
Self-Healing Multitier Architectures Using Cascading
Rescue Points

Angeliki Zavou, Georgios Portokalidis, Angelos D. Keromytis
Department of Computer Science

Columbia University, New York, NY, USA
{azavou, porto, angelos}@cs.columbia.edu

ABSTRACT
Software bugs and vulnerabilities cause serious problems to
both home users and the Internet infrastructure, limiting
the availability of Internet services, causing loss of data,
and reducing system integrity. Software self-healing using
rescue points (RPs) is a known mechanism for recovering
from unforeseen errors. However, applying it on multitier
architectures can be problematic because certain actions,
like transmitting data over the network, cannot be undone.
We propose cascading rescue points (CRPs) to address the
state inconsistency issues that can arise when using tradi-
tional RPs to recover from errors in interconnected appli-
cations. With CRPs, when an application executing within
a RP transmits data, the remote peer is notified to also
perform a checkpoint, so the communicating entities check-
point in a coordinated, but loosely coupled way. Notifica-
tions are also sent when RPs successfully complete execu-
tion, and when recovery is initiated, so that the appropriate
action is performed by remote parties. We developed a tool
that implements CRPs by dynamically instrumenting bina-
ries and transparently injecting notifications in the already
established TCP channels between applications. We tested
our tool with various applications, including the MySQL and
Apache servers, and show that it allows them to successfully
recover from errors, while incurring moderate overhead be-
tween 4.54% and 71.56%.

Categories and Subject Descriptors
D.4.5 [Software]: Operating Systems—Reliability

General Terms
Reliability, Security

Keywords
Software self-healing, error recovery, reliable software, mul-
titier applications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’12 Dec. 3-7, 2012, Orlando, Florida USA
Copyright 2012 ACM 978-1-4503-1312-4/12/12 ...$15.00.

1. INTRODUCTION
Software bugs and vulnerabilities cause serious problems

to both home users and the Internet infrastructure. Such
problems include broad outages [23], integrity violations [26],
and data loss [14]. Despite the great combined efforts of both
industry [12] and researchers [4, 8] the continuously increas-
ing size and complexity of software makes it extremely diffi-
cult to produce error-free software. To mitigate the effects of
bugs that can reduce the integrity of systems, a plethora of
runtime protection mechanisms have been devised, like stack
smashing protection [10], write integrity testing [2], address
space layout and code randomization [22, 21, 27]. Never-
theless, while protection mechanisms render certain types
of vulnerabilities infeasible or impractical, they do not also
offer high availability and reliability, as they frequently re-
sort to terminating applications that behave abnormally to
prevent attackers from performing any useful action.

To increase software availability, many mechanisms that
aim to recover execution when unhandled errors occur have
been proposed [16]. One of these mechanisms is software
self-healing based on rescue points [30]. It operates based
on the observation that applications already contain code for
handling anticipated errors and proposes reusing this code
to also handle unexpected errors. Rescue points (RPs) are
essentially functions that contain error handling code, which
can be exploited to recover from errors occurring within the
RP, including the RP routine itself and all called routines.
A checkpoint is taken upon entering a RP, and execution
is rolled back to that checkpoint when an unhandled error
occurs, while concurrently a valid error code is returned by
the RP to the application (i.e., through the routine’s return
value), so that it can gracefully handle the failure.

Applying RP-based self-healing on self-contained functions
is straightforward, however there are many functions that
have side effects, such as transmitting data to other entities
on the network. Applications that are part of multitier archi-
tectures, like client-server or three-tier architectures (com-
prised by presentation, logic, and data tiers), contain many
such functions. Introducing RPs in such architectures can
be problematic because it can result in inconsistent states
between the tiers when a roll back occurs. For example,
consider the following. The first tier communicates certain
information to the second tier, which then communicates
with the third tier, and so on. If an error occurs in the first
tier, triggering a rescue point, the application will think that
an error, like a communication failure has occurred, while in
fact the effects of the transmission have already propagated
to other tiers.

Rescue point

analysis

Application

execution

in time

First

occurence

of error

Recurrence

of error

Rescue point

is deployed

Figure 1: Software self-healing transforms unantic-
ipated errors from fail-stop to fail-once. After an
unexpected error first occurs, causing the applica-
tion to terminate, the data produced during the
fault (e.g., a core dump) are used to analyze the
fault and produce a remedy in the form of a rescue
point. While the application is still “vulnerable” un-
til the (either automatic or manual) offline analysis
is completed, after the rescue point is deployed, a
recurrence of the fault will be gracefully handled.

We propose cascading rescue points (CRPs) for self-healing
applications in multitier architectures to address the incon-
sistency issues introduced by traditional RPs. In our ap-
proach, when an application executing within a RP com-
municates with an application on the next tier, we notify
the remote peer to also perform a checkpoint, cascading, in
this way, the checkpoint and RP to the lower tiers of the ar-
chitecture. If a RP successfully completes execution or if it
triggers a roll back due to an error occurring, a notification is
also send to all the peers that were instructed to checkpoint,
so that they also perform the appropriate action.

We have implemented CRPs using the Pin [18] dynamic
binary instrumentation framework for x86 Linux, extending
our previous work [28] on deploying traditional RPs using
Pin. We improve the checkpointing mechanism used by uti-
lizing the fork() system call to quickly create copy-on-write
copies of an application’s image and use filters to mark the
individual bytes modified by threads for efficient thread-wide
checkpointing. We also intercept system calls to restore the
contents of overwritten memory and to transparently inject
information in the communication channels between appli-
cations of different tiers that run on top of our tool. We
use the injected data to implement a protocol for convey-
ing notifications between the various parties. Additionally,
we utilize TCP out-of-band data to asynchronously notify
remote peers of a successful exit from a RP.

In practice, we envision RPs being employed as a tempo-
rary solution for running critical software until a concrete
solution, in the form of a dynamic patch or update, is avail-
able. Using a dynamic framework like Pin enables us to
attach and detach our tool on already running applications
without interrupting its operation, applying RPs only for
as long as they are required. Combined with a dynamic
patching mechanism [7, 11, 19], applications can be run and
eventually patched without any interruption.

