
Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

CS 3101-1 - Programming Languages: Python
Lecture 1: Introduction / Python Basics

Daniel Bauer (bauer@cs.columbia.edu)

September 10, 2014

Daniel Bauer CS3101-1 Python - 01-Basics 1/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Course Outline

I Lectures:

Wed 10:10am-12:00pm, 9/10 to 10/15 (6-weeks)

I Instructor:
I Daniel Bauer (bauer@cs.columbia.edu)
I Office hours: Thu 10:00am-12:00pm, CEPSR/Shapiro 7LW3

(SpeechLab)

I TA:
I Shubhanshu Yadav (sy2511@columbia.edu)
I Office hours: TBD

I Course website (lecture slides, homework):

http://www.cs.columbia.edu/~bauer/cs3101-01

Daniel Bauer CS3101-1 Python - 01-Basics 2/66

http://www.cs.columbia.edu/~bauer/cs3101-01

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Contents

Course Description

About Python

Using Python

Data Types and Variables

Control Flow

Container types

Daniel Bauer CS3101-1 Python - 01-Basics 3/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Course Description

About Python

Using Python

Data Types and Variables

Control Flow

Container types

Daniel Bauer CS3101-1 Python - 01-Basics 4/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Syllabus

Today Introduction. Python Overview. Basic data types. Control Flow.
Tuples. Lists. Dictionaries. Sets.

Sep 17 Strings. Files. I/O. Functions.
Lambda expressions. Generators.

Sep 24 More Functions. Object oriented Python: Classes, Objects,
Methods, Attributes. Modules and Packages.

Oct 1 Standard Library: sys, os/os.path, collections, pickling.
Error Handling, Exceptions.

Oct 8 Regular Expressions. Decorators. Debugging, Unit Testing.
Oct 15 Selected Topics: TBD (numpy/scipy? Web devevopment?)

Daniel Bauer CS3101-1 Python - 01-Basics 5/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Grading / Deliverables

I Class Participation: 10%

I 5 Homeworks: 50%
I Due following week before class. No late submissions!
I Small programming tasks.

I Project proposal: 5%

I Final-project: 35 %
I Dive deeper into specific topics (e.g. third party libraries) that

are useful/interesting to you.
I Collect experiences with real-world Python.

Daniel Bauer CS3101-1 Python - 01-Basics 6/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Textbooks

I No official textbook.

I Some recommendations:

Mark Lutz: Programming
Python (standard textbook)

Alex Martelli:
Python Cookbook

I More recommendations on course website.

Daniel Bauer CS3101-1 Python - 01-Basics 7/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Online Materials

I Lots of good, up-to-date online material, searchable.
I Official Python documentation (2.7 and 3)

http://docs.python.org/

I Official Python tutorial.
http://docs.python.org/tutorial/

I Online Python Cookbook.
http://code.activestate.com/recipes/langs/python/

I Mark Pilgrim, Dive into Python 3.
http://diveintopython3.ep.io/

Daniel Bauer CS3101-1 Python - 01-Basics 8/66

http://docs.python.org/
http://docs.python.org/tutorial/
http://code.activestate.com/recipes/langs/python/
http://diveintopython3.ep.io/

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Course Description

About Python

Using Python

Data Types and Variables

Control Flow

Container types

Daniel Bauer CS3101-1 Python - 01-Basics 9/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

http://xkcd.org/353/ - import antigravity

Daniel Bauer CS3101-1 Python - 01-Basics 10/66

http://xkcd.org/353/

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

What is Python

I Versatile, interpreted, high-level, dynamic, programming
language.

I Multi paradigm: simple procedural programming,
object-orientation and functional programming.

I Popular in science, open source community, web development.

I Scales well to different applications.

I Great developer community.
I Easy to get help.
I Lots of available modules.

Daniel Bauer CS3101-1 Python - 01-Basics 11/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Python Design Goals (1)

I Easy to learn and use:
I automatic memory management.
I high-level built in data structures.
I batteries included: Large standard library.

I Readability:
I intuitive syntax
I minimal boilerplate.

I Dynamic Behavior:
I interpreted language.
I dynamic typing.
I introspection.

Daniel Bauer CS3101-1 Python - 01-Basics 12/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Python Design Goals (2)

I Portable language:
I Different interpreters for many platforms: CPython, Jython,

IronPython, PyPy.

I Extensibility:
I Reusable code: Modules and Packages.
I All of Python is open source.
I Easy to write new modules in C.

