
CS3101-2 Scala, Fall 2014: Problem Set 5

Daniel Bauer
Total points: 20

Due date: Nov 30, 11:59pm EST

Submission instructions:
Place the files for all problems in a directory named [your uni] week[X], where X is the number of
the problem set. For instance if your uni is xy1234 and you are submitting the problem set for the first
week, the directory should be called xy1234 week1. Either zip or tar and gzip the directory (using tar

-c xy1234 week1 | gzip > xy1234 week1.tgz) and upload it to your directory in the drop box for
this class on Courseworks.

Part 1 - Maps (8pts)

The package scala.collection 1 in the Scala standard library defines a number of data structures
that represent different collections of objects. So far we have seen List, Array, and Map. There are
usually two different versions for each collection, an immutable version (once an object is created it
cannot be changed) and a mutable version.

In this problem we will work with mutable Maps. We will discuss a solution with immutable Maps in
class. To make sure you use the right version of Map import

import scala.collection.mutable.Map

Assume we have the following Map:

val fruit_to_color: Map[String ,String] = Map("banana"->"yellow",

"blueberry"->"blue",

"cherry"->"red",

"lemon"->"yellow",

"kiwi"->"green")

In the file Part1.scala, write a function reverse[A,B](map: Map[A,B]): Map[B,List[A]] that
returns a Map that maps each value in the original map to a list of keys.

The function should behave as follow:

scala > reverse(fruit_to_color)

res0: scala.collection.mutable.Map[String ,List[String ]] =

Map(yellow -> List(lemon , banana), green -> List(kiwi),

red -> List(cherry), blue -> List(blueberry ))

Hints:

• Mutable maps have a method put(key, value) to add a (key,value) pair.

• Map is a trait. To create a new mutable Map you need to instantiate a concrete implementation
such as HashMap.

1http://www.scala-lang.org/api/2.11.1/index.html#scala.collection.package

http://www.scala-lang.org/api/2.11.1/index.html#scala.collection.package


Part 2 - Aquarium Simulator Revisited (12pt)

In this problem we will modify the Aquarum Simulator from Problem Set 2. You can base your solution
on your own code, or you can use the sample solution for Problem set 2 2.

In Problem 2, you added functionality (moving and eating) to the abstract class BaseFish by repeatedly
extending the class (first to Fish then to BaseFish). Other LifeForms in the aquarium should be able
to eat and move as well, so it makese sense to provide this functionality as traits.

(a) - 4 pts Refactor your classes for Fish and HungryFish in the following way. Move the eat and move

methods into their own traits Moving and Eating. Then mix in Moving into the definition of
Fish and Eating into the definition of HungryFish. HungryFish should still extend Fish. Note
that the Eating trait needs to extend LifeForm or AquariumElement.

(b) - 4 pts In Problem Set 2, the only purpose of the class BaseFish was to provide a default implementation
for the eat method required by the abstract class AquariumElement. Remove the declaration
for eat and move from AquariumElement and get rid of the BaseFish class. This won’t compile
because the Aquarium class’ attemptMove and handleCollision methods call eat and move

for any AquariumElement.

Modify the attemptMove to only call move on objects of type Moving. Use pattern matching for
the type checks (patterns can contain type restrictions). Modify handleCollision to only call
eat on objects of type
Eating.

(c) - 2pts Create a class Crab that supports both Eating and Moving and is represented by the symbol C.

(d) - 2pts Draw a class diagram indicating the inheritance relations between different AquariumElements.
Indicate mixins using dashed lines and class inheritance using solid lines.

2http://www.cs.columbia.edu/~bauer/cs3101-2/weeks/2/solution_week2.tgz

http://www.cs.columbia.edu/~bauer/cs3101-2/weeks/2/solution_week2.tgz