Distributed checkpointing and recovery has been a popu-
lar subject of research [5, 32]. However our work is driven by
other goals and differs from previous work in the following
ways:

• Our approach is transparent and self-contained. It does
not require that applications are designed with self-
healing in mind, nor does it require support from the

f1() f2() bug()

err1

Return

virtual error

b = send();

if (b < 0)

 ret err1;

b = recv();

if (b < 0)

 return err2;

array[++idx]= d;

return 0;

bug()

....

....

Crash

Rollback

Begin

checkpointing

b = send();

if (b < 0)

 return err3;

....

....

Rescue point

Function handles

the error

Figure 2: Software self-healing using rescue points.
Function bug() contains an error which can cause an
application crash. If it, or a caller function (e.g., f1()
and f2()), contains error handling code for expected
faults, it can be used to handle unexpected errors,
i.e., it is a possible rescue point. A checkpoint is
made upon entering the rescue point, and execution
is rolled back when an error occurs. We return a
valid error code to allow the application to continue
executing (dashed arrows).

operating system, and it is applicable on binary-only
software

• We do not checkpoint at arbitrary points of execution,
but instead checkpointing is driven by rescue points

• We can dynamically engage/disengage software self-
healing to apply it only when needed

• Our tool piggybacks the checkpointing protocol on ex-
isting communication channels

We evaluate our approach using popular servers applica-
tions, like Apache and MySQL, that suffer from well known
vulnerabilities and show that our CRP protocol does not
introduce prohibitive overheads. The performance overhead
imposed by our approach varies between 4.54% and 71.96%
depending on the application. Note that our approach can
be ported with moderate effort to operate on other platforms
supported by Pin, including Windows and BSD operating
systems, and the x86-64 architecture.

This paper is organized as follows: Section 2 contains some
background information on the tool we use for developing
CRPs, and discusses the limitations of traditional RPs. An
overview of cascading rescue points is given in Sec. 3. We
describe the implementation of a prototype in Sec. 4, and
evaluate its effectiveness and performance in Sec. 5. Related
work is discussed in Sec. 6. We conclude in Sec. 7.

2. BACKGROUND

2.1 Software Self-healing Using Rescue Points
The goal of software self-healing is to allow applications to

operate normally by healing themselves when unanticipated
errors occur. ASSURE [30] was one of the first works to
present a practical and automatic approach to software self-
healing. Fig. 1 depicts a high level overview of the concept.
When an error first occurs, it is analyzed offline to determine
its location and the appropriate remedy to be applied that
will allow the application to self-heal when it reoccurs.

One of the key ideas of software self-healing is rescue
points (RPs). RPs are essentially routines that contain

b = send();

b = recv();

array[++idx]= d;

return 0;

bug()

....

....

b = send();

....

....

send()

send()

recv()

p1 p2

state

state

Rollback

state'

state'

state

Figure 3: A rescue point deployed on function
bug() of process p1 needs to both send and receive
data to and from p2. When an error triggers a
roll back, p1 can end up in an inconsistent state
with p2. Deploying rescue points in routines that
communicate with other parties over the network
can be problematic because their effects cannot
be reversed.

b = send();

b = recv();

array[++idx]= d;

return 0;

bug()

....

....

b = send();

....

....

send()

p1 p2

Buffer

Never

receives

Figure 4: Adopting a naive approach to address
the issue in Fig. 3 will not work. For exam-
ple, buffering the data being send from a rescue
point, and only transmitting them after deter-
mining that an error did not occur, can break
applications. In this case, p2 never receives the
data that will cause it to respond to p1.

error handling code written by the programmer to handle
expected error conditions, and directly or indirectly (e.g.,
through a function call) engulf code containing an unex-
pected fault. ASSURE proposed the use of existing error
handling code to gracefully handle unanticipated faults, vir-
tualizing in this manner error handling, by mapping the
larger set of unknown errors that can occur during execution
(e.g., invalid memory accesses and attacks) to the smaller set
of handled errors (e.g., a system call failing).

2.1.1 Discovering Rescue Points
ASSURE proposed a mechanism for automatically discov-

ering possible RPs and selecting the one that is more likely
to patch an observed error. The goal was to identify program
functions and returned error codes through fault injection.
Consider the function bug() in Fig. 2; bug() may return err1
or err2, if send() or recv() fail respectively. This designates
the function as a potential RP for errors occurring within
the function, or a function that it calls, because it can return
a valid error code to f2(), allowing it to handle an unantic-
ipated error, such as an out of bounds access of array that
could cause the application to crash.

The simplest way to detect unknown errors and initiate
the rescue point analysis is to intercept the signals (or excep-
tions in Windows OSs) that are raised when a serious error
such as an invalid memory reference occurs. In Linux, such
signals include SIGSEGV for memory faults, SIGFPE for
floating point errors like division by zero, etc. Software self-
healing can be also employed in conjunction with protection
mechanisms already incorporated in the application [10, 2,
22], or retrofitted on the binary after it was deployed [27,
15]. For example, ProPolice [10] uses the abort() system
call, which raises signal SIGABRT, when a stack smashing
attack is detected.

The primary goal of ASSURE was to automate the pro-
cess of discovering, selecting and deploying an RP, however
RPs can be also discovered manually. For example, the op-
erating system can be configured to produce a dump of the
memory image of processes crashing due to a memory viola-
tion error. This core dump can be manually analyzed by a
developer or administrator to determine the location of the

error [1] and look for an appropriate RP. While this process
is time consuming and requires user intervention, produc-
ing and distributing an actual software patch that corrects
the error at its source, frequently requires even more time
and resources. Security related patches can take as much as
two weeks from the date they have been disclosed [3], while
less critical faults that only affect the availability of software
may take even longer [37].

2.1.2 Rescue Point Deployment
ASSURE relies on process-wide checkpoint/rollback based

on Zap [20] to create checkpoints, as well as to rollback to
a checkpoint when an error occurs. Because of Zap, the
overhead is little, but it is not extremely practical as it
requires modifications to the Linux kernel, and cannot be
dynamically installed and removed. In previous work [28],
we designed and implemented REASSURE a tool that sim-
plified the deployment of RPs. We built upon Intel’s Pin
dynamic instrumentation framework [18], to create a self-
contained mechanism that can dynamically deploy RPs on
binary-only software, for as as long as it is required. The use
of Pin enables us to attach to an already running application
to deploy a RP on demand, while we can also detach from
the application to apply a patch at runtime [19]. In this pa-
per, we build on our previous work to enable the application
of rescue points on multiparty software systems.