Daniel Bauer CS3101-1 Python - 01-Basics 13/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Python Can Increase Productivity

“ Anecdotal evidence has it that one Python programmer can
finish in two months what two C++ programmers can’t complete
in a year”[Guido van Rossum, ‘Comparing Python to Other Languages’, 1997 (online)]

I Interpreted Language: No compilation step.
I Debugging is easy:

I introspection abilities (state of the interpreter is accessible
during program runtime).

I read-eval-print loop (REPL).
I elaborate error handling system.

I Faster development times due to more compact code.
I typically 3-5 times shorter than Java code.
I typically 5-10 times shorter than C++ code.

Daniel Bauer CS3101-1 Python - 01-Basics 14/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Python Can Increase Productivity

“ Anecdotal evidence has it that one Python programmer can
finish in two months what two C++ programmers can’t complete
in a year”[Guido van Rossum, ‘Comparing Python to Other Languages’, 1997 (online)]

I Interpreted Language: No compilation step.
I Debugging is easy:

I introspection abilities (state of the interpreter is accessible
during program runtime).

I read-eval-print loop (REPL).
I elaborate error handling system.

I Faster development times due to more compact code.
I typically 3-5 times shorter than Java code.
I typically 5-10 times shorter than C++ code.

Daniel Bauer CS3101-1 Python - 01-Basics 14/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Criticism and Misconceptions

I “Python is a scripting language”

I False. Python has been used as a scripting language, but it is
also used to develop large stand-alone applications.

I “Python is interpreted, thus slower than running native code”

I True, but
I Most code is not CPU bound, efficiency doesn’t matter.
I Python can be used to ‘glue’ together native modules.
I Libraries are often very efficient.

I “Whitespaces are ugly.”

I You’ll get used to it.

I “Dynamic typing is unsafe.”

I Python is strongly typed and well behaved. It can deal with
type errors at runtime.

Daniel Bauer CS3101-1 Python - 01-Basics 15/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Criticism and Misconceptions

I “Python is a scripting language”

I False. Python has been used as a scripting language, but it is
also used to develop large stand-alone applications.

I “Python is interpreted, thus slower than running native code”

I True, but
I Most code is not CPU bound, efficiency doesn’t matter.
I Python can be used to ‘glue’ together native modules.
I Libraries are often very efficient.

I “Whitespaces are ugly.”

I You’ll get used to it.

I “Dynamic typing is unsafe.”

I Python is strongly typed and well behaved. It can deal with
type errors at runtime.

Daniel Bauer CS3101-1 Python - 01-Basics 15/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Criticism and Misconceptions

I “Python is a scripting language”

I False. Python has been used as a scripting language, but it is
also used to develop large stand-alone applications.

I “Python is interpreted, thus slower than running native code”

I True, but
I Most code is not CPU bound, efficiency doesn’t matter.
I Python can be used to ‘glue’ together native modules.
I Libraries are often very efficient.

I “Whitespaces are ugly.”

I You’ll get used to it.

I “Dynamic typing is unsafe.”

I Python is strongly typed and well behaved. It can deal with
type errors at runtime.

Daniel Bauer CS3101-1 Python - 01-Basics 15/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Criticism and Misconceptions

I “Python is a scripting language”

I False. Python has been used as a scripting language, but it is
also used to develop large stand-alone applications.

I “Python is interpreted, thus slower than running native code”

I True, but
I Most code is not CPU bound, efficiency doesn’t matter.
I Python can be used to ‘glue’ together native modules.
I Libraries are often very efficient.

I “Whitespaces are ugly.”

I You’ll get used to it.

I “Dynamic typing is unsafe.”

I Python is strongly typed and well behaved. It can deal with
type errors at runtime.

Daniel Bauer CS3101-1 Python - 01-Basics 15/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Use Cases

I Application development.
I (from small command line tools, to large GUI based

applications and 3D games).

I Web development.

I (Yelp, YouTube, Reddit, WordsEye, ...)

I Easy to use scripting language.

I (Emacs, OpenOffice, Blender, various games, ...)

I Scientific/numeric computing.

I (machine learning, physics, bioinformatics, NLP,...)

Daniel Bauer CS3101-1 Python - 01-Basics 16/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

When Not to Use Python

I When implementing low-level routines of CPU bound
programs.

I In large multi-threaded applications
I bad multithreading support.
I parallelization is well supported.

I In large collaborative projects?
I Problem of dynamic typing.
I Needs good documentation / workflow.

