CS 3101-2 - Programming Languages: Scala

Lecture 6: Actors and Concurrency

Daniel Bauer (bauer@cs.columbia.edu)

December 3, 2014

! Scala

(CS3101-2 Scala - 06 - Actors and Concurrency

/19

@ Actors and Concurrency

CS3101-2 Scala - 06 - Actors and Concurrency

Concurrency

@ Goal: run several computations at the same time to make better use

of resources.

» CPU and 10
» Multicore CPUs
» Cloud instances

@ Examples:
» Perform background computation while waiting for user or network 1/0.

» Speed up computation by splitting it over multiple CPU cores.
@ Pandora’s Box: Different branches of computation share resources

and need to communicate.

Concurrency - multiple processes vs. threading

@ Time sharing/scheduling in the operating system
» Multiple processes.
» IPC via sockets/pipes/signals.
@ Threading
» Multiple parallel threads within the same process
» Threads are automatically mapped to different CPUs by OS or VM.
» IPC via shared memory or messaging.
@ Generally, want to allow the developer to write concurrent programs
without having to think about the low-level mechanism.

CS3101-2 Scala - 06 - Actors and Concurrency 4/19

Problems with Concurrency

@ Shared resources (Files, 10)
@ Read and write access to shared data.

o Different threads communicate with each other. How?

(CS3101-2 Scala - 06 - Actors and Concurrency

Concurrency in Java

@ In Java threads communicate via shared data (multiple threads have
read/write access to the same object).
@ Threads are special objects (subclass of Thread or implementation of

Runnable).

(CS3101-2 Scala - 06 - Actors and Concurrency 6/19

Java Concurrency Example

@ Java uses Monitors:

\4

Blocks of code marked as synchronized

Only one thread can execute every synchronized block at a time.

Only one synchronized block can be executed in every object at a time.
This establishes a lock on the object’s attributes.

vV vy

public synchronized void atomic_add(int y) {
X = x+y;

}

(CS3101-2 Scala - 06 - Actors and Concurrency 7/19

Deadlocks: The Dining Philosophers’ Problem

Daniel Bauer

" Dining philosophers” by Benjamin D. Esham - License: CC-BY-SA 3.0 via Wikimedia-Commons

CS3101-2 Scala - 06 - Actors and Concurrency

()
=
©

Synchronization in Scala: The Actor Model

An actor is a self-contained branch of the program.

Actors share nothing with other actors. No locks required.
Instead actors communicate via message passing.
» Every actor has a mailbox (infinite message queue).
» Other actors can send messages (arbitrary Scala objects to the
mailbox).
» Actors consume messages in the order they arrive.

@ Scala now uses the actors in Akka.

(CS3101-2 Scala - 06 - Actors and Concurrency

Actors in Akka

@ Actors are objects that extend or mix-in the akka.actors.Actor
trait.

@ Actors have a method receive that handles incoming messages.

@ An ActorSystem is a hierarchical group of actors with a common
configuration, used to create new actors.

@ Props are configuration objects using when creating an actor.

import akka.actor.Actor

class HelloActor extends Actor {

def receive = {
case "ping" => println("pong")
case _ => println("huh?")
}

(CS3101-2 Scala - 06 - Actors and Concurrency

Creating Actors

@ An ActorSystem is a hierarchical group of actors with a common
configuration, used to create new actors.
@ Props are configuration objects using when creating an actor.

import akka.actor.{Actor, Props, ActorSystem}

class HelloActor extends Actor {

def receive = {
case "ping" => println("pong")
case _ => println("huh?")
}

scala> val system = ActorSystem("HelloSystem")
system: akka.actor.ActorSystem = akka://HelloSystem

scala> val props = Props(new HelloActor)

props: akka.actor.Props =

scala> val actorRef = system.actorOf (props)
actorRef: akka.actor.ActorRef =
Actor [akka://HelloSystem/user/$b#-1186551897]

(CS3101-2 Scala - 06 - Actors and Concurrency

Passing Messages with "I’

import akka.actor.{Actor, Props, ActorSystem}

class HelloActor extends Actor {
def receive = {
case "ping" => println("pong")
case => println("huh?")

scala> val system = ActorSystem("HelloSystem")
scala> val props = Props(new HelloActor)
scala> val actorRef = system.actor0f (props)
actorRef: akka.actor.ActorRef =