2.2 The Problem: Irreversible Side-effects
within Rescue Points

Previous software self-healing approaches cannot apply
rescue points on functions that have side effects, such as
transmitting data to other entities on the network. Doing
so can result in inconsistent states between the communicat-
ing parties, as shown in Fig. 3, because the effects of process
p1 sending a message to p2 cannot be undone. The problem
with this scenario is that the client’s state has been rolled
back and the client believes that an error, such as being un-
able to communicate with the server, occurred. However,
data has been exchanged with the server, which is oblivi-
ous of the error that occurred in the client. Depending on
the nature of the communicating applications this can lead

Enter

rescue point Rollback

send() recv()

send() recv()

p1

p2

p3

Fault

send()

send()

Rollback

Rollback

Process checkpointing
Normal message
Message while checkpointing

(a) Fault occurs. The next transmission from p1 to p2 will
notify the latter to also roll back. p2 will eventually notify
p3.

Enter

rescue point

Exit

rescue point

send() recv()

signal

send() recv()

signal

p1

p2

p3

Process checkpointing
Normal message
Message while checkpointing

(b) No fault. When p1 exits the rescue point, it immediately
notifies p2, which also exits checkpointing and notifies p3,
and so forth.

Figure 5: Cascading rescue points overview. When process p2 receives a message from process p1, which
executes within a rescue point, it also begins checkpointing. Other processes, like p3, that receive messages
from a checkpointing process also begin checkpointing. This way the original rescue point cascades to the
communicating processes.

to various problems and can require additional mechanisms,
like transactions employed by database (DB) servers, for
restoring them to a consistent state. By consistent state, we
refer to every party having a correct view of what is the state
of their peer. For example, if p1 tries to issue a command to
p2 to switch it to state state′ and it fails, p1 can still think
that p2 is in state state.

Previous designs simply ignore data exchanges and rely
on the protocols implemented by applications to discover
and correct such inconsistencies (e.g., they use transactions).
Moreover, the problem cannot be trivially addressed by sim-
ply delaying the transmission of messages. Fig. 4 depicts an
example where the application expects to receive a response
to a message send from within a RP. Buffering the transmit-
ted message would break function bug(), causing it to fail or
wait forever because no data is sent as a response from p2.

3. CASCADING RESCUE POINTS

3.1 Overview
Self-healing using cascading rescue points aims to enable

applications participating in multitier architectures to self-
heal without facing the problems presented in Sec. 2.2. To
achieve this, we introduce a protocol, which is transparently
implemented over the application’s TCP connections. The
protocol encapsulates application data, and serves the sole
purpose of allowing us to convey signals between applica-
tions of the architecture.

Consider process p1 shown in Fig. 5. All of its communi-
cations with other processes in the architecture are modified
to implement our CRP protocol. When p1 executes within
a RP, it is essentially checkpointing, indicated by the high-
lighted areas in Fig. 5. This means that a fault will cause
all the changes performed within the RP to be undone, and
we will simulate the return of an error code from the RP
routine. When p1 transmits data to another process (while
in a RP), we use our protocol to instruct the remote peer to
also begin checkpointing. Later on, if an errors occurs in p1,
the RP will recover the process. Since we piggyback our pro-
tocol on existing communications, p1 does not immediately
notify p2 that it discarded the state generated in the RP,
and p2 will continue checkpointing until the next message
is received by p1. Figure 5(a) depicts this process, which is
propagating in time to the other processes. If p2 sends any

data to another process (e.g., p3), that process also begins
checkpointing, and so forth (see Sec 3.2 for limitations).

If no fault occurs, the process is almost entirely the same,
and it is shown in Fig. 5(b). Like before, the RP of p1 causes
the checkpointing to cascade to p2 and p3. However, in this
case no error occurs and p1 successfully exits the RP. When
this happens, we immediately notify the other processes by
utilizing TCP’s out-of-band (OOB) data [33]. OOB data
are not part of the regular data stream, so we can signal p2
and p3 without corrupting the application data stream and
without requiring data to be read by the processes. Instead,
we can rely on the OS to notify the process when such a
packet is received (e.g., by raising a signal or exception).
TCP does not support multiple OOB signals on a particular
stream (i.e., a second OOB would overwrite the first and
would be the only one to raise a signal on the receiver).
For this reason, we can only use it to signal successful exits
from RPs. Our approach is an optimistic one, assuming that
errors will be rare.

We are planning to explore scenarios with more frequent
errors, e.g., when the application is under attack. One ap-
proach we are looking into is to be able to allow our pro-
tocol’s notification system to adapt depending on the con-
ditions of the involved applications. For example, for pro-
cesses where errors are too frequent, the CRP protocol could
switch the notification methods used for notifying the com-
municating processes for the events of successful or not exit
from an RP. The OOB signal used in the current CRP pro-
tocol as to notify the other processes for a successful exit
from a RP, could be used for the opposite purpose, i.e.,
to signal the rest of the processes to rollback to a previous
state. Consequently, the next transmission of data would
have to piggyback the signal for successful exit from a RP.
This new approach requires exploring other important fac-
tors first, such as the necessary conditions under which the
switch of the notification methods would make the CRP pro-
tocol more effective.

3.2 Limitations: Overlapping Checkpoints
Our approach enables multiple processes in a multiparty

architecture to checkpoint in a loosely coordinated way. How-
ever, our goal is not to provide another algorithm for coor-
dinated checkpoint/restart for an unstructured distributed
or peer-to-peer system. Our approach is a good fit for archi-

Enter

rescue point Rollback

send() recv()

send() recv()

p1

p2

p3

Fault

send()

Rollback

Process checkpointing
Normal message
Message while checkpointing

Enter

rescue point

Exit

rescue point

signal

Figure 6: Overlapping checkpoints. Processes p1
and p3, while both in RPs, try to cascade their RP
to the receiving process p2. p1 requests a rollback,
while p3 commits. The changes made by the latter
are lost.

tectures that have some innate hierarchy, like a three-tier or
client-server architecture. As it should be already obvious
from Fig. 5, receiving a checkpoint request from a process,
while already checkpointing due to the request of another
process or a RP, has no effect. In this sense, our approach
is best-effort and does not offer strong guarantees on estab-
lishing a globally consistent state between all processes.

