
CS3010-2 Scala, Fall 2014: Problem Set 1

Daniel Bauer
Total points: 20

Due date: Oct 28, 11:59pm EST

Submission instructions:
Place the files for all problems in a directory named [your uni] week[X], where X is the number of
the problem set. For instance if your uni is xy1234 and you are submitting the problem set for the first
week, the directory should be called xy1234 week1. Either zip or tar and gzip the directory (using tar

-c xy1234 week1 | gzip > xy1234 week1.tgz) and upload it to your directory in the drop box for
this class on Courseworks.

It is often easier to experiment in the Scala REPL before writing your final solution into a file.

All .scala files in this problem set contains scripts that can be run directly using scala filename.scala.

Please pay attention to the general guidelines/homework policy on the course website.

Part 0 (0 points) - Setting up Scala

1. Make sure your computer has a Java runtime environment (version 1.6 or later). Open a terminal
(on Windows: open a command prompt) and type java -version. You should see something
like this:

$ j a v a −v e r s i o n
j a v a v e r s i o n ” 1 . 7 . 0 51 ”
Java (TM) SE Runtime Envi ronment (b u i l d 1 . 7 . 0 51−b13)
Java HotSpot (TM) 64−B i t S e r v e r VM (b u i l d 24.51−b03 , mixed mode)

If you do not have Java installed, you can download the Java SDK here: http://www.oracle.

com/technetwork/java/javase/downloads.

2. Install Scala:

• Download Scala 2.11 from http://scala-lang.org/download/.

• Unpack the archive into any directory (for instance, /usr/local/share/scala on your Mac
or C:\Progra~1\scala on Windows).

• Set the SCALA HOME environment variable to this directory. Then add the SCALA HOME/bin

subdirectory to your PATH environment variable 1.

• Test the installaton by opening a command line (or Windows command prompt) and running
scala -version. You should see something like this:

$ s c a l a −v e r s i o n
S c a l a code r u n n e r v e r s i o n 2 . 1 1 . 2 −− C o p y r i g h t 2002−2013 , LAMP/EPFL

1See http://environmentvariables.org/Getting_and_setting_environment_variables

http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads
http://scala-lang.org/download/
http://environmentvariables.org/Getting_and_setting_environment_variables

Part 1 (8 points) - Longest Collatz Sequence

Using the function collatz in the file Collatz.scala (available on the course website), write another
function longest collatz, that takes an integer n as its parameter and return the positive integer
m, m ≤ n for which collatz needs the largest number of steps. Add your function to the file
Collatz.scala.

Answer the following questions as comments at the end of Collatz.scala:

• Which number m, m ≤ 1000, produces the longest Collatz sequence? How many steps are in the
sequence?

• For very large n (e.g. n = 1, 000, 000) the naive implementation of longest collatz becomes
very slow. Why? Describe in words how you could improve the function to terminate faster (you
do not have to implement a better solution. The naive one is fine).

Part 2 (8 points) - Lists

(a) Write a function rotate that takes a List of integers and returns a new List that has been
”rotated” left.

For instance:

s c a l a > v a l x = r o t a t e (1 : : 2 : : 3 : : 4 : : 5 : : N i l)
x : L i s t [I n t] = L i s t (2 , 3 , 4 , 5 , 1)

s c a l a > r o t a t e (x)
r e s 1 : L i s t [I n t] = L i s t (3 , 4 , 5 , 1 , 2)

Hint:

• Lists have a method head, that returns the first element of the list. E.g:

s c a l a > L i s t (4 2 , 2 3 , 5) . head
r e s 0 : I n t = 42

• Lists also have a method tail that returns a List (of the same type) containing all elements
except for the first one. E.g:

s c a l a > L i s t (4 2 , 2 3 , 5) . t a i l
r e s 1 : L i s t [I n t] = L i s t (2 3 , 5)

(b) write a recursive function rotate n, that takes a List of integers and an integer n as parameters,
and rotates the list n times.

Add your code to the file Rotate.scala, which is available on the course website.

Part 3 (4 points) - Types

Briefly describe a situation in which the following code would make sense (and would not return an
exception).

s c a l a > x = y = 1

Hint: Think of the variable types.

Submit your explanation in a separate file called part3.txt.

