
Data Structure in Java - Final Review

Daniel Bauer

December 6, 2015

This review sheet only lists topics covered after the midterm. Make sure to revisit the
midterm review sheet as well.

Priority Queues / Heaps

• Priotity Queue ADT including typical operations (insert, deleteMin).

• Implementation as a Heap:

– Storing a complete binary tree in an array. Calculating parent/child ad-
dresses.

– MinHeap vs. MaxHeap.

– Implementation of insert and delete using percolate up/down.

– Building a heap bottom-up in O(N).

• Algorithms that use Priority Queues

– Selecting the k-th largest element.

– Retaining the k-largest elements.

– HeapSort.

– Greedy algorithms (e.g. Dijkstra’s, Prim’s, Kruskal’s, Huffman Code...).

Sorting

• Comparison-based sorting (e.g. insertion sort) vs. count-based sorting (e.g. bucket
sort).

• Sorting algorithms. Need to know run time (worst/best/average), space require-
ments, stability.

– Insertion Sort.

– Heap Sort.

1



– Merge Sort: Top-down divide-and-conquer approach. Iterative bottom-up
version.

– Quick Sort. Median-of-Three pivot selection strategy.

• Bucket Sort & Radix Sort.

Graphs

• Basic concepts:

– Vertices, Edges. Adjacency relation.

– Directed vs. undirected graphs.

– Weighted vs. unweighted graphs.

– Paths. Simple paths.

– Cycles. Directed Acyclic Graphs (DAGs).

– Connectivity: Weak and Strong connectivity in directed graphs.

– Complete Graphs.

• Graph data structures

– Adjacency matrices vs. adjacency lists.

– Storing information in vertex objects vs. storing them in separate tables.

• Graph Traversals

– Depth First Search (DFS) using a Stack or recursion.

– Breadth First Search (BFS) using a Queue.

2



• Single source shortest paths

– BFS for unweighted graphs.

– Dijkstra’s for weighted graphs, using a Heap.

– Using backpointers to retrieve the shortest path.

– Effect of negative weight edges.

• Algorithms on DAGs

– Computing topological order.

– Critical path analysis on event-node graphs. Computing earliest completion
time.

• Spanning Trees

– Minimum spanning trees (MSTs).

– Prim’s algorithm.

– Kruskal’s algorithm.

– Hierarchical clustering using MSTs.

• Applications of DFS

– Definition of Euler Circuit/Path and Hamiltonian Circuit/Path.

– Conditions for Euler Circuits and Euler Paths.

– Repeated DFS to find Euler Circuits.

– Connectivity: Use DFS to determine if a graph is connected.

– Biconnectivity:

∗ Articulation points, biconnected components.

∗ DFS spanning trees with back-edges.

∗ Determining biconnected components using the DFS spanning tree.

– Strongly connected Components:

∗ Determine if a graph is strongly connected.

∗ Finding strongly connected components using a stack.

Types of algorithms

– Greedy algorithms:

∗ Usually using a heap.

∗ List example algorithms.

∗ Huffman code. Huffmans’ algorithm.

3



– Divide and Conquer:

∗ Divide problem into easier subproblems, solve subproblems (usually re-
cursively), then combine solutions.

∗ List example algorithms.

∗ Understand recurrence relation. Know what the Master Theorem is.

– Dynamic Programming:

∗ Basic concept: cache and re-use solutions to sub problems.

∗ List example algorithms.

∗ Solving the Coin-Change problem.

∗ Computing Edit Distance.

4