Figure 6 depicts such a case of overlapping checkpoints.
Two processes p1 and p3 enter RPs independently and both
transmit data to process p2. According to the CRP proto-
col, p2 will start the checkpointing, the moment it receives
the data from a process in a RP, in this case p1. When a pro-
cess is already checkpointing, it will ignore signals to start
checkpointing (e.g., the signal sent from p3). We should
emphasize that even though we do not handle overlapping
checkpoints, their occurrence is not catastrophic to CRPs.
However, we do have to rely on application logic to identify
and correct errors, which was the case before introducing
CRPs.

4. IMPLEMENTATION

4.1 Self-contained Rescue Point Deployment
In previous work [28], we implemented REASSURE a tool

for deploying rescue points on binaries in an on-demand fash-
ion and without the need for source code. We built our tool
using Pin [18], a framework that enables the development
of tools that can at runtime augment or modify a binary’s
execution at the instruction level through an extensive API.
The target binary executes on top of Pin’s virtual machine
(VM), which essentially consists of a just-in-time (JIT) com-
piler that combines the binary’s original code with the code
inserted by the tool and places the produced code blocks
into a code cache, where the application executes from. Pin
facilitates the instrumentation of binaries by enabling de-
velopers to inspect and modify a program’s instructions, as
well as intercept system calls and signals. It is actively de-
veloped and supports multiple hardware architectures and
OSs. Pintools can be applied on binaries by either launch-
ing them through Pin or by attaching on already running
binaries. The latter behavior is highly desirable, as it allows
us to deploy RPs without interrupting an already executing
application. Our tool currently runs on x86 Linux systems,
however there are no significant challenges in porting it to
other OSs and architectures supported by Pin.

Table 1: Example of rescue points covering known
bugs on popular applications (also see Tab. 2).

Application Function name/Return value
MySQL v5.0.67 Item func set user var::update()/1
Apache v1.3.24 ap bread()/-1

RPs can be installed on any callable application function.
Table 1 lists RPs for a set of popular applications, including
the error codes that should be returned when an unexpected
error occurs. When a RP function is first entered by an
application thread, we use Pin’s API to insert code that will
switch the thread into checkpointing mode and save CPU
state. Instructions that can be used to exit the RP, such as
the function return RET instruction on the x86 instruction-
set, are also instrumented to return the thread exiting the
rescue point to normal mode and to discard the previously
saved state.

When executing in checkpointing mode, our tool instru-
ments all memory write instructions and logs the overwrit-
ten memory contents into a dynamically expanding array,
the write log. Pin provides us with facilities so that only the
instructions being reached from within a RP are actually
instrumented in this fashion. This way individual threads
of an application can enter RPs and checkpoint individually
(assuming that no shared state is updated).

To identify errors our tool relies on signals. In particu-
lar, we intercept the following signals on Linux: SIGSEGV,
SIGILL, SIGABRT, SIGFPE, SIGPIPE.1 When a thread
executing within a RP receives one of these signals, we ini-
tiate the recovery process. The recovery process restores
memory contents and execution returns to the callee, also
returning the error code specified by the RP. In x86 archi-
tectures, function return values are usually returned in the
EAX register.

Concurrency.
Checkpointing is thread-specific, that is multiple threads

can enter a RP at the same time and each thread can roll
back independently. However, if a RP is processing data
shared by multiple threads, or if the error that causes the
application crash corrupts data used by other threads, since
they are all executing in the same address space, this type of
checkpointing can leave the process in an inconsistent state
after a roll back. We address such issues by introducing
blocking RPs that block other threads for their duration.
We can block threads by conditionally instrumenting every
block of instructions, so that when a certain flag is asserted
execution is blocked. This always-on blocking approach is
appropriate for applications that expect a very high rate of
faults. Alternatively, we utilize signals to asynchronously
interrupt the remaining threads of a process and block them
until execution has left the RP. This on-demand blocking
mode generally incurs less overhead, since no additional in-
strumentation needs to be added for non-RP code.

1Note that other OSs have similar mechanisms to syn-
chronously notify applications of such errors. For example,
Windows OSs use exceptions.

12 bits

Index{4096

Positions

Address being modified

Cache of already

modified addresses

Address
Length

of write

Figure 7: A small associative cache is used to quickly
check if a memory location has been already modi-
fied. The cache is indexed using the lower 12-bits of
an address. Each slot stores the address and number
of bytes already modified.The original and cached
addresses, as well as the length of the write, are
compared to determine a cache hit. A cache miss
updates the appropriate slot.

4.2 Efficient Thread Checkpointing
Checkpointing threads individually is beneficial to soft-

ware self-healing. If an error occurs while a thread is ex-
ecuting within a RP, we only need to roll back the state
of the thread that suffered the fault, while the remaining
threads can execute unhindered. However, using a writes
log to store the overwritten memory values does not scale
for certain applications and can lead to excessive memory
overheads. We address these issues by extending our tool in
three ways:

1. We introduce a small associative cache (shown in Fig. 7)
to quickly check if a memory location has been already
modified

2. We use the fork() system call to create a copy-on-write
image of the process’s address space and employ a filter
to mark the memory locations updated by the check-
pointing thread. Two types filters are currently sup-
ported: a statically allocated bitmap where each bit
corresponds to a four-byte memory area, and a circular
buffer that stores the modified addresses of memory

3. For the circular buffer, we utilize page protection and
intercept OS page-faults to identify when the buffer is
full, and write its contents to disk to avoid excessive
memory usage

The cache allows us to minimize the number of updates
performed in the writes log and the filter. This has the effect
of reducing the amount of memory required for checkpoint-
ing, as addresses repeatedly written (e.g., stack variables)
are only updated once. We use the lower address bits to
index the cache to exploit locality in memory accesses.