Daniel Bauer CS3101-1 Python - 01-Basics 17/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Python Versions

I Two branches:
I Python 2

I Current and ultimate release: 2.7

I Python 3
I Current release: 3.4.1
I Some major changes and clean-ups
I Not backward compatible (cannot execute 2.x code)
I Ongoing development

I Many important packages not (yet) ported to Python 3.

I 2to3 tool exists, but does not always work correctly.

I This course: Python 3 (some differences to Python 2.7
pointed out).

Daniel Bauer CS3101-1 Python - 01-Basics 18/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Course Description

About Python

Using Python

Data Types and Variables

Control Flow

Container types

Daniel Bauer CS3101-1 Python - 01-Basics 19/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Installing Python

I Debian, Ubuntu, etc.

$sudo apt -get install python3

I OS X MacPorts

$sudo port install python34

I OS X, Windows
I Download installer for 3.4.1 at

https://www.python.org/downloads/.

Daniel Bauer CS3101-1 Python - 01-Basics 20/66

h

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Running Python in Interactive Mode
Python interpreter can be run in an interactive session mode.

I Built-in ‘Read/Evaluate/Print-Loop’ (REPL)

I Python statements are evaluated and the result is printed to
the user.

$ python3 .4

Python 3.4.1 (default , May 21 2014, 01:39:38)

[GCC 4.2.1 Compatible Apple LLVM 5.1 (clang

-503.0.40)] on darwin

Type "help", "copyright", "credits" or "license"

for more information.

>>>

>>> print(’Hello world!’)

Hello world!

>>> 7*6

42

I Improved Python shells: IDLE shell, bpython, IPython

Daniel Bauer CS3101-1 Python - 01-Basics 21/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Executing Python Programs on the Command Line

The program ‘hello.py’

def main():

""" Greet the user and tell him the answer to life ,

the universe and everything."""

print(’Hello world!’) # Be friendly.

print (7*6)

if __name__ ==’__main__ ’:

main()

can be run by passing the filename to the python interpreter:

$ python hello.py

Hello world!

42

Daniel Bauer CS3101-1 Python - 01-Basics 22/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Python IDEs / Editors

IDLE (shipped with Python)
Eclipse (pyDev)
Komodo Edit
Emacs
Vim
Nano
Jedit
Sublime Text
...

I support syntax highlighting, auto-completion

I some support: integrated debugging and profiling.

I this class: enough to use any text editor and command line
tools.

Daniel Bauer CS3101-1 Python - 01-Basics 23/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Elementary Python Syntax - Whitespaces and Blocks

Indentation level and linebreaks are syntactically relevant!

I Single most hated Python feature.

I Actually useful: enforces readable code.

Python

while x==1:

....if y:

........ f1()

....f2()

C/C++/Java...

while (x==1) {

if (y) { f1();}

f2();

}

Warning: Never mix tabstops and whitespaces!

I Do not use tabs at all (outside of strings).
I Set your editor/IDE to fill tabs with white spaces

automatically.
I Recommendation: 4 spaces per indent level.

Daniel Bauer CS3101-1 Python - 01-Basics 24/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Elementary Python Syntax - Whitespaces and Blocks

Indentation level and linebreaks are syntactically relevant!

I Single most hated Python feature.

I Actually useful: enforces readable code.

Python

while x==1:

....if y:

........ f1()

....f2()

C/C++/Java...

while (x==1) {

if (y) { f1();}

f2();

}

Warning: Never mix tabstops and whitespaces!

I Do not use tabs at all (outside of strings).
I Set your editor/IDE to fill tabs with white spaces

automatically.
I Recommendation: 4 spaces per indent level.

Daniel Bauer CS3101-1 Python - 01-Basics 24/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Elementary Python Syntax - Linebreaks

I Compiler ignores blank lines.
I Indentation level only counts after finished lines.

I if open (, {, or [has not been closed, the next line is joined
automatically.

I can join lines manually with the \ symbol for readability.
I sometimes needed with very long lines.

a statement spanning multiple lines

cheeselist = [’cheddar ’,’camembert ’,’swiss’,

’mozarella ’]

use \ to join lines

cheeselist = [’cheddar ’,’camembert ’,’swiss’, \

’mozarella ’]

Daniel Bauer CS3101-1 Python - 01-Basics 25/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Elementary Python Syntax - Comments

I Single line comments with # at the end of a line.

Print some informative messages.

print(’Hello world!’) # Be friendly.

I ‘Docstrings’ at the beginning of function, method, class
definitions and modules.

