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“The Internet has turned the news industry up-
side down, making it more participatory, social,
diverse and partisan – as it used to be before the
arrival of the mass media.”
T. Standage, The Economist, July 7th, 2011.

ABSTRACT
The impact of blogs and microblogging on the consumption
of news is dramatic, as every day users rely more on these
sources to decide what content to pay attention to. In this
work, we empirically and theoretically analyze the dynamics
of bloggers serving as intermediaries between the mass media
and the general public.

Our first contribution is to precisely describe the receiv-
ing and posting behaviors of today’s social media users. For
the first time, we study jointly the volume and popularity of
URLs received and shared by users. We show that social me-
dia platforms exhibit a natural “content curation” process.
Users and bloggers in particular obey two filtering laws: (1)
a user who receives less content typically receives more pop-
ular content, and (2) a blogger who is less active typically
posts disproportionately popular items. Our observations
are remarkably consistent across 11 social media data sets.
We find evidence of a variety of posting strategies, which mo-
tivates our second contribution: a theoretical understanding
of the consequences of strategic posting on the stability of
social media, and its ability to satisfy the interests of a di-
verse audience. We introduce a “blog-positioning game” and
show that it can lead to “efficient” equilibria, in which users
generally receive the content they are interested in. Inter-
estingly, this model predicts that if users are overly “picky”
when choosing who to follow, no pure strategy equilibria
exists for the bloggers, and thus the game never converges.
However, a bit of leniency by the readers in choosing which
bloggers to follow is enough to guarantee convergence.
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1. INTRODUCTION
One of the most transformative forces in media consump-

tion is the recent multiplication of referrers or intermedi-
aries. Most users still ultimately rely on content produced by
professional journalists for accuracy and impartiality. But
users do not depend any longer on traditional media to de-
termine what they should see. Increasingly, people use so-
cial media to refer them to content of interest. Thus, more
and more content is reaching people by traversing a net-
work which was built from previous choices; these choices
include what content users decide to post, and whose posts
an individual decides to pay attention to.

The main challenge of online content curation is that the
interests of users in general do not follow a simple pre-
dictable model. Users have a wide range of interests across
a large set of topics; even within a topic (e.g., New York
sports, U.S. politics, a major geopolitical or societal event,
etc.) different users will likely be interested in different sub-
sets of the news about this topic. Social media at its core
makes a remarkable promise – that through chains of re-
ferrals the torrent of information produced online can be
tamed and distilled to deliver to each user the content they
are interested in. In other words, the medium formed by
users’ connections and posting behaviors is efficient from a
communication standpoint.

Our objective in this paper is to assess the credibility of
this promise. Various claims have been made on the power
of social networks to diffuse information quickly and effi-
ciently. These typically follow from topological properties
and they quote volumes of large viral cascades for content
of popular appeal. Most highlight the importance of in-
formation intermediaries, such as professional journalists,
bloggers, or prominent people who are well-positioned to
connect different parts of the network. We wish to go be-
yond these structural properties and see how social media
shape what content is shared: How do today’s information
intermediaries choose what to post? How are these choices
affected by the content’s popularity? Can a follower graph
emerge from users’ decisions that puts the right information
in front of them? To address these questions, one needs to
combine insight from measurement at a microscopic scale
with a macroscopic analysis that predicts the efficiency of
the network as a whole.

Our work empirically studies today’s online crowd-curation
with a new level of detail. We present an intriguing role
played by information intermediaries, and analyze theoreti-
cally its consequence on the efficiency of social media. More
precisely, our work makes the following contributions:
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• Based on 11 social media data sets, differing in their
source platforms (e.g., Twitter, Facebook, Spinn3r),
topics, and time periods, we demonstrate that social
curation obeys a “filtering law”. This law predicts that
the popularity of content received by a user, or posted
by an intermediary, is inversely correlated with the
amount of content she receives or posts. This relation-
ship is robust to different ways of defining “informa-
tion intermediaries”, and quantifying content popular-
ity. Furthermore, we show that this trend is not simply
a statistical consequence of the very skewed content
popularity distribution. (Section 3).

• Informed by the above observations, we hypothesize
that bloggers are behaving strategically, trying to post
a unique, high-quality set of content, in order to at-
tract a large following. Thus, we model the social cura-
tion system as a competition between bloggers for user
attention, and call this model the “blog-positioning
game.” But how does a user pick which blogger to
follow? We consider two types of factors: 1) how well
the content posted by an intermediary matches her in-
terests (“endogenous factors”), and 2) “exogenous fac-
tors” such as the reputation of the intermediary and
their writing style. Our model considers both types of
factors, and is able to reproduce the observed filtering
law. (Section 4).