Checkpointing using fork() is not a novel concept [25].
fork() is used to cheaply obtain a copy of the memory con-
tents of the entire process. Memory pages are initially shared
between the processes, while the OS creates copies of the
pages when they are modified. When a RP is entered, a
checkpointing process is forked. This newly forked process
uses a shared memory segment to communicate with the
original one and utilizes a semaphore for proper synchroniza-
tion. It initially sleeps waiting for events from its parent. If
the RP successfully exits (no error occurs), the checkpoint-
ing process is signaled to exit. Otherwise, it accesses the

start

end

Memory

protected

page

cur++ ⊕ 0xfff
start

end

cur++ ⊕ 0xfff

Buffer has

available space

Buffer

after flushing

Used

space

Figure 8: A circular buffer can be used to store
the memory locations modified by a thread during
checkpointing. When full, a page protection fault is
generated. We capture the fault to flush the buffer
contents to disk, and setup a new protected page.
The failed insertion can then simply resume to be
completed.

filter to obtain the addresses that were modified in the orig-
inal, and uses a pipe (used in UNIX systems for unidirec-
tional inter-process communication) to return the original
memory contents to the main process.

When using a bitmap filter, the overhead is low as the
bitmap is allocated once on RP entry and updating it is ef-
ficient. Using one bit per four memory bytes means that
we could erroneously restore a byte that was not overwrit-
ten by the current thread. This could lead in memory cor-
ruption, if the particular byte was concurrently updated by
another thread. Most compilers tend to use four or even
eight byte alignment for variables, so in practice such cases
should rarely (if ever) occur. Note that we do not address
cases that the application itself erroneously implements syn-
chronization primitives, leading to inconsistent updates of
shared state.

Using the circular buffer for storing modified addresses
does not suffer from such limitations. Moreover, it uses less
memory, making it a good fit for highly parallel processes
that may have many active RPs concurrently, and it sup-
ports 64-bit systems (64-bit address spaces are too large to
be covered by a statically allocated bitmap).

Our circular buffer implementation focuses on very fast
updates. This is achieved by first aligning its size to a power
of two. This allows us to simply increase the cursor (i.e., the
index pointing to the first available slot) after inserting data
in the buffer, and use a cheap bit masking operation to down
cast it to the size of the buffer. Second, we use page protec-
tion to signal buffer fullness instead of checking the number
of available bytes on each update. This is accomplished by
memory protecting the last page (usually 4KB) of the buffer.
When an update spills into the protected region, we flush
the buffer to disk, remove the page’s protection, update the
buffer header, and protect the page that is currently last, as
depicted in Fig. 8.

Reverting System Call Effects.
Process memory is not only modified by write instructions,

but it can be also written by the kernel during a system call.
We extended our tool to intercept system calls and mark the
memory locations modified by them in the filter holding the
altered memory locations. For this purpose, we define a
static array for storing system call related metadata, spec-

PAYLOAD

Header

{{

Encapsulated data (LEN bytes)

LEN CMD

Figure 9: The cascading rescue points protocol en-
capsulates user data using a small header prepended
to every data write made by the user.

ifying the size of their arguments and whether they return
data. For example, the read(int fd, void *buf, size t count)
system call writes data in the pointer specified by its sec-
ond argument. The amount of written data depends on its
return value. More elaborate calls like socketcall() are han-
dled by defining a call back that de-multiplexes the various
network calls implemented by it.

4.3 Cascading Rescue Point Protocol

4.3.1 I/O Interception
The cascading rescue point protocol is used to communi-

cate events between peers exchanging data over TCP sock-
ets. The protocol is implemented transparently over the
sockets used by the application. This is done by intercept-
ing system calls used with TCP sockets. We can classify
these system calls into two groups. The first group consists
of calls handling socket creation and termination, and the
second group is dealing with data transmission and recep-
tion. We intercept system calls socket(), close(), shutdown(),
connect(), accept(), socketpair(), and the dup() family of
calls to track the state of descriptors used by the applica-
tion (i.e., distinguish TCP socket descriptors from others,
like files). For this reason, we maintain a global array to
store information on active descriptors, like their type and
protocol state data. We also intercept the read(), write(),
recv(), and send() family of system calls that are used to
transmit and receive data from sockets to implement our
protocol.

The protocol consists of variable length messages that en-
capsulate user data as shown in Fig. 9. In particular, we use
a small header that comprises of a 4-byte field specifying
the length of user data, and a single-byte CMD field used
to communicate events to remote peers.

The header is inserted into existing TCP streams using
Pin to replace system calls used to write data, like write()
and send(), with writev() which allows us to transmit data
from multiple buffers by performing a single call. This min-
imizes the number of operations (data copies and system
calls) required to transparently inject the header into the
stream. If the message cannot be written in its entirety,
for instance because non-blocking I/O is performed and the
kernel buffers are full, we keep trying until we are successful.

To extract the header from the stream, the reverse pro-
cedure is followed. Initially, we replace calls used to receive
data with readv() to read into multiple buffers. If necessary,
we repeat the process until the whole header is received.
User data is placed directly in the buffer supplied by the
application. However, we can read into the next message,
which will be placed into the application’s buffer. When
this happens, we move the data belonging to subsequent
messages into a buffer associated with the socket descriptor.
Consequent reads will read data from this buffer instead of
performing a system call. Reading one message at a time
may be suboptimal performance-wise, but allows us to pair

Table 2: Applications and benchmarks used for the
evaluation of CRP. All of applications contain ex-
ploitable bugs as described by their common vulner-
ability and exposure (CVE) id.

Application Bug type Benchmark
MySQL v5.0.67 Input validation MySQL’s

(CVE-2009-4019) test-select
Apache v1.3.24 Memory corruption Apache’s ab

(CVE-2002-0392) utility

read system calls with particular events received on a socket
(e.g., a request to begin checkpointing), which is necessary
for rolling back.