I Are interpreted! Use sparingly!
I Tripple ” surround multi-line strings.
I Used for documentation (later).

def pythagoras(leg_a ,leg_b):

""" Compute the length of the hypotenuse opposite

of the right angle between leg_a and leg_b."""

return math.sqrt(leg_a **2 + leg_b **2)

Daniel Bauer CS3101-1 Python - 01-Basics 26/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Elementary Python Syntax - Comments

I Single line comments with # at the end of a line.

Print some informative messages.

print(’Hello world!’) # Be friendly.

I ‘Docstrings’ at the beginning of function, method, class
definitions and modules.

I Are interpreted! Use sparingly!
I Tripple ” surround multi-line strings.
I Used for documentation (later).

def pythagoras(leg_a ,leg_b):

""" Compute the length of the hypotenuse opposite

of the right angle between leg_a and leg_b."""

return math.sqrt(leg_a **2 + leg_b **2)

Daniel Bauer CS3101-1 Python - 01-Basics 26/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Code Style - Best Practices

I Do not use semicolons ; they are legal, but unnessecary.

I Limit lines to 79 characters.

I Python is case-sensitive:
I All keywords are lower case.
I Classnames should be written in CamelCase
I Everything else (variables, function, modules...) should be

lowercase with underscore.

I Some others (see PEP 8).

Daniel Bauer CS3101-1 Python - 01-Basics 27/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Course Description

About Python

Using Python

Data Types and Variables

Control Flow

Container types

Daniel Bauer CS3101-1 Python - 01-Basics 28/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Variables and Assignments
I Evaluate expression on the right hand side of = and assign to

it the variable (name) on the left hand side.
I No declaration for variables needed.

>>> answer = 6*7

>>> answer

42

>>> answer += 5 # Shortcut += -= *= /=

>>> answer

47

I Multiple assignments in one line possible.

>>> a, b = 2, 3

>>> a, b = b, a # Swap variables

>>> a

3

>>> b

2

Daniel Bauer CS3101-1 Python - 01-Basics 29/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Python Data Types - Built-In Types

I Elementary types
I NoneType: None
I bool: True, False
I (Numeric) int: 42, long, float: 3.14, complex: (0.3+2j)

I Container types
I str: ’Hello’
I list: [1, 2, 3]
I tuple: (1, 2, 3)
I dict: {’A’:1, ’B’:2}
I set: {1, 2, 3}

I file

I function, class, instance ...

I In Python everything is an object and every object has a type.

Daniel Bauer CS3101-1 Python - 01-Basics 30/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Python uses Dynamic Typing

I Type checks (making sure variables have the correct type for
an operation) performed at runtime.

I No need to declare variable types.

I Can get type of an object with ‘type(variable)’

>>> answer = 6*7

>>> answer = ’fortytwo ’ # create a new string object

... # and let answer point to it.

>>> answer

’fortytwo ’

>>> type(answer)

<type ’str’>

Daniel Bauer CS3101-1 Python - 01-Basics 31/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Variables are Names

Objects never change their types, but variables can be names
for different objects during runtime.

object 4492177288, int 42

object 4492151283, float 123.1

object 4494000936, str "fourtytwo"

a

variables objects in memory

b

c

object 4492177288, int 42

object 4492151283, float 123.1

object 4494000936, str "fourtytwo"

a

variables objects in memory

b

c

object 4492177288, int 42

object 4492151283, float 123.1

object 4494000936, str "fourtytwo"

a

variables objects in memory

b

c

object 4492177288, int 42

object 4494000936, str "fourtytwo"

a

variables objects in memory

b

c

>>> a,b = b,a

>>> c=None

Garbage collector removes unreferenced object.

Daniel Bauer CS3101-1 Python - 01-Basics 32/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Variables are Names

Objects never change their types, but variables can be names
for different objects during runtime.

object 4492177288, int 42

object 4492151283, float 123.1

object 4494000936, str "fourtytwo"

a

variables objects in memory

b

c

object 4492177288, int 42

object 4492151283, float 123.1

object 4494000936, str "fourtytwo"

a

variables objects in memory

b

c

object 4492177288, int 42

object 4492151283, float 123.1

object 4494000936, str "fourtytwo"

a

variables objects in memory

b

c

object 4492177288, int 42

object 4494000936, str "fourtytwo"

a

variables objects in memory

b

c

>>> a,b = b,a

>>> c=None

Garbage collector removes unreferenced object.