• We analyze whether pure strategy Nash equilibria ex-
ist under the above model, and if so, whether these
equilibria are “efficient” (in terms of the number of
users satisfied with the content they receive, relative
to the optimal intermediary configuration). We show
that the existence of equilibria depends deeply on the
way in which users pick which blogger to follow. If
users precisely pick the blogger that gives them max-
imal utility, no equilibria exist; on the other hand, if
they simply pick a blogger that is “good enough”, an
equilibrium always exists. Moreover, in the resulting
social network, at least half of the optimal number of
users are satisfied with the content they receive. (Sec-
tion 5)

Together, our empirical and theoretical findings lay the
foundation for better understanding the surprising power of
social networks as a communication medium.

2. RELATED WORK
Our work follows the classic hypothesis of a two-step in-

formation flow [11], where news savvy“opinion leaders”play
the key role of intermediaries between the content produced
by mass media and the general public. This thesis was re-
vived using empirical evidence from Twitter [13, 20], and
more recently identifying mass media and intermediaries as
critical to information spread [6]. In fact, our work extends
this hypothesis to model how even relatively normal users
play the role of information filters for their peers. Much re-
mains to be explored to analyze the intrinsic effectiveness
of such information spread. A recent study showed that
social networks allow users to be exposed to more diverse
viewpoints [2]. On the other hand, study of word-of-mouth
propagation showed that this spread is more likely between

geographically close friends, hinting at a possible bias ef-
fect [16]. Our work is complementary as we explore a new
dimension: how intermediaries help manage the volume of
information by serving as filters and adapting to the inter-
ests of the audience. We depart from the purely empirical
approach by analyzing the dynamics between bloggers as
they compete for user attention.

Since a first version of our work appeared, a recent analy-
sis of Twitter suggested that social media can be efficient at
giving users information relevant to their interests [22]. It
showed this efficiency is compatible with follower relation-
ships and interests that both derive from the same underly-
ing structure in a Kronecker graph, although this argument
currently implies that the graph is undirected. Motivated
by the same observation, we offer a very different starting
point, by focusing on the behaviors of intermediaries in di-
rected graphs. In our work the structure is not assumed a
priori but naturally emerges from the interaction of various
agents of the curation ecosystem.

As news moves online, how to best serve the various in-
formation needs of communities remains an important issue
of public concern [18]. Previous works analyzed how to best
serve this collective attention, either by analyzing tempo-
ral dynamics and treating this as a scheduling problem [19,
4, 14, 21], by adapting personalization tools [7], or by en-
hancing news navigation. Competition among different news
offerings is generally ignored. A recent and notable excep-
tion is the debate on the effect of news aggregators. The
increase of traffic they generate to news outlet was shown
to come at the expense of customer loyalty, leading to a po-
tential loss of advertising revenue for content publishers [3].
Our work is radically different as we consider competition
between various intermediaries as well. We wish to see if
the collective behavior of intermediaries can be harnessed
and their incentives aligned to serve every user’s interests.
Our game theoretic approach resembles recent studies on
the efficiency of collective efforts [12], with two important
differences: First, the context of content curation is entirely
new and it involves two sides (the bloggers choosing what
to post, and the users choosing who to follow). This con-
text allows one to reuse previous bounds on efficiency [17].
Since the first version of our work was presented, a 4-page
workshop paper independently derived the same observation
and studied best response dynamics in curation systems [1].
Our model differs in its assumptions about how readers se-
lect their intermediaries, which has large consequences on
the equilibrium properties of the game. Furthermore, in our
setting, the existence of a pure strategy equilibrium requires
an entirely different proof to show the game is a “potential
game.”

We are only aware of a few other works analyzing news
dissemination with a game theoretic background. Previous
work assumed news is equally appealing to all users [9], and
showed that local incentives suffice for higher quality news to
reach a large audience in a random graph, by a connectivity
argument. It also showed that users attempting to avoid
spam may be an important limiting factor. In contrast, we
are interested in how various blogs emerge to satisfy the
information needs of a heterogeneous audience. In [10], a
multi-topic model is analyzed to model news aggregators
choosing a subset of topics in a sequential game. In contrast,
our model allows for a much richer set of posting strategies,
in which intermediaries can pick precisely what set of articles
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to post, across any topics. We assume bloggers compete for
user attention through their choice of what to post, and we
wish to find the conditions under which such games admit
natural equilibria that are also efficient.