4.3.2 Protocol Commands
The CMD field in the protocol is used to inform remote

peers of changes in the state of the running thread. For in-
stance, when data are written to a socket while in a rescue
point, CMD changes to indicate that the destination should
also begin checkpointing, the socket is marked as having
been signaled to checkpoint, and is placed in a list contain-
ing other similar sockets (fd checkpointed). If an error oc-
curs and the thread rolls back, sockets in fd checkpointed are
marked accordingly, so that the next write will convey the
status change. If the next write occurs within a RP, the fact
is also passed to the remote process, so that it first rolls back
memory changes and then enters a new checkpoint.

On the receiving end, if a thread receives a command to
checkpoint, it begins checkpointing similarly to entering a
RP. The socket descriptor number where the command was
received is saved, so that a consequent request to roll back is
only honored, if it was received on the same socket. On roll-
back, execution resumes right before the system call that
caused the thread to checkpoint. Note that receiving re-
quests to begin checkpointing from other sockets, while al-
ready checkpointing or executing in a RP are ignored (dis-
cussed in Sec. 3.2).

Checkpoint Commits Through Out-of-band Signaling.
To notify remote peers of a successful exit from a RP, we

utilize out-of-band (OOB) signaling, as provided by the TCP
protocol and the OS. In particular, we make use of TCP’s
OOB data to notify a remote application that it should also
commit changes performed within a checkpoint. We send
OOB data by using the send() system call and supplying
the MSG OOB flag for every descriptor in fd checkpointed.

On the receiver, the reception of an OOB signal by the OS,
causes the signal SIGURG to be delivered to the thread,
which previously took ownership of the socket descriptor
that triggered the checkpointing by calling fcntl().2 The
signal is intercepted, and execution is switched from check-
pointing to normal execution. If a RP is entered very fre-
quently, multiple OOB signals can be transmitted in succes-
sion. On account of TCP’s limitations, only a single OOB
byte can be pending at any time, so previous OOB signals
are essentially overwritten. This does not affect the correct
operation of our system, but unfortunately implies that we

2In Linux a thread can take ownership of a descriptor, caus-
ing the OS to deliver all descriptor related asynchronous
events to the specific thread, instead of a randomly selected
thread of the process.

Total time (sec)
0 50 100 150 200 250 300 350

Native

Pin

Traditional RP

Cascading RP

45.7%

52.19%

71.96%

Figure 10: MySQL performance

cannot also use OOB signaling to notify remote peers of roll
backs.

5. EVALUATION
We evaluated our implementation to establish its effective-

ness and performance. First, we validated the effectiveness
of CRPs in addressing state inconsistency issues that arise
when using RPs to recover from errors in interconnected
client-server applications. Second, we evaluated the perfor-
mance overhead imposed by CRP with real server applica-
tions. In both cases, we employed existing benchmarks and
tools to generate workloads. Table 2 lists the applications
and benchmarks used during the evaluation. We conducted
the experiments presented in this section on two DELL Pre-
cision T5500 workstations with dual 4-core Xeon CPUs and
24GB of RAM, one running Linux 2.6 and acting as a server
and the other one running Linux 3.0 and acting as the client.

5.1 Effectiveness
We used our tool to deploy RPs on known bugs in the

applications listed in Table 2, while concurrently running
the corresponding benchmarks from the client-side. When
RPs are not employed, the applications terminate and the
benchmarks are interrupted in all cases. In contrast, when
using RPs the applications recover from the error and the
benchmarks concluded successfully.

We also used our own artificial client-server applications,
that employed our mechanism to cascade a RP, which en-
gulfed the exchange of messages between the peers. We
manually injected faults in the client and observed that both
peers did not crash, but instead they managed to revert to
consistent states (i.e., the state they had before entering the
RP).

5.2 Performance
For each application in Table 2, we performed the cor-

responding benchmark, first with the application executing
natively, second running under the Pin DBI framework, then
employing traditional RPs, and finally with CRPs. This al-
lows us to quantify the overhead imposed by CRP compared
with native execution and execution under Pin, as well as
the relative overhead compared with the baseline of a self-
healing tool with traditional RPs. In the tests described in
this section, we did not inject any requests that would trig-
ger the bugs each application suffers from, nevertheless the

T
h

ro
u

g
h

p
u

t
(R

e
q

/s
)

0

250

500

750

1000

1250

Page size

16K 32K 64K 128K

−12.28%

−9.78%

−7.27%

−4.54%

Native

Pin

Traditional RP

Cascading RP

Figure 11: Apache performance

relevant RPs to the known bugs were installed and in the
last case the CRP mechanism was employed.

Figure 10 shows the results obtained after running 10 iter-
ations of MySQL’s test-select benchmark test over an 1Gb/s
network link. The y-axis lists the four different server con-
figurations tested, which from top to bottom are: native ex-
ecution, execution over Pin, execution with our self-healing
tool and traditional RPs, and finally execution with CRPs.
The x-axis shows the average time (in seconds) needed to
complete the benchmark, while the errors bars represent
standard deviation. Note that the standard deviation for
is insignificant and thus not visible. We observe that the
benchmark takes on average 71.96% more time to complete
when running the server with a CRP, while a significant
part of the overhead is because of Pin (under Pin the test
takes 45.7% more time). In particular, the high overhead is
attributed to the significantly larger size of MySQL’s code
consisting of many indirect control transfers (e.g., callback
functions and frequent function return), which exerts pres-
sure on Pin’s JIT compiler and code cache.

Figure 11 depicts the results obtained after performing 10
iterations of Apache’s ab benchmark utility over an 1Gb/s
network link. The y-axis displays the average throughput
in requests per second as reported by ab, and the error bars
represent the standard deviation. We performed the experi-
ments requesting files of size 16K, 32K, 64K and 128K from
the web server (as listed in the x-axis), and we repeated each
test with the corresponding server running: natively, over
Pin, with the traditional RPs, and with CRPs. Apache per-
forms on average 8.46% slower when using CRPs, and Pin
seems to be responsible for the biggest part of this overhead.
Note that this difference drops as the size of the requested
file increases. This is due to the workload becoming more
I/O intensive (i.e., more data need to be transferred per
request) and the number of requests arriving at the server
shrinks.