Daniel Bauer CS3101-1 Python - 01-Basics 32/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Variables are Names

Objects never change their types, but variables can be names
for different objects during runtime.

object 4492177288, int 42

object 4492151283, float 123.1

object 4494000936, str "fourtytwo"

a

variables objects in memory

b

c

object 4492177288, int 42

object 4492151283, float 123.1

object 4494000936, str "fourtytwo"

a

variables objects in memory

b

c

object 4492177288, int 42

object 4492151283, float 123.1

object 4494000936, str "fourtytwo"

a

variables objects in memory

b

c

object 4492177288, int 42

object 4494000936, str "fourtytwo"

a

variables objects in memory

b

c

>>> a,b = b,a

>>> c=None

Garbage collector removes unreferenced object.

Daniel Bauer CS3101-1 Python - 01-Basics 32/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Variables are Names

Objects never change their types, but variables can be names
for different objects during runtime.

object 4492177288, int 42

object 4492151283, float 123.1

object 4494000936, str "fourtytwo"

a

variables objects in memory

b

c

object 4492177288, int 42

object 4492151283, float 123.1

object 4494000936, str "fourtytwo"

a

variables objects in memory

b

c

object 4492177288, int 42

object 4492151283, float 123.1

object 4494000936, str "fourtytwo"

a

variables objects in memory

b

c

object 4492177288, int 42

object 4494000936, str "fourtytwo"

a

variables objects in memory

b

c

>>> a,b = b,a

>>> c=None

Garbage collector removes unreferenced object.

Daniel Bauer CS3101-1 Python - 01-Basics 32/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Python uses Strong Typing

I Operations may expect operands of certain types.

I Interpreter throws an exception if type is invalid.

>>> a = 1

>>> b = ’Python ’

>>> a + b

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

TypeError: unsupported operand type(s) for +: ’int’

and ’str’

Daniel Bauer CS3101-1 Python - 01-Basics 33/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Mutability

Python has mutable and immutable objects, based on data type.

I Mutable objects (lists, dictionaries, sets) can be modified.

>>> cats = [’felix ’,’dinah ’, ’lucky ’, ’spot’]

>>> cats.append(’garfield ’) # Add an element to

>>> # the list object

>>> cats

[’felix ’,’dinah ’,’lucky’,’spot’,’garfield ’]

I Immutable objects (boolean, numbers, strings, tuples) cannot
be changed once they are initialized.

>>> felix = ’Felix ’

>>> felix = ’Felix ’+’ the cat.’ # Create a new

>>> # string object.

Daniel Bauer CS3101-1 Python - 01-Basics 34/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Testing for Equality

I The == operation tests for value equality.

I Works for all objects (objects of different type compare to
False).

>>> a = [1, 2, 3]

>>> b = [1, 2, 3]

>>> a == b

True

>>> c = 1

>>> d = ’1’

>>> c == d

False

I The ‘is’ operator tests for object equality (i.e. if two variables
are names for the same object).

>>> a is b

False

>>> a is None

False

Daniel Bauer CS3101-1 Python - 01-Basics 35/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Comparators

I All comparator operations work for all objects:
I Value equality: ==, !=, <, <=, >, >=
I Object equality: is not

I These operations return an object of type bool (either True or
False)

I Can chain operations (expression is true if all pairs are true).

>>> a, b = 5, 7

>>> a >= 6

False

>>> a < b <= 7 # Chained comparisons

True

Daniel Bauer CS3101-1 Python - 01-Basics 36/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

More Boolean Expressions

I Primitive literals True and False and result of comparator
operations can be combined with boolean operations:

I not x
I x and y
I x or y

>>> a = 3

>>> False or (a == 3)

True

>>> # () optional if priority is clear

>>> a > 0 and not False

True

Daniel Bauer CS3101-1 Python - 01-Basics 37/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Some Operations on Numbers
I Binary: x + y, x - y, x * y, x / y,

power x ** y, modulo x % y
I Unary: -x, +x
I Absolute value: abs(x), Convert to integer: int(x),

Convert to float: float(x)

>>> x = -2 ** 4 - 4

>>> abs(x) # absolute value

20

>>> 20 / 3 # integer division

6

>>> 20 % 3 # modulo (remainder)

2

>>> float (20) / 3 # convert to float

6.666666666666667

I Can also convert (parse) strings.

>>> 5 + float(’23.5’)

>>> 28.5

Daniel Bauer CS3101-1 Python - 01-Basics 38/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

String/Integer Interning
>>> a = "hi"

>>> a is "h"+"i"

True

>>> b = "h"

>>> a is b+"i"

False

I This is a property of the cPython implementation:
I Strings (and integers) are usually ’interned’ (only one copy is

kept in memory).
I This speeds up string comparisons internally.
I Can force interning explicitly:

>>> a is intern(b+"i")

True

I Once two strings have been created they will always be the
same (strings are immutable).

