.util.Arrays

• If you print an array, you get a useless hex address

• Arrays.toString(a) will generate a string
representation of the array contents. Useful for
debugging

Java Variables have a Type
• Some languages, like Python, have untyped variables

• x = 1

• x = “string”

• In Java

• int x = 1

• x = “string” - compiler error!!

• Tradeoff - typed variables are more verbose, but they enable more checking
by the compiler. There is a large class of errors that can be made in Python
that are impossible in Java

• Typed variables also make code more human readable

Java Memory Abstraction
• You can not generate a reference to an arbitrary

location in memory

• Java variables either point to primitives or are
references to objects.

• Unlike C/C++, Java does NOT support  
“pointer arithmetic”

• No segfaults!

Java Automatic Memory
Management Model

• In languages like C/C++ the programmer needs to reserve space for data
(malloc) and explicitly free it when no longer needed.

• Java automatically allocates memory and automatically frees space occupied
by objects no longer in use.

• Pro: Much simpler, Con: Be careful. Still can have memory leaks.

• Things get stored in two places

• Call Stack frame - “short term” (life of the stack frame) storage for primitives,
memory freed by popping the stack.

• Factorial example, recursion

• Heap - “long term”(completely independent of stack frame where it was
created) storage of reference types, memory freed by Garbage Collector

“null”
• Can’t get a “bad reference” in Java

• But, you can get a null

28

Foo f = new Foo();
// an instance method defined on Foo
f.fooMethod();
f = null;
// Will get a NullPointerException, which can be caught
// no SEGFAULT!!!
f.fooMethod();

Operators - Arithmetic
• +, -, *, /, %, ++, --

• division of two integers drops the remainder

• % will yield remainder

• Oddly, there is no exponentiation operator

• If you want to cube an integer, write j*j*j

• For doubles, can use Math.pow

• + also does string concatenation

• “abc” + “123” => “abc123”

Operators - Comparison

• ==, !=, <, <=, >, >=

• ==, !=

• for primitives, == is true if the values are the
same

• for objects, == is true if the references are to the
SAME object. for example “==” == “==” is false

Operators - Boolean
• AND &, OR |

• evals both args

• Conditional, AND &&, OR ||

• will stop eval at first opportunity

• Negation, !

• XOR - ^

Operators - Bit

• Bitwise Complement - ~

• Bitwise AND &, OR |, XOR ^

• Left Shift <<

• Right Shift, Signed >>, Unsigned >>>

Object Oriented Programing

Object Based
Programming(OOP)

• Quick history

• Sketchpad(1963) - astonishing program - invented objects,
GUIs, CAD, and constraint systems

• Simula(1967) - many of the features we see today

• Smalltalk(1980) - very influential, full environment

• Flavors(1982)/CLOS

• C++(1985)

• Java(1995)

34

Classes
• Usually a blueprint for instantiating objects, but not all

classes are instantiated (also used in Java to group static
methods.)

• Consists of some number of “members” - variables and
methods(generalization of a function).

• Members can be defined on the class(static) or on the
instances.

• Members are accessed with “.” operator

• Access to members may be restricted.

35

Encapsulation & Modularity
• a class ties together a bundle of related functionality

• data

• methods

• access control

• external interface

• documentation

36

Code Reuse
• Ideally code is never written more than once, or

duplicated

• Causes tremendous grief in large systems

• Want to promote maximal code reuse

• Sometimes an existing piece of functionality is close to
what you want, but needs to be “tweaked”

• Example - I like the system windows, but the graphic
designer wants special borders

37

Special Case Class - All
Members static(class)

• java.lang.Math

• Collection of functions and constants

• Never instantiated

• Main class of a program (often only contains a
public static main method.)

38

Special Case Class: All
Instance Variables

• class Student {String uni; String first; String last;}

• Student s = new Student();

• s.first = “larry”;

• System.out.println(s.last);

• Like defining a struct in C, and allocating memory
for it with malloc

39

General Class
• Package declaration, followed by arbitrary mix of

class and instances members

40

package edu.columbia.cs.lstead;

class Vector2D {
static int final dimensions = 2;
double v[2] = new double[2];

double mag() {
double sum = 0;
for(int j = 0; j<dimensions; j++)
sum += v[j]*v[j];

return Math.sqrt(sum);
}

}

Method Overloading(works
for Constructors too)

41

// same method name can be defined
multiple times with different arguments
// return type must be the same

class Foo {
Foo() { ... }
Foo(int z) { ... }
Foo(int x, double y) { ... }

int bar(int a, int b) { ... }
int bar(int a) { ... }
int bar() { ... }
}

Constructors
• Can perform initializations at instantiation time

• Constructor have no return type(not even void)

42

Vector2D(double x, double y) {
v[0] = x;
v[1] = y;

}

Default Constructor

• class Vector2D {...} - gets default
constructor

• class Vector2D {Vector2D() { ... } } -
replaces default constructor

• class Vector2D {Vector2D(double xy)
{ ... } } - removes default constructor!