3. EVIDENCE OF FILTERING
Our first main result is to empirically validate our hypoth-

esis that users of social media participate in, and potentially
benefit from, an information filtering process. Prior work
proved the existence of information intermediaries, while
we explore for the first time how these intermediaries affect
what information users receive. We wish to answer the fol-
lowing questions: Is the subset of content that people receive
today through social media selected in a particular way? If
so, can this filtering be understood as a consequence of the
way intermediaries post information and how users select
who they follow? And do the answers to these questions
vary across social media platforms?

3.1 Data-sets
To answer the questions above, we analyze several large

traces from social media. This requires (1) records of what
users post in various media, (2) a way in which this infor-
mation can be judged for its quality, and (3) knowledge of
the social graph (to know what posts users receive). To the
best of our knowledge, no data set available today allows
studying all of these factors together, especially without sig-
nificant subsampling. We hence gathered data from various
sources (including Twitter, SPinn3r blogs, and Facebook),
and enriched these data sets with complementary crawls,
which we now describe.

Collecting information shared on social media.
At a high level, we consider three types of social media:

(1) microblogging (Twitter, denoted“TW”), (2) online social
networks (Facebook, denoted “FB”), and (3) blogs (Spinn3r,
denoted “Blogs”). In all these domains, we focus on posts
containing URLs. We gathered a mix of topical traces (i.e.
relating to an event) and generic ones (where all posts are
included). We ensure that the data sets are comprehensive,
containing users with a wide range of activity levels and fol-
lower amounts, and URLs of both wide and narrow appeal.

Data sets Users URLs
(% live today) (% with bit.ly)

TW NYT 226,512 (92%) 7,504 (99.96%)
TW Bin Laden 700,783 (75.9%) 545,495 (19.7%)
TW Occupy WS 354,117 (88.9%) 316,408 (26.9%)
TW Steve Jobs 719,025 (86.8%) 250,644 (20.0%)
TW iPhone5 81,056 (94.6%) 37,323 (30.7%)
FB iPhone5 330,185 (N/A) 193,024 (14.6%)
Blogs All 67,692 (N/A) 440,933 (30.9%)
Blogs Obama 13,390 (N/A) 84,733 (40.9%)
Blogs Facebook 11,643 (N/A) 69,747 (40.5%)
Blogs Euro 9,659 (N/A) 53,001 (39.9%)
Blogs Mubarak 6,546 (N/A) 42,531 (34.6%)

Table 1: Number of users and URLs for our data
sets. For the Twitter (TW) data sets, we report
the fraction of users whose accounts are still active.
We also report the fraction of URLs with a bit.ly
shortener.

• Microblogging (TW): Data was gathered using Dis-

coverText.com to harvest tweets from Twitter’s unre-
stricted firehose in two ways. First, during two weeks
in Dec. 2012 we collected all tweets with a URL from
a particular media source; we report here results from
the New York Times (NYT), though we also gathered
data from CNN and FoxNews. Second, we collected
all URLs associated with a particular event (e.g., the
“TW Bin Laden” data set contains tweets with the
words “Osama” or “Bin Laden” posted during the 34
hours following his death, from 5/2/2011 at 3:30am
EST to 5/3/2011 at 1:30pm EST). We similarly col-
lected tweets on Steve Jobs’ death, the Occupy Wall
Street movement, and the iPhone 5 launch.

• Online Social Networks (FB): We gathered ≈ 1
million Facebook comments, all about the iPhone 5
release, from the GNIP Facebook API.

• Blogs: Finally, and in order to validate our results on
data sets that are already publicly available, we use
the data sets of the ICWSM 2011 data challenge [5]. It
contains 386m blog posts collected from Spinn3r dur-
ing the months of January-February 2011.

Preprocessing and additional crawls.
URL normalization: To avoid duplicates due to for-

matting variants and URL shorteners, we normalize URLs
by (1) recursively following all redirects using HTTP calls,
(2) removing protocols (http/https) and suffixes (anything
following a # sign, “.html”, or “.htm”), and (3) removing
spam.1

Twitter Crawls: We performed Twitter crawls to gather
additional information about the users in our data sets.2

First, we gathered general information about these users via
the Twitter REST API, as well as a sample of up to 100
“lists” they are part of, to use for classification (see below).
Additionally, to find for each user the set of URLs they
received via Twitter, we crawled the active users in our
NYTimes data set for the set of users they follow (called
“friends” in Twitter). To keep the crawl computationally
feasible, we stopped the crawl after 50k friends; following
more than 50k users is rare (<0.1%) and usually implies that
these edges are not relevant for information dissemination.
In order to get a sense of the URLs received by users who
were not active in our NYTimes dataset (“passive” users),
but nonetheless received a link, we crawled users in our data
set for their followers (once again capping at 50k); we then
crawled a random subset of all these newly discovered pas-
sive users (who follow at least one person in our dataset) for
their “friend” lists. Thus, for the users in our TW NYTimes
data set, as well as for a random subset of their followers, we
know who they follow, and thus what NYTimes links they
received during this time period.