I Thus it is unimportant if they are the same object or not.
I Strings (and integers) should never be compared using is.

Use ==.

Daniel Bauer CS3101-1 Python - 01-Basics 39/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Course Description

About Python

Using Python

Data Types and Variables

Control Flow

Container types

Daniel Bauer CS3101-1 Python - 01-Basics 40/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Conditionals: if Statements

I If one if or elif matches
the indented block
statement is executed.
Remaining conditions are
ignored.

I elif and else are optional.

I If no if or elif matches,
the indented block
statement below else is
executed.

I There is no switch

statement in Python.

if conditionExp1:

statement1

...

elif conditionExp2:

statement2

...

elif confitionExp3:

statement3

...

...

else:

statement4

Daniel Bauer CS3101-1 Python - 01-Basics 41/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Expressions in if and elif Conditions
Can use any expression as a condition (‘in boolean context’)

I int 0, None, empty string/list/tuple/dictionary/set → False
I any other object → True
I Boolean operations involving booleans and other objects.

print(’type a number between 1 and 10!’)

n = int(input()) # Read a number

if not n:

print(’Error: n was 0.’)

elif n < 0:

print(’Error: n is negative.’)

elif n == 1 or n == 2 or n == 3:

print(’n is prime.’)

else:

if n % 2 == 0 or n % 3 == 0:

print(’n is not prime.’)

else:

print(’n is prime.’)

Daniel Bauer CS3101-1 Python - 01-Basics 42/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Conditional Expressions / Ternary Operator

I if statements are often used to compute a value, depending
on some condition.

I Need to store result in a variable and use additional lines.

I Concise way to write a conditional expression.

resultExp1 if conditionExp1 else resultExp2

>>> n = -1

>>> if n < 0:

... result = n + 1

... else:

... result = n - 1

>>> result

0

>>> # As conditional expression:

... n + 1 if n < 0 else n -1

0

Daniel Bauer CS3101-1 Python - 01-Basics 43/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Loops: while Statements

Execute the indented statements
repeatedly while conditionExp

evaluates to True.

while conditionExp:

statement

...

count = 0

while x > 0:

x = x / 2

count += 1

print(’approximate log2:’)

print(count)

Daniel Bauer CS3101-1 Python - 01-Basics 44/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

continue and break

‘continue’ interrupts the current
iteration of the loop and
continues at the next iteration.

>>> x = 5

>>> while x:

... x -= 1

... if not x % 2:

... continue

... print(x)

...

3

1

>>>

‘break’ interrupts the complete
loop and continues execution
below the loop.

>>> x = 10

>>> while True:

... print(x)

... x -= 1

... if x == 7:

... break

...

10

9

8

>>>

Daniel Bauer CS3101-1 Python - 01-Basics 45/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Course Description

About Python

Using Python

Data Types and Variables

Control Flow

Container types

Daniel Bauer CS3101-1 Python - 01-Basics 46/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Sequence Types

I Container objects that contain ordered sequences of elements:

I String (a sequence of encoded characters) / Unicode.

x = ’Read me! I’m a string!’

I list (mutable sequence of objects)

x = [4, 8, 15, 16, 23, 42]

I tuple (immutable sequence of objects)

x = (1.0, ’foo’, (1,2,3))

I All sequence types support some common operations:
I Get length. Concatenation and repetition.
I Test for membership.
I Access specific elements and ‘slicing’.
I Iterate through elements.

Daniel Bauer CS3101-1 Python - 01-Basics 47/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Length of a Sequence / Concatenation and Repetition
I len(x) returns the length of sequence x.

>>> x = [] # Empty list

>>> len(x)

0

>>> Number of characters in string

... len(’supercalifragilisticexpialidocious ’)

34

I x + y concatenates sequences x and y.
I x and y need to have the same type.

>>> ’Hello ’ + ’World ’

’HelloWorld ’

I x * n or n * x repeats sequence x n times.

>>> 3 * (’A’,) # Single element tuple

(’A’, ’A’, ’A’)

Daniel Bauer CS3101-1 Python - 01-Basics 48/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Testing for Sequence Membership

I x in y returns True if collection y contains object x, False
otherwise.

