Lecture 7
C Programming
Language

Summary of Lecture 7

Libraries
Recursion
Unions

time.h

Creating Libraries

* Assume you want to create a library that
supports linked lists.

» Using the .c and .h files you wrote for
defining a linked list and operations on a list,
you compile them separately and then
archive them into a library:

% gce -¢ -0 link.o link.c
% gce -¢ -0 list.o list.c

% ar q mylistlib.a link.o list.o
% ranlib mylistlib.a
Note: use “ar ruv” when library already exists.

* To use any of the functions in the .c files,
include the appropriate header file and link
mylist.a as follows:

% gcc myprog.c mylistlib.a

Recursion

Recursive Function - either directly or
indirectly calls itself

Serves as a tool to solve algorithms by
reducing the original problem to a smaller
problem (and reducing again...)

Example:
int func1(intn) /*assumesn>=0"*
{
if (n==0)
return 1;
return (n * func1(n-1)); /* recursive call */

)

void func2(void) /*assumes user input */
{
Int c;
if ((c = getchar()) = "\n’)
func2();
putchar(c);

Recursion - cont.

* The Towers of Hanot :
Given 3 poles, with disks 1n different sizes
numbered 1..n according to size.
Begin: all disks are stacked on pole A
with disk 1 on top and disk n at bottom
End: all disks are stacked on pole C 1n the
same order

« move disk 1 fromAto C
move disk 2 from Ato B
move disk 1 from C to B
move disk 3 from Ato C
move disk 1 from B to A
move disk 2 from B to C
move disk 1 from Ato C
==>7movesforn=3. (..15,31,63)
- Move n-1 disks from A to B through C
- Move disk n from Ato C
- Move n-1 disks from B to C through A

Recursion - cont.

 The Towers of Hanou :
void hanoi (int n, char *a, char *b, char *c)

{

it (n==1){
printf(“Move disk 1 from %s to %s\n",a,c);
return;

}

hanoi(n-1,a,c,b);

printf(“Move disk %d from %s to %s\n”,n,a,c);

hanoi(n-1, b, a, ¢);

}

main()

{
hanoi(3, “A”, “B”, “C");
hanoi(6, “A”, “B”, “C");

Recursion - linked list

 Recursive function to create a lined list
from an array of integers:

Listitem * array_to_list (int *a, int size)
{
Listitem * head:;
if (size == Q)
return NULL;
head = (Listitem *)malloc(sizeof(Listitem));
head->data = a[0];
if (size > 1)
head->next = array_to_list(a+1,size-1);
else
head->next = NULL;
return head:

Unions

 Unions are used as variables, when it’s
convenient to have the same variable hold
different types of data

* In effect a union is a struct, 1n which all
members have offset zero. The union 1s big
enough to hold the largest member.

It holds one member at a time.

« Example:

union int_or_float
{

int ival;

float fval;
}
union int_or_float x;
x.val=9; [*xasint*/
x.fval =4.321:; [* x as float */

[* overwrites int */

Unions

« Example:

union int_or_float divide(int a, int b)

{

union int_or_floar ans:

if (@% b==0)
ans.ival =alb;
else
ans.fval = a/(float)b;
return ans;
}
divide(8,4);

divide(2,3);

Time.h

e This header file defines structures, macros
and functions for manipulating date and
time.

e Useful for timing your program

typedef long clock_t;
typedef long time_t;
struct tm {

inttm_sec; /* secondes after the minute®/
inttm_min; /* minutes after the hour */

int tm_hour; /* hours after midnight */

int tm_mday; /* day of the month */

int tm_mon; /* months since January */

int tm_year; /* years since 1990 */

int tm_wday; /* days since Sunday */

int tm_yday; /* days since 1 January */

int tm_isdst; /*Daylight Savings Time flag */

Time.h

clock_t clock(void);
returns approximation of number of CPU
clock ticks since beginning of execution.

Use clock()/CLOCKS_PER_SECOND

to convert to seconds.

To measure time spent in program, call
clock() at start of program, and its return
value should be subtracted from subsequent
calls.

time_t time(time_t *tptr);

returns current calendar time.

char *asctime(const struct tm *tp);

converts struct tm to a string, for printing
char *ctime(time_t *tptr);

converts time_t tptr to a string, for printing
double difftime(time_t t0, time_t t1);

returns t1-t0

Use two calls for time and then difftime
to compute how long your program runs.

