
CS3101-2 Scala, Fall 2014: Problem Set 3

Daniel Bauer
Total points: 20

Due date: Nov 11, 11:59pm EST

Submission instructions:
Place the files for all problems in a directory named [your uni] week[X], where X is the number of
the problem set. For instance if your uni is xy1234 and you are submitting the problem set for the first
week, the directory should be called xy1234 week1. Either zip or tar and gzip the directory (using tar

-c xy1234 week1 | gzip > xy1234 week1.tgz) and upload it to your directory in the drop box for
this class on Courseworks.

Part 1 - Function Composition

Please save your solution to the following problem in a file named Part1.scala.

a. (3 pt) Composing functions: Given two functions f and g, the composition f after g is defined to be
the function h(x) = f(g(x)).

Define a Scala function compose(f: Int=>Int, g: Int=>Int): Int=>Int that implements
composition. For example, compose should behave like this:

scala > val square = (x : Int) => x*x

square: Int => Int = <function1 >

scala > val inc = (_ : Int) + 1

inc: Int => Int = <function1 >

scala > val squareinc = compose(square , inc)

squareinc: Int => Int = <function1 >

scala > squareinc (6)

49

b. (4 pt) Repeated application: Given a function f and a positive integer n, the n-th repeated application
of f is the function h(x) = f(f(· · · (f(x)) · · ·)). For example, the 2nd repeated application of
the function f(x) = x+ 1 is h(x) = f(f(x)) and h(2) = 3.

Define a Scala function repeat(f: Int=>Int, n: Int): Int=>Int that returns the n-th re-
peated application of f . For example:

scala > val square = (x: Int) => x*x

square: Int => Int = <function1 >

scala > val square4 = repeat(square , 4)

square4: Int => Int = <function1 >

scala > square4 (2)

res0 Int = 65536

Hint: It is convenient to use compose defined in part (a).



Part 2 - Object Oriented and Functional Programming

The file Part2.scala contains a class Tree that is used to represent simple binary trees. Tree is
an abstract class that has two concrete subclasses Node and Leaf. All Node instances contains the
attributes left and right, corresponding to the subtrees below this node. Leafs do not have any
subtrees. All Tree instance also have a content attribute of some generic type T. The companion
objects to Leaf and Node define apply methods that make it easy to construct binary trees like this:

val tree : Tree[String] =

Node("-",

Node("+",

Leaf("3"),

Node("*",

Leaf("5"),

Leaf("6"))),

Leaf("7"))

“-” 

“+” 

“3” “*” 

“5” “6” 

“7” 

A tree operation maps a Tree to some result. For instance, we would like to define a toString method
that produces the following string for the tree above.

scala > val s = tree.toString

s: String = (- (+ 3 (* 5 6)) 7)

In this problem we will define sevaral tree operations as methods of Tree, making use of a shared
functional abstraction. A general pattern underlying most tree operations is to traverse the tree depth
first. At each node t we recursively compute a result for each subtrees and then combine these results
with the content of t.

This pattern is implemented in the method traverse[A](proc node, proc leaf) which is defined for
Leafs and Nodes.

On Leaf instances traverse calls proc leaf, which is a method of type T=>A, where T is the type of
the content of the tree (in the example String) and A is the type of the result of the tree operation
(which is also String for the toString method).

On Node instances traverse calls proc node, which is a method of type (A,A,T)=>A. The three
parameters are 1) the result of recursively calling traverse on the left subtree 2) the result of calling
traverse on the right subtree and 3) the content of the current node.

Solve the following problems by passing appropriate proc leaf and proc node function objects to
traverse.

a. (4 pts) Preorder String Representation: Override the toString method on Tree to return a single
String as shown in the example.

b. (4 pts) List of leaf values: Define a leafs method on Tree that returns a list of all leafs in the correct
order. For instance, for the example tree above:

scala > tree.leafs

res2: List[String] = List(3, 5, 6, 7)

c. (5 pts) Evaluating Arithmetic Expressions: As shown in the example, binary tress can be used to



encode the order of operations of arithmetic expressions like (3+ (5 ∗ 6))− 7. Such trees are also
called Abstract Syntax Trees.

Define a method evaluate on Tree that evaluates the arithmetic expression encoded in the
tree. Assume that all nodes of the tree are Strings, but that they only describe integers or the
operators ”+”, ”-”, and ”*”. Hint: You can use the toInt method on String instances to parse
a String into an Int.