I Based on value equality (==).
I x not in y is equivalent to not x in y

>>> ’coffee ’ in [’tea’, ’coffee ’, ’juice ’]

True

I For strings only:
I in also tests if x is a substring of y

>>> ’tuna’ in fortunate

True

Daniel Bauer CS3101-1 Python - 01-Basics 49/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Finding Index and Counting Elements

I x.count(y) returns the number of times y occurs in x.

>>> ’banana ’.count(’a’)

3

>>> ’banana ’.count(’an’) # also works for

substrings

I x.index(y) returns the sequence index of the first
occurrence of y.

>>> (23, 5, 8, 5).index (5)

1

Daniel Bauer CS3101-1 Python - 01-Basics 50/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Sequence Indexing

I x[i] indexes the i’th element of sequence x (starting from 0).

>>> x = ((1, 2, 3), ’foo’, 1.0)

>>> x[1]

’foo’

>>> x[0][2] # nested indexing

3

I reverse indexing starts at -1.

>>> x = ((1, 2, 3), ’foo’, 1.0)

>>> x[-1]

1.0

Daniel Bauer CS3101-1 Python - 01-Basics 51/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Sequence Slicing

I Slicing returns a copy of a subsequence.

I x[i:j] returns the subsequence from position i (inclusive) to
position j (exclusive).

I x[i:] returns the subsequence from position i (inclusive) to
the end.

I x[:j] returns the subsequence from the beginning to position
j (exclusive).

>>> x = [0,1,2,3,4]

>>> x[1:]

[1,2,3,4]

>>> x[:-2] # can use reverse indexing

... # in slice indices

[0,1,2]

>>> x[2:3]

[2]

Daniel Bauer CS3101-1 Python - 01-Basics 52/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Iterating Through Sequences

Sequence data types implement the iterator protocol.

I Iterate through all elements
of the sequence.

I Execute the statement with
x bound to the current
element.

for x in iterator:

statement1

...

>>> for x in [1,2,3,4,5]:

... if x % 2 == 0:

... print(x)

...

2

4

I Can use break and continue in for loops.

Daniel Bauer CS3101-1 Python - 01-Basics 53/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

range

I range(i) produces an iterator of integers from 0 to i

(exclusive).

>>> range (10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

I range(i,j) produces an iterator over integers from i

(inclusive) to j (exclusive).

>>> range (-3,4) # Can use negative indices

[-3, -2, -1, 0, 1, 2, 3]

I range(i,j,s) produces an iterator over integers from i

(inclusive) to j (exclusive) in steps of s.

>>> range (10,1,-2) # Can use negative steps

[10, 8, 6, 4, 2]

Daniel Bauer CS3101-1 Python - 01-Basics 54/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

List Comprehension

I Perform some operation on each element of an iterator and
get a new list.

[expr1 for x in sequence if condition]

>>> [x for x in range (10) if x % 2 == 0]

[0, 2, 4, 6, 8]

>>> [2 ** x for x in range (8)] # if is optional

1, 2, 4, 8, 16, 32, 64, 128

I Can use multiple for statements (e.g. compute all pairs)

>>> # Compute all pairs

... [(a,b) for a in range (1,3) for b in [’a’,’b’]]

[(1, ’a’), (1, ’b’), (2, ’a’), (2, ’b’)]

Daniel Bauer CS3101-1 Python - 01-Basics 55/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

else in List Comprehension

I Can use conditional expressions within a list comprehension.

>>> [a if a % 2 == 0 else ’bleep ’ \

... for a in range (10)]

[0, ’bleep ’, 2, ’bleep ’, 4, ’bleep ’, 6, ’bleep ’,

8, ’bleep’]

I if does not filter the iteration in this case!

Daniel Bauer CS3101-1 Python - 01-Basics 56/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

List Operations (1)
I Lists are mutable and can be manipulated.

>>> a = [’apples ’, ’pears ’]

>>> a[1] = ’oranges ’

>>> a

[’apples ’, ’oranges ’]

I list.append(x) adds element x to the end of list
I This is different from list += [x], which creates a new list.

>>> a = [’apples ’, ’oranges ’]

>>> a.append(’bananas ’)

>>> a

[’apples ’, ’oranges ’, ’bananas ’]

I list.pop() removes the last element from list and returns
it. Lists can be used as stacks.

>>> a.pop()

’bananas ’

Daniel Bauer CS3101-1 Python - 01-Basics 57/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

List Operations (2)

I list.remove(x) removes the first occurrence of element x
from the list.

>>> list = [’apple ’, ’orange ’, ’banana ’, ’orange ’]

>>> list.remove(’orange ’)

[’apple ’, ’banana ’, ’orange ’]

I list.reverse() reverses the order of the list.

