
Data Structure in Java - Midterm Review

Daniel Bauer

October 21, 2015

General Concepts

• Abstract Data Types vs. Data Structures.

• Recursion.

• Basic proofs by induction. Proofs by counter-example.

Java Concepts

You will not be required to write Java code during the midterm or final, but we expect
you to be able to read short programs.

• Basic Java OOP: Classes / Methods / Fields. Visibility modifiers.

• Generics.

• Inner classes (static vs. non-static).

• Interfaces.

• Iterator/Iterable.

• Comparable.

• Mutable/Immutable objects.

Analysis of Algorithms

• Time vs. Space analysis.

• Big-O notation for asymptotic running time: O(f(n)), Θ(f(n)), Ω(f(n)).

• Typical growth functions for algorithms.

• Worst case, best case, average case.

1



• Skills: Compare growth of functions using big-O notation. Given an algorithm
(written in Java), estimate the asymptotic run time (including nested loops and
simple recursive calls).

Lists

• The List ADT, including typicsl List operations.

• ArrayList:

– running time for insert, remove, find at different positions in the list.

– what to do when we run out of space.

• LinkedList:

– single vs. double linked list.

– running time for insert, remove, find at different positions in the list.

– sentinel (head/tail) nodes.

• Lists in the Java Collections API.

• Skills: Develop simple list algorithms for additional operations (removing dupli-
cates, etc.). Implement iterators.

Stacks and Queues

• Stack ADT and operations (push, pop, peek). LIFO.

• Queue ADT and operations (enqueue, dequeue). FIFO.

• All operations run in O(1).

• Stack implementation using LinkedList, ArrayList, plain arrays.

• Stack applications:

– check if symbols are balanced.

– reordering sequences (in-order to post-order, train cars,...).

– storing intermediate computations on a stack (evaluating post-order expres-
sions).

• Method Call Stack, Stacks and recursion. Tail recursion.

• Queue implementation using Linked List.

• Queue implementation using a Circular Array.

• Stacks and Queues in the Java Collections API.

2



• Skills: Use stacks and queues in applications. Implement multiple stacks in an
array. Implement a queue using two stacks (or one stack + recursion).

Trees

• Binary trees and M-ary trees. Tree terminology (parent, children, root, leafs, path,
depth, height)

• Different tree implementations (one field per child, array of children, list of children,
siblings as linked list).

• Binary trees:

– Full binary trees, complete binary trees.

– Tree traversals: in-order, pre-order, post-order.

– Implementing tree traversals using recursion or stacks.

– Constructing an expression tree using a stack.

– Relation between number of nodes and height of a binary tree. Maximum
number of nodes in a binary tree depth h is 2h1.

• Skills: Implement different tree traversals using recursion (different versions). Use
these traversals to implement operations on trees.

• Examples for trees: expression trees, tries, search trees (to implement tree maps).

Binary Search Trees

• Map ADT.

• BST property.

• BST operations: contains, findMin, findMax, insert, remove

• Best case, worst case, average case runtime for operations (depends on height of
tree)

• Implementing a Map using BSTs (tree map). Using a Pair class.

• Skills: Perform BST operations on paper. Different algorithms on BSTs. Return-
ing all nodes in an interval. Checking that BST property is satisfied.

AVL Trees

• Balanced BSTs. AVL Balancing property.

• Maintaining AVL balance property on insert:

– Outside imbalance, single rotation.

3



– Inside imbalance, double rotation.

– Veritying that a tree is balanced. Finding the location of an imbalance
(bottom-up).

• Skills: Perform AVL rotations on paper, detect imbalances.

B-Trees

• Motivation for B-Trees: Store large search trees on disk. Replace expensive disk
accesses with cheap linear search in memory.

• B-Tree balance property. B-Tree definition.

• 2-3-4 trees.

• Basic operations on B-trees: contains, insert, remove.

• Compute the ideal size of a B-Tree node (not needed for midterm).

• B+ trees.

• Skills: Perform easy B-Tree operations on paper.

Hashing

• Arrays as Maps.

• Basic concept of a hash map, hash functions, collisions.

• Good hash functions for Integers, Strings.

• Keys need to be immutable.

• Collision resolution: Separate chaining.

• Load factor of a hash map.

• Skills: Given a hash function, perform insertions into a Seperate Chaining hashmap.
Compute load factor. Design a new hash function for your own classes. (Universal
hashing).

4