43

“this” and “super”
• Inside a instance method, ‘this’ refers to the object itself

• Inside a constructor, can “call” other constructors

• Foo(int n) { this(n, 1)}  
Foo(int n, int m) {...}

• Inside a constructor, super(...) will call constructor of
superclass. If used, super(...) must be the first
statement in the constructor

• With a chain of “super()”, highest superclass is
executed first

44

Inheritance
• If an existing class “almost” does what I want, I

can “reuse” that class by using inheritance

45

class JustWhatIWant extends AlmostWhatIWant {
/** new instance variables */
String coolNewName;
/** new method I want */
void awesomeNewFunctionality(...) {...}
/** completely replace superclass method */

@Override
void redoExistingMethod(...) {…}

/** run superclass method, then do new stuff
@Override
void modifyExistingMethod(...) {
super(...); …

}

Abstract Classes and
Methods

• An abstract class, or a class with abstract
methods, cannot be instantiated

• Purpose is to partially constrain/guide any
implementation class

46

abstract class Foo {
int cnt;
// method must be implemented by subclass
void beGreat()
// method can be used by subclass
void incr() { cnt++; }

}

Polymorphism
• A subclass can “pass” for any of its superclasses

47

class Shape{abstract void draw(); …};
class Rect extends Shape{void draw(){…}; …};
class Circle extends Shape{void draw(){…}; …};

Shape s = new Rect();
s.draw();
s = new Circle();
s.draw();

java.lang.Object
• All classes without an “extends” declaration,

“extend” Object

• important methods on Object

• equals(), hashCode() -  
important for Collections

• toString() - customize how object prints

• finalize() - almost always a bad idea to use it

48

Object.toString() method
• Default way an object is printed is not very useful

• Showing some state very helpful in debugging

49

class Vector2D {

String toString() {
return “V2(“ + v[0] + “, “ + v[1]
+ “)”;

}

}

java.lang.String
• Only object that has literal and operator

• String s = “foo” + “bar”

• String is a “final” class - can not be extended

• Strings are used extensively in Java, so efficiency is
critical

• String is a immutable class - methods like
substring(), toUpperCase() return a NEW string

• Many handy constructors and methods

50

Redefining equals() and
hashCode()

• Often useful to redefine the equals() to implement a
more general concept of equality. for example, might
consider two objects equal if certain fields have the
same value

• sometimes it is useful to not compare all fields. fields
not compared can be different, but objects are still
“equals”

• if equals() is redefined, hashCode() must be redefined
as well to be “consistent with equals”. if two objects are
“equals”, they must have the same hashCode

51

Single vs Multiple
Inheritance

• Multiple - C++, Python, CLOS

• Drawbacks

• considerably more complicated than Single

• difficult to design correctly

• efficiency issues

• Java - Single

• Opted for simplicity

52

Interfaces
• Java side steps the multiple inheritance problem

• An interface specifies what an object must do, not
what it is

• If it looks like a duck, quacks like a duck...

• Integral part of the Collections framework

• Sometimes used as “markers”, like Serializable

• Classes can “implement” any number of interfaces

53

Error System
• When a problem occurs, Java puts relevant info into a

Throwable object, and “throws” it

• java.lang.Throwable - Top class

• java.lang.Error - Bad stuff you can’t do anything about,
JVM internal problems

• java.lang.Exception - Things you can deal with

• Attempt to open a file, but path is bad - could reprompt the
user for path

• Can’t make network connection - wait awhile and retry

54

Try Block

55

try {

// code that might break

…

} catch (ExceptionClass e) {

 System.out.println(e);

} finally {

 // always runs

}

Throws Declaration
• If checked exception is not handled in a try block,

it must be thrown.

• Each method on the call stack will be search for an
appropriate handler

• If no handler is found, program will use “default
handler” - prints some info, and terminates
program

56

void foo() throwsFileNotFoundException {
 ...
}

Exception Signaling
• You can define your own Exception class

57

class HorribleProblem extends Exception {
// can save useful state on instance variables

HorribleProblem(args…) {
super(stringMessageToDisplay);

}
}

...

// throw it
throw(new HorribleProblem(...));