>>> list.reverse ()

>>> list

[’orange ’, ’banana ’, ’apple’]

I list.sort() sorts the list (using <=).

>>> list.sort() # alphabetically for strings.

>>> list

[’apple ’, ’banana ’, ’orange ’]

Daniel Bauer CS3101-1 Python - 01-Basics 58/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Dictionaries

I A dictionaries is a collections of objects indexed by unique
keys.

I Most powerful built-in data structure.

>>> legs = {’cat’:4, ’human ’:2, ’centipede ’:100}

>>> legs[’cat’]

4

I Assigning a new object to an unseen key inserts the key into
the dictionary.

>>> legs[’python ’] = 0

I Keys are hashed (they need to be immutable).

Daniel Bauer CS3101-1 Python - 01-Basics 59/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Testing for Membership

I x in dict returns True if x is a key of dict, False
otherwise.

>>> legs = {’cat’:4, ’human ’:2, ’python ’:0}

>>> ’cat’ in legs

True

>>> ’centipede ’ not in legs

True

Daniel Bauer CS3101-1 Python - 01-Basics 60/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Dictionary Items, Keys and Values (in Python 2.7)
I dict.keys() gets a list of keys.

>>> d = {’cat’:4, ’human ’:2, ’elephant ’:4}

>>> d.keys()

[’elephant ’, ’human’, ’cat’]

I dict.values() gets a list of dictionary values.

>>> d.values ()

[4,2,4]

I dict.items() gets a list of (key, value) tuples.

>>> items = d.items ()

>>> items

[(’elephant ’, 4), (’human ’, 2), (’cat’, 4)]

I dict(x) converts a list of items into a dictionary.

>>> dict(items)

{’cat’: 4, ’human’: 2, ’elephant ’: 4}

Daniel Bauer CS3101-1 Python - 01-Basics 61/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Dictionary Items, Keys and Values (in Python 3)

I keys() and values() and items() gets a view of the
dictionary.

>>> d = {’cat’:4, ’human ’:2, ’elephant ’:4}

>>> keys = d.keys()

>>> keys

dict_keys ([’elephant ’, ’human’, ’cat’])

I If the dictionary changes, the view changes too.

>>> d[’penguin ’] = 2

>>> keys

dict_keys ([’penguin ’, ’elephant ’, ’human’, ’

cat’])

Daniel Bauer CS3101-1 Python - 01-Basics 62/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Sets
Sets (mutable) / frozensets (immutable) are unordered bags of
unique objects.

>>> s = set([’apple ’, ’banana ’, ’orange ’])

I Set membership: x in s

>>> ’apple ’ in s

True

>>> ’apple ’ not in s

False

I is s a subset/superset of t?

>>> frozenset ([’apple ’,’orange ’]) <= s

True

>>> # alternative syntax (2.7 and 3.x)

... {’apple’,’orange ’,’banana ’,’mango’} >= s

True

Daniel Bauer CS3101-1 Python - 01-Basics 63/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Sets - Union/Intersection/Difference

I get union of s and t as a new set.

>>> set([’a’, ’b’]) | set([’c’,’d’])

set([’a’, ’b’, ’c’, ’d’])

I get intersection of s and t as a new set.

>>> set([’a’, ’b’]) & set([’a’,’c’])

set([’a’])

I get difference between s and t as a new set.

>>> set([’a’, ’b’]) - set([’a’,’c’])

set([’b’])

Daniel Bauer CS3101-1 Python - 01-Basics 64/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Mutable Sets - update, add, remove
These operations do not work for frozensets:

I add all elements of set to set s

>>> s = set([’a’, ’b’])

>>> s.update(set([’a’,’c’]))

>>> s

set([’a’, ’b’, ’c’])

I add object x to s.

>>> s.add(’d’)

>>> s

set([’a’, ’b’, ’c’,’d’])

I remove object x from s.

>>> s.remove(’b’)

>>> s

set([’a’,’c’,’d’])

Daniel Bauer CS3101-1 Python - 01-Basics 65/66

Course Description About Python Using Python Data Types and Variables Control Flow Container types Homework 1

Homework 1

I Available on course website. Due: Tue Sep 16, 11:59pm.

I Submit on Courseworks (not by email).

I Submission instructions and guidelines on course website.

Daniel Bauer CS3101-1 Python - 01-Basics 66/66

	Course Description
	About Python
	Using Python
	Data Types and Variables
	Control Flow
	Container types

