Lecture 2
C Programming
Language

Summary of Lecture 2

Relational and logic operations
More C data types
Introduction to arrays and pointers

Function arguments, main() arguments

Characters

Characters constants are given in single

9

quotes: ‘a’, ‘B’, ‘$’ are characters

The characters constants are represented
numerically:

charc='a;

intk=(c<D); /*=1ifc<’b’, else=0"*
Numerical values of characters - ASCII -
see appendix 4 or any other ASCII table

There are special characters like:

“\n” - end of line

‘“\t’ - tab

“\O’ - null character (to be continued..)

Relational and Logic
operations

» Relational expressions:
a>b, a<b, a<=b, a>=Db, a==Db, al=b
these expressions all have values,
true or false (0 or 1)
Thus the following 1s legal :

printf(“%d”, a>b);

* Logic expressions:

al|b aorb

a& &b aand b

la not a
 Note;:

(test) ? stmt1 : stmt2; 1s equal to:
If (test)

stmt1;
else

stmt2;

Bitwise Operations

* bitwise expressions:
alb a‘“or”’b
a&b a “and” b
Example:

a= 00000110
b = 00000011
alb =00000111
a &b = 00000010

* Shift operations:
<< left shift
>> right shift
Example:
J=3; 1=00000011
k=j<<2; k=00001100 (k=12)
m=>>2; m= 00000000 (m=0)

Integer Division

e 5/2 =2 (5 divided by two)
3/2=1 (note: ignore remainder)

e 5%2=1(5modulo 2)
8 % 3 =2 (remainder of 8/3)

« Example:
main() {

int counter = 0

Int letter = ‘A"

while (letter <=‘Z) {
printf(“%c “,letter);
counter++:; letter++;
if (counter % 6 == 0)

printf(“\n”);

)
)

This program prints the alphabet in the
format of 6 letters 1n every line.

Implicit / Explicit
Conversions

* Explicit conversion:
(type)variable
Example:
int] =3;
float f = 5.0;
float d = (float)j /f; /*d=0.6"
* Implicit conversion:
int] =3;
float f = 5.0;
floatd=j/f, *d=0.6"%
there will be no integer division, j 1s
implicitly converted to a float

* Not all machines support conversions
between doubles and floats, so use either
one (only floats or only doubles).

Unsigned Data Types

Typically half the values represented by a
data type are negative (one sign bit)

Example: char data types hold values from
-1277 to 127

unsigned char data types hold numbers
from 0 to 255

unsigned data types should be used with
caution :
unsigned int] = 0;
intk =-1;
if (j > k)
printf(“0 is greater than -17);
else
printf(“0 is less than or equal to -17);

implicit conversion rule: 1f one of the
operands is unsigned int, convert the other

one to unsigned int, but when we convert
-1 we get INT MAX-1=big number

Arrays

Syntax of defining an array:

int a[10]; /* array of 10 integers */
In C the index starts from 0, so the above
definition allocated 10 integer variables:

al0], ..., a[9]

However, the compiler will not warn you if
you try to access it:

int a[10];

a[10]1=1; /* crush and burn ! */

To 1nitialize an array you can use:
a={1,234,5,,78,9,10}; /*a[0]==1"/
Multidimensional arrays are defined as
follows:

int a[10][20];

[* ais array of 10 rows and 20 columns */
a={1,1,...1},{2,2,... ,2}, ... {10,...,10}};
or
a={11,...1,22,...,2,... 10, ... ,10};

more on multidimensional arrays later

Arrays 1n Memory

* For the following definition:
double a[6];
the compiler interprets the address of a[2] as:
al[0] + 2*sizeof(double)

Relative memory addresses (in bytes)

0 6 24 32 4

array locaftions

Each time an element is referenced, the
compiler computes the address:
address = reference + index*sizeof(type)

Pointers - Introduction

Pointers are special variables that store
“the address”™ of another variable. Definition:
<type> * <variable name>;

float f1:

float * pf1; /* pf1 is a pointer to float */

pf1 = &f1;

& 1s the address operator:

&<variable> gives the address of <variable>
(no matter what <variable> 1s)

* 1s the “value of” operator:

floatf1 =1.0, f2 = 2.0;

float * pf1= &f1;

f2 =*pf1; /* now the value of f2is 1.0 */

Pointers in memory (drawing)

Pointers and Arrays

e There 1s an important relation between
pointers and arrays. By defining:
int a[10];

“a” by itself is of type (int *) - a pointer to int,
and has the value &a[0] (the address of a[0]).
So we can do the following:

int *pa = a;

* Since pointers are just numbers (1.€. numeric
memory addresses) we can do arithmetic
operation on them:
int *pb = pa+1; /* now pb points to a[1] */

*pb=1; [*now a[1] =17/
*pb+2)=3; Mnowal3]=3"%

Pointers - Examples

« Example: Swapping two arrays:

int a1[10];

int a2[10];

int *pal = af;

int *pa2 = a2;

int *temp;

[* now pa1[3] = a1[3], for example, and
*(pa1+3) = a1[3] "

temp = paf;

pal = paz;

pa2 = temp;

* Another (not elegant) way to implement array
assignment pal=pa2:
int|;
for (j=0;j<10;j++)
“(pal++) = (pa2++);

Pointers to Pointers

« Since a pointer 1s just a number which
represents an actual memory address of some
variable, we can assign it the address of a
variable which 1s another pointer.

However, the syntax changes:
int **ptr2ptr;

int *ptr;

inti=1;

ptr2ptr = &ptr;

ptr = &i; [*or: ¥/
*ptr2ptr = &i; [*or: ¥/
*(*ptr2ptr) = i;

[* the latter causes "ptr=1 %/

* See memory drawing

 We will study pointers later !!!
This was just an introduction !

Strings

Constant string is represented by:

char name[9] = “Aya Aner”; [* init */

char name[] = “Aya Aner”; [* init */

this 1s actually an array of characters
Every constant string 1s terminated by the
special null char “\0’, so here name 1s a
character array of size 9, 8 letters (and
space char) and the 9th character 1s \0’.

Only character arrays can be 1nitialized
like that.

Special string manipulation library
functions are available by including
<string.h>

more on strings later in this course
(char *name; is a “special” string)

Arguments

Until now we have seen examples of the main
function calling other functions.

Main can receive its own arguments, but in a
preconditioned way:
main(int argc, char **argv) {

}

argc 1s a counter for the number of arguments
given to main.

argv 1s an array of strings - the actual
arguments. argv[0] 1s the program name.

% a.out 1 my_input

argc 1s 3

argv[0] = “a.out”
argv[1]=“1"

argv[2] = “my _1nput”

The ability of main to take arguments is
useful for passing parameters to a program

argc, argv example

« Computing the square root of an mnput
number:
#include <stdio.h>
#include <stdlib.h>

main(int argc, char **argv)
{
float inp;
if (argc 1= 2) {
printf("Usage: a.out number \n”);
exit(0);
}
[* atof converts an ascii string to a float
see <stdlib.h> for atoi, atol etc.. ¥/
inp = atof (argv[1]);
printf(“%f\n”,inp*inp);

Pass by Value vs.
Pass by Pointer

void test(int val, int *ptr)

{
val = 1;
ptr=1;

}

main()

{
inti1=0,i2=0;
[* i1 is passed by value */
[* 12 is passed by pointer */
test(i1, &i2);

/* i1 is unchanged, i2 was setto 1%/

Summary of Lecture 2

Relational and logic operations
More C data types
Introduction to arrays and pointers

Function arguments, main() arguments