Actor [akka://HelloSystem/user/$b#-1186551897]

scala> actorRef ! "ping"
pong

(CS3101-2 Scala - 06 - Actors and Concurrency

Multiple Actors

import akka.actor.{Actor, ActorSystem, Props}

class HelloActor extends Actor {
def receive = {

case "ping" => {println(self.path.name);
Thread.sleep (1000);
println("pong")}

case _ => {println(self.path.name);
Thread.sleep (1000);
println("huh?")}

}
object HelloActor {

def main(args : Array[Stringl) {
val system = ActorSystem("HelloSystem")

val actorl = system.actorOf (Props(new HelloActor),
name = "actorl")

val actor2 = system.actor0f (Props(new HelloActor),
name = "actor2")

actorl ! "ping"

actor2 ! "test"

actorl ! "ping"

(CS3101-2 Scala - 06 - Actors and Concurrency

Asynchronous |/O

import akka.actor.{Actor, ActorSystem, Props}
import scala.io.StdIn.readLine

sealed abstract class Messages
case class Request(val prompt : String) extends Messages
case class Response(val response : String) extends Messages

class InputRequest extends Actor {
val printer = context.actor0f (Props[PromptDisplayl)
val reader = context.actorOf (Props[InputReader])

def receive = {
case Request (prompt) => {
// Waits for input
reader ! Request (prompt)
// Repeatedly prints the prompt
printer ! Request (prompt)

¥

case Response(resp) => {
println("Input was: "+resp)
context.system.shutdown ()

}

(CS3101-2 Scala - 06 - Actors and Concurrency

Asynchronous |/O

class InputReader extends Actor {
def receive = {
case Request(_) => {
val input = readline() // blocks
sender () ! Response (input)

class PromptDisplay extends Actor {
def receive = {
case Request (prompt) => {
println (prompt);
Thread.sleep (2000) ;
self ! Request (prompt);

Daniel Bauer

CS3101-2 Scala - 06 - Actors and Concurrency

15/19

Asking actors for values

Retrieve the result of some computation in a non-actor context.

import akka.pattern.ask

import akka.util.Timeout

import scala.concurrent.{Await,Future}
import scala.concurrent.duration._

class FancyActor extends Actor {

def receive = {
case Compute (input) => {
val result = ??7? // Do some fancy computation
sender ! result
}
}

object IoTest {
def main(args : Array[Stringl) {
val system = ActorSystem("System")
val actor = system.actorOf (Props[FancyActor])

// mneeded for ask
implicit val timeout = akka.util.Timeout(1.second)

val data = ??? // Some input data
val msg = Compute(data)

val future: Future[String] = ask(actor, msg).mapTo[String|]
implicit val ec = system.dispatcher
val result = Await.result(future, timeout.duration)

println(result)

(CS3101-2 Scala - 06 - Actors and Concurrency

Scala Futures

@ We can also use futures without actors!
e Often preferable for parallel computation (if there is no state).

val future =

27%*3

val result =

import scala.
import scala.
import scala.

concurrent. _
concurrent.duration. _
concurrent .ExecutionContext.Implicits.global

Future {

// some Fancy computation here

println ("Okay")

Await.result (future, 1.second)

println(result)

Daniel Bauer

CS3101-2 Scala - 06 - Actors and Concurrency

Futures for Parallel Computation

import scala.concurrent._
import scala.concurrent.duration._
import scala.concurrent.ExecutionContext.Implicits.global

val future = Future {
// some Fancy computation here
27%3

}

println("0Okay")
val result = Await.result(future, 1.second)
println(result)

(CS3101-2 Scala - 06 - Actors and Concurrency 18/19

Approximating Pi

import scala.concurrent._
import scala.concurrent.duration._
import scala.concurrent.ExecutionContext.Implicits.global

def calc(i: Int, nrOfElements: Int): Future[Double] =

Future {
val start = i *nrOfElements
var acc = 0.0

for (i <- start until (start + nrOfElements))
acc += 4.0 *x (1 - (i % 2) * 2) / (2 x i + 1)
println("branch "+i+" done")

acc

¥

val n = 10

val elements = 1000

val futures = for (i <- 0 until n) yield calc(i, elements)

val result = Future.fold(futures) (0.0)(_+_)
result.onSuccess {
case pi => println(pi)

(CS3101-2 Scala - 06 - Actors and Concurrency

	Actors and Concurrency

