
Lecture 3
C Programming
Language

Summary of Lecture 3

• streams

• error handling

• library functions

• break, continue, switch statements

• constants and macros

• C preprocessor (CPP)

• header files

Streams

• Stdin, stdout and sdterr are buffer I/O streams.

• Other I/O streams can be defined, e.g.
FILE * fp;

• Since the type FILE is defined in the standard
I/O library, we need to include the line:

#include <stdio.h> in the source code.

• To open/create a new stream, we use fopen
with the following prototype:

FILE *fopen(char * filename, char *mode);
mode can be “r” for read, “w” for write.

• We use the functions fprintf and fscanf that
work like printf and scanf but get the stream
pointer as argument:
fprintf(fp,”this file’s name is %s”,filename);

• IMPORTANT: close the stream (file) after use:
fclose(FILE *fp);
Example: fclose(fp);

Stderr

• Stderr is another example of a stream.

• Just like stdin and stdout, it is predefined and
does not have to be explicitly opened by the
programmer.

• Stderr is used for error messages. These
messages are displayed on the screen by
default, even when we redirect the program’s
output (e.g. a.out > output_file).

• Redirect error messages by:
a.out 2> error_file

• Example:
if ((fp=fopen(“p.txt”,”r”)) == NULL)
{

fprintf(stderr,”Cannot open file\n”);
exit(-1);

}

Library Functions
• Library functions are commonly needed

functions that have been predefined.

• C has several standard library functions

• To use a library function, include the
appropriate header file and link in the
library during compilation.
Example: #include <math.h> in “p1.c”
 and then % gcc p1.c -lm

• Not including these files can lead to
potential problems:
Unless we add #include <math.h> the
output
to this program:
main()
{

printf(“2 cubed is %f\n”,pow(2,3));
}
is 0.000

Standard Libraries
• Math #include <math.h>
• String #include <string.h>

• Input/Output #include <stdio.h>
• Dynamic Memory Allocation

#include <stdlib.h>

Constants and Macros
• #define <ident> <token-sequence>

#define <ident>(<params>) < token-
sequence>

• Syntax: no “=“ before (<params>)
• Macros are expanded by the C

preprocessor
(e.g. every appearance of <ident> is
replaced by <token-sequence>

• Use:
#define MAX_STR_LEN 20
#define IS_UPPER(c) ((c)>=‘A’ && (c)<=‘Z’)
#define IS_LOWER(c) ((c)>=‘a’ && (c)<=‘z’)

char arr[MAX_STR_LEN+1], *str;
….
for (str=arr;*str != ‘\0’; str++)
{

*str = TO_LOWER(*str);
}

Macros Pitfalls

• #define SQR(x) x*x
• Operator Precedence Errors:

SQR(a + b);
is expanded to: a + b*a + b
and not: (a + b)*(a + b)
Solution :
Put parentheses (or braces) around Macro
#define SQR(x) ((x) * (x))

• Side Effects Errors:
SQR(i++);

expanded to: i++ * i++
which increments i twice.

• Unnecessary Function Calls:
SQR(long_function(a,b,c));

will evaluate the function twice.

• There are no general solutions for the last
two errors - so be cautious and wise !

Call ing a vs. Calling a
Function Macro

• Always an
expression

• Will not change
arguments, no side
effects

• Can always carry a
newly created object

• Limited to fixed
type arguments

• Saves executable
code

• May be passed as an
argument to other
functions

• Function call
overhead (for stack
handling)

• May be a statement
(require automatic
variables)

• May have side-
effects

• May require an
argument to carry a
newly created object

• Operates (usually)
on arguments of
varying types

• Code is duplicated

• Cannot be passed as
an argument

• No call ing overhead

When is a Macro better
than a Function ?

• Rules of Thumb:
- operation required is shor t, simple and
(maybe) used in different locations (files).
- operation required is shor t, simple and is
used intensively.
- operation required is performed on variety
of different types.

•

• Examples of last case:
#define MAX(a,b) (((a)>(b)) ? (a) : (b))
#define SWAP(type,a,b)

{type t=a; (a)=(b); (b)=t;}
Note:
The expression (cond) ? stmt1 : stmt2 ;
is a shortcut for:
if (cond) stmt1
else stmt2

Enumerable Types
• Types that consist of certain integral values

and are carried by symbolic names
• Enum definitions:

enum bool {FALSE,TRUE};
enum month
{JAN=1,FEB=2,…,DEC=12};
enum colors
{WHITE=1,BLACK,GREEN=8,RED};

• Using enum types
enum bool b[10];
enum cond = FALSE;

• enum vs. #define (enum is superior)
 - The compiler may check for type
mismatch.
- the debugger may recognize the symbolic
names.

Switch Statement
• switch (month) {

case JAN: /* stmt */
case FEB: /* stmt */

 …
case DEC: printf(“31 days\n”);

break;
case APR:

…
case NOV: printf(“30 days\n”);

break;
case FEB: if (leap_year)

 printf(“29 days\n”);
else
 printf(“28 days\n”);
break;

default: printf(“month
error\n”);

break;
}

Break

• Can also be used in for, while, do-while
loops

• break terminates these loops early,
control
transfers to the first stmt after the loop

• Example:
/* this function returns 1 if “a” is in
 increasing order, 0 otherwise */
int monotonic(int a[], int N)
{

int i;
for (i=0; i<=N-1;i++)
{
 if (a[i+1] < a[i])

break;
}
if (i==N) return 1;
else return 0;

}

Continue

• The continue statement transfers control
to
the next iteration of the loop.

• Example:
char s1[12] = “Donald Duck”;
char s2[12] = “Jerald Burk”;
char m[12];
int i,count = 0;
for (i=0;i<=12;i++)
{

if (s1[i] != s2[i])
 continue;

m[count++] = s1[i];
}
printf(“%s\n”,m);

/* m = ? */

C Preprocessor
• Program goes through CPP before other

compilation

• CPP operations:
- automatic (e.g. deleting comments)
- requested (CPP directives)

• CPP Directives:
#include - include header files
#define - define constants or macros
#ifndef, #endif - conditional inclusion

Header Files

• What are header files for?

• Simple interface to previously defined
functions (contain only declaration)

• Modularity: code up small components,
each with different functionali ty, and then
link them together

• Each component has a .c file and a .h file

• The .c file has the function definitions.
The .h file has the function prototypes,
constants definitions, macro definitions.

• Easier to debug and to reuse

From Source to
Executable

prog1.c

prog1.o

prog1.c prog1.h

To compile without creating executable:
%gcc -c prog1.c -o prog1.o

prog2.o

prog2.c prog2.h

prog3.o

prog3.c prog3.h

main.c

#include “prog1.h”
#include “prog2.h”
#include “prog3.h”
main() {
....

To compile and create executable:
%gcc -o main main.c prog1.o prog2.o prog3.o

prog1.c

prog1.o

prog1.c prog1.h

To compile without creating executable:
%gcc -c prog1.c -o prog1.o

prog2.o

prog2.c prog2.h

prog3.o

prog3.c prog3.h

main.c

#include “prog1.h”
#include “prog2.h”
#include “prog3.h”
main() {
....

To compile and create executable:
%gcc -o main main.c prog1.o prog2.o prog3.o

Conditional text
inclusions

• A common use of #ifndef is in header files

• It is usually harmful to include a header file
more then once (p1.c includes h1.h that
includes h2.h)

• The way to prevent this is inserting this
macro at the beginning of every header file
you write:
#ifndef _header_name
#define _header_name
/* prevents entering here in future
inclusions*/
…
and then insert this line at the end of file:
#endif