6. RELATED WORK

6.1 Software Self-healing
Software self-healing using RPs was first proposed in AS-

SURE [30]. RPs are automatically identified and selected
by using kernel-level checkpoint-restart, powered by Zap [20]
and input fuzzing. RPs were deployed using a modified OS

featuring the Zap virtual execution environment. In con-
trast to our approach, they require modifications to the OS
for deploying RPs and system calls are ignored. Nonethe-
less, the RP identification component of ASSURE can be
used in combination with our work.

Selective transactional emulation (STEM) [31] is a spec-
ulative recovery technique that also identifies the function
where an error occurs, and it could also be used to assist in
identifying RPs. STEM requires source code to analyze er-
rors, and does not support multithreaded applications. Sim-
ilarly, failure-oblivious computing [29] is another technique
that uses a modified compiler to inject code to detect invalid
memory writes and correct them by virtually extending the
target buffer. This approach is more robust against buffer
overflow errors, but comes at significant performance over-
head, ranging from 80% up to 500% for a variety of different
applications. Moreover, it requires recompilation of the tar-
get applications, and it does not handle failures due to other
bugs, such as null pointer dereferences.

Instead of attempting recovery, rebooting techniques [34,
13, 9] focus on restoring a system to a clean state. Program
restart is a significantly lengthier process than recovery, re-
sulting in substantial application down-time, while data loss
is also more frequent. Micro-rebooting aims to accelerate re-
booting by only restarting parts of the system, but requires
a complete rewrite of applications to compartmentalize fail-
ures. These techniques cannot recover from deterministic
bugs, and restart all execution threads of a given applica-
tion. Checkpoint-restart techniques [6, 17] are used in a sim-
ilar way to rebooting, but restart from a checkpoint. While
down time is reduced, they still do not handle deterministic
bugs, or bugs maliciously triggered by an attacker (e.g., a
DoS attack).

Checkpoint-restart has been also combined with running
multiple versions of programs [6]. This approach is based
on the assumption that not all versions will be prone to
the same error, and it introduces prohibitive costs for most
applications, as multiple versions need to be maintained and
run concurrently.

Other works have focused on reducing the time from bug
discovery to patch generation by automatically generating
and applying patches [24, 19, 35]. Unfortunately, automati-
cally applying patches is not very practical, due to the possi-
bility that additional errors are introduced during the patch-
ing, or that the patch alters program behavior.

6.2 Coordinated Checkpointing
Our work is also loosely related with work in the area of co-

ordinated checkpointing for distributed systems. Bhargave
et al. [5] present a checkpoint algorithm for distributed sys-
tems, where each process takes checkpoints independently.
To recover, a two-phase rollback algorithm is invoked to de-
termine the processes that need to rollback, and the check-
point they need to rollback to. This is an optimistic algo-
rithm in the sense that it performs well, when errors are
infrequent. Independent checkpoint algorithms have the
benefit that no coordination between the members of a dis-
tributed system is required, but may suffer from the“domino
effect ’ [36]’. The “domino effect” occurs when two or more
members of the system keep rolling back to previously taken
checkpoints in an attempt to reach a globally consistent
state, leading to unnecessary delays in the completion of
an action.

Sistla et al. [32] propose various algorithms based on the
asynchronous message logging of incoming messages from
individual members of a distributed system. Similarly to our
approach, they piggyback tags in the exchanged messages,
which are later used to determine the point to roll back and
the messages that need to be replayed. In our proposal, we
only interleave signaling data in the communications, while
we also utilize existing OOB signaling mechanisms provided
by TCP and the OS.

7. CONCLUSION
We introduced cascading rescue points, a new mechanism

for performing software self-healing on multitier architec-
tures. Our approach enables communicating applications to
checkpoint in a loosely coordinated way, so that recovery
does not lead to inconsistent states between applications.
We intercept existing connections and encapsulate applica-
tion data using our CRP protocol, which we use to notify
remote peers to rollback. We also exploit TCP’s OOB sig-
naling to quickly signal peers to stop checkpointing when no
faults occur. We implemented a prototype tool that can ap-
ply CRPs on binary-only software and evaluate it using the
Apache and MySQL servers. We show that it successfully
allows them to recover from otherwise fatal errors. In the
applications tested, the performance overhead introduced by
our approach ranges between 4.54% and 71.96%.

8. REFERENCES
[1] H. Agrawal, R. A. Demillo, and E. H. Spafford.

Debugging with dynamic slicing and backtracking.
Software Practice and Experience, 23:589–616, 1993.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and
M. Castro. Preventing memory error exploits with
WIT. In Proc. of the Symposium on Security and
Privacy, pages 263–277, May 2008.

[3] A. Arora, R. Krishnan, R. Telang, and Y. Yang. An
empirical analysis of software vendors’ patch release
behavior: Impact of vulnerability disclosure.
Information Systems Research, 21(1):115–132, 2010.

[4] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton,
S. Hallem, C. Henri-Gros, A. Kamsky, S. McPeak, and
D. Engler. A few billion lines of code later: using
static analysis to find bugs in the real world.
Commun. ACM, 53:66–75, February 2010.

[5] B. Bhargava and S. Lian. Independent checkpointing
and concurrent rollback for recovery in distributed
systems-an optimistic approach. In Proc. of the 7th

Symposium on Reliable Distributed Systems, pages
3–12, October 1998.

[6] T. C. Bressoud and F. B. Schneider. Hypervisor-based
fault tolerance. In Proc. of the 15th ACM symposium
on Operating systems principles (SOSP), pages 1–11,
1995.

[7] B. Buck and J. K. Hollingsworth. An api for runtime
code patching. Int. J. High Perform. Comput. Appl.,
14:317–329, November 2000.

[8] C. Cadar, D. Dunbar, and D. Engler. KLEE:
unassisted and automatic generation of high-coverage
tests for complex systems programs. In Proc. of the
8th OSDI, pages 209–224, 2008.

[9] G. Candea and A. Fox. Crash-only software. In Proc.
of the 9th Workshop on Hot Topics in Operating

Systems (HotOS IX), May 2003.

[10] J. Etoh. GCC extension for protecting applications
from stack-smashing attacks.
http://www.trl.ibm.com/projects/security/ssp/.

