
CS3101-1 Python, Fall 2014: Optional make-up problems

Daniel Bauer
Total points: 12

Due date: Sun, Oct 26th 23:59pm

This is a set of voluntary make-up problems that you can complete to earn back points lost in previous
homework problems. You can decide to work on none, one, or both of the problems. As usual, please
submit your solutions to your Drop Box on Courseworks.

Part 1 (6 points) - schoenfinkeled decorator

Write a function decorator that allows to Schönfinkel a function1. Schönfinkeling is a transformation
that modifies a function with n parameters so that it can be called as a chain of n functions each taking
a single parameter.

For instance,

@ s c h o e n f i n k e l e d
d e f sumthree ( a , b , c ) :

r e t u r n a + b + c

would define a function with the following behavior:

>>> sumthree ( 1 , 2 , 3 )
Traceback ( most r e c e n t c a l l l a s t ) :

F i l e ”< s t d i n >”, l i n e 1 , i n <module>
TypeError : new fun ( ) t a k e s e x a c t l y 1 argument (3 g i v e n )
>>> sumtwo = sumthree ( 1 )
>>> sumone = sumtwo ( 2 )
>>> sumone ( 3 )
6

or simply

>>> sumthree ( 1 ) ( 2 ) ( 3 )
6

Here are some hints:

• Instead of explicitly checking if a function accepts only a single argument, you can handle the
TypeException that is raised when you try to call the function with the wrong number of
arguments.

• Your modified function should return another function (with n− 1 arguments), to which you can
apply the Schoenfinkel operation recursively.

1Named after the Russian logician Moses Schönfinkel (1889-1942). This technique is also called Currying after the
American logician Haskell Curry (1900-1982) who rediscovered it later.



Part 2 (6 points) - Rock, Paper, Scissors Revisited

In this problem we develop an artificial intelligence for the Rock, Paper, Scissors game from problem
set 4. You can base this extension on your own code, or use the sample solution on the course website.

The AI keeps a limited history of previous gestures (its own and its opponent’s) and uses this information
to predict the opponent’s behavior. It assumes that its opponents gesture at time t depends entirely on
the pair of gestures shown at time t− 1.

(a) Create a new class AiPlayer that uses Player as a base class. Add a new method learn(gesture)

to Player which is used to communicate an opponents last gesture. For the standard Player, this
method does nothing. Change the game main() function to use AiPlayer and to communicate
moves to both players.

(b) Override the learn method and the play method in AiPlayer to keep track of previous gestures
played in the last two turns.

AiPlayer instances should keep a table, mapping a pair of gestures at time t− 1 to a mapping
from the opponents gesture at time t to a frequency count (i.e. how often the opponent played
this gesture following the pair of gestures at t − 1). For instance, the dictionary structure could
look like this:

Moves at time t-1
(Self, Opponent)

(r,r)
(r,p)
(r,s)
(p,r)
(p,p)
(p,s)
(s,r)
(s,p)
(s,s)

'r'
'p'
's'

'r'
'p'
's'

...

Opponent's
move at 
time t

0
2
0

2

1
2

(c) Modify the play method to use the table from part (b) to select a gesture. Assume the opponent
will play the gesture he used most often following the gestures in the previous turn. Then choose
the gesture that would defeat him. If the table does not contain a pair of moves yet, choose a
random gesture.

(d) Extra credit for any improvements to the AI’s strategy.