[11] M. Hicks and S. Nettles. Dynamic software updating.
ACM Trans. Program. Lang. Syst., 27:1049–1096,
November 2005.

[12] M. Howard. A look inside the security development
lifecycle at microsoft. MSDN Magazine –
http://msdn.microsoft.com/en-us/magazine/

cc163705.aspx, November 2005.

[13] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton.
Software rejuvenation: Analysis, module and
applications. In Proc. of the 25th International
Symposium on Fault-Tolerant Computing (FTCS),
page 381, 1995.

[14] InformationWeek. Windows home server bug could
lead to data loss.
http://informationweek.com/news/205205974,
December 2007.

[15] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D.
Keromytis. libdft: Practical dynamic data flow
tracking for commodity systems. In Proc. of the 8th

ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (VEE), March
2012.

[16] A. D. Keromytis. Characterizing self-healing software
systems. In Proc. of the 4th MMM-ACNS, September
2007.

[17] S. T. King, G. W. Dunlap, and P. M. Chen.
Debugging operating systems with time-traveling
virtual machines. In Proc. of the USENIX Annual
Technical Conference, 2005.

[18] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. In Proc.
of the 2005 PLDI, pages 190–200, June 2005.

[19] K. Makris and K. D. Ryu. Dynamic and adaptive
updates of non-quiescent subsystems in commodity
operating system kernels. In Proc. of the 2nd EuroSys,
pages 327–340, March 2007.

[20] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The
design and implementation of Zap: a system for
migrating computing environments. In Proc. of the 5th

OSDI, pages 361–376, December 2002.

[21] V. Pappas, M. Polychronakis, and A. D. Keromytis.
Smashing the gadgets: Hindering return-oriented
programming using in-place code randomization. In
Proceedings of the 33rd IEEE Symposium on Security
& Privacy (S&P), 2012.

[22] PaX Project. Address space layout randomization,
Mar 2003.
http://pageexec.virtualave.net/docs/aslr.txt.

[23] PCWorld. Amazon EC2 outage shows risks of cloud.
http://www.pcworld.com/businesscenter/article/

226199/amazon_ec2_outage_shows_risks_of_cloud.

html, April 2011.

[24] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe,
J. Bachrach, M. Carbin, C. Pacheco, F. Sherwood,
S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin,
M. D. Ernst, and M. Rinard. Automatically patching

errors in deployed software. In Proc. of the ACM
SIGOPS 22nd symposium on Operating systems
principles, pages 87–102, 2009.

[25] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt:
transparent checkpointing under unix. In Proceedings
of the USENIX 1995 Technical Conference
Proceedings, TCON’95, pages 18–18, Berkeley, CA,
USA, 1995. USENIX Association.

[26] P. Porras, H. Saidi, and V. Yegneswaran. Conficker C
analysis. Technical report, SRI International, 2009.

[27] G. Portokalidis and A. D. Keromytis. Fast and
practical instruction-set randomization for commodity
systems. In Proc. of the 2010 Annual Computer
Security Applications Conference (ACSAC), December
2010.

[28] G. Portokalidis and A. D. Keromytis. REASSURE: A
self-contained mechanism for healing software using
rescue points. In Proc. of the 6th International
Workshop in Security (IWSEC), pages 16–32,
November 2011.

[29] M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu,
and J. W Beebee. Enhancing server availability and
security through failure-oblivious computing. In Proc.
of the 6th OSDI, December 2004.

[30] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot,
J. Nieh, and A. D. Keromytis. ASSURE: automatic
software self-healing using rescue points. In Proc. of
the 14th ASPLOS, pages 37–48, 2009.

[31] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D.
Keromytis. Building a reactive immune system for
software services. In Proc. of the 2005 USENIX ATC,
April 2005.

[32] A. P. Sistla and J. L. Welch. Efficient distributed
recovery using message logging. In Proc. of the 8th

annual ACM Symposium on Principles of distributed
computing (PODC), pages 223–238, 1989.

[33] W. R. Stevens, B. Fenner, and A. M. Rudoff. Chapter
24. Out-of-Band Data. In UNIX Network
Programming Volume 1, Third Edition: The Sockets
Networking API. Addison Wesley, 2003.

[34] M. Sullivan and R. Chillarege. Software defects and
their impact on system availability - A study of field
failures in operating systems. In Digest of Papers.,
21st International Symposium on Fault Tolerant
Computing (FTCS-21), pages 2–9, 1991.

[35] M. Susskraut and C. Fetzer. Automatically finding
and patching bad error handling. In Proc. of the Sixth
European Dependable Computing Conference, pages
13–22, 2006.

[36] K. Venkatesh, T. Radhakrishnan, and H. Li. Optimal
checkpointing and local recording for domino-free
rollback recovery. Inf. Process. Lett., 25:295–304, July
1987.

[37] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller.
How long will it take to fix this bug? In Proc. of the
4th International Workshop on Mining Software
Repositories (MSR), 2007.

http://www.trl.ibm.com/projects/security/ssp/
http://msdn.microsoft.com/en-us/magazine/cc163705.aspx
http://msdn.microsoft.com/en-us/magazine/cc163705.aspx
http://informationweek.com/news/205205974
http://pageexec.virtualave.net/docs/aslr.txt
http://www.pcworld.com/businesscenter/article/226199/amazon_ec2_outage_shows_risks_of_cloud.html
http://www.pcworld.com/businesscenter/article/226199/amazon_ec2_outage_shows_risks_of_cloud.html
http://www.pcworld.com/businesscenter/article/226199/amazon_ec2_outage_shows_risks_of_cloud.html

	Introduction
	Background
	Software Self-healing Using Rescue Points
	Discovering Rescue Points
	Rescue Point Deployment

	The Problem: Irreversible Side-effectswithin Rescue Points

	Cascading Rescue Points
	Overview
	Limitations: Overlapping Checkpoints

	Implementation
	Self-contained Rescue Point Deployment
	Efficient Thread Checkpointing
	Cascading Rescue Point Protocol
	I/O Interception
	Protocol Commands

	Evaluation
	Effectiveness
	Performance

	Related Work
	Software Self-healing
	Coordinated Checkpointing

	Conclusion
	References