URL popularity and user posting activity were es-
timated using 5 different metrics to ensure the universality
of our results. First, one can directly internally measure

1For these data-sets, spam URLs have generally been black-
listed (e.g., spam bit.ly links land on a “warning” page). We
removed users posting one or more spam URLs.
2Information could be gathered only from accounts that are
still live today (between 75% and 95% of accounts, depend-
ing on how long before crawl data set was collected)
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these in each data set by counting how many times a nor-
malized URL was posted, and how many URLs a user posts.
We complement this by measuring externally how popular
a given URL is in two ways: (1) if this URL was ever short-
ened using bit.ly, we collected its number of clicks via the
bit.ly public REST API.3 We also collected the number of
times each URL was shared on Facebook using the FB API.
Finally, to estimate the “external activity” of a user, we cal-
culate the average number of tweets per day by this user,
from the time their account was created.

As seen in Table 1, we are successful in gathering a large
number and more importantly a large range of URLs and
users. The majority of URLs appear only once in our dataset,
pointing to a very long tail of obscure or niche content. This
set of URLs also contains a tiny minority of blockbusters
which spread massively. As a consequence, the average num-
ber of posts or clicks is typically much larger than the me-
dian, and sometimes even goes above the 95% percentile.
This trend is especially skewed for external popularity mea-
sures. Similarly, the overwhelming majority of users post
only occasionally, while a very active minority of users end
up posting most of the content.

Defining information intermediaries in social media
is another challenge. We show it is tangential to our work
as our trends apply to various definitions of intermediaries.
In a “loose” sense, all active users are intermediaries, since
anyone who has ever posted a URL has acted as an interme-
diary to their immediate surrounding. One can argue that
this contains too many users reacting spontaneously to news
without much of a following. Thus, we consider the stricter
definition of only counting users with at least 500 followers
(top 30% of active users) as intermediaries; we refer to these
users as Active VIPs 4. We finally use a much stricter defini-
tion where, among those VIPs, only the ones that appear in
a list containing the substring“blog”are considered informa-
tion intermediaries (among the ≤ 100 lists we crawled per
user); we refer to these users as Bloggers. Figure 1 provides
detailed statistics about these different populations for the
Twitter NYTimes data set (TW NYT). In all definitions,
potential information intermediaries are a very small part of
the total audience (<1%) but they are responsible for most
of the traffic. They post significantly more tweets per day.
They also receive more URLs and follow more users.

3.2 The Filtering Law
We first study the relationship between the volume that

one receives on social media, and the popularity of this con-
tent. Ideally, depending on how many and which intermedi-
aries a user follows, she may be able to reduce the volume
of information she receives while statistically increasing its
quality. We now show that this is indeed the case.

3For precision, we consider several variants of the URL
which could link to the same page, by (1) computing the
“core” of the URL (removing the protocol, trailing slashes,
and everything after “.htm”,“.html”, “#”), and (2) summing
the bit.ly clicks provided by the API for the following URLs:
all the ones posted with the same“core”extended by varying
the protocol http/https, with and without a trailing slash.
4We tried various thresholds here, in addition to 500 fol-
lowers; however, the choice of threshold did not affect the
general trends we observed. For simplicity, we only present
the results for the Active VIP users defined according to the
500 follower threshold.
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Figure 1: Various types of users (TW NYT): Each
group is associated with a symbol. We draw the
median value of various parameters, together with
the box plot representing the (25%,75%) percentile
range, and whiskers for (10%,90%) percentiles.

Our main observation is the following filtering law : URLs
received by users who receive fewer URLs are disproportion-
ately popular. This is shown in Fig. 2, where we see that
the average quality of URLs received by a user decreases as
the total number of URLs she receives increases.

What explains this trend? Is it a statistical illusion? Per-
haps this is simply due to a replacement effect: as users re-
ceive more URLs, they may “run out” of high-quality URLs,
causing a decrease in average quality. To show that this is
not the case, we contrast the real trend with a random Null
Hypothesis (NH) model that is constructed as follows: for
each user in our data set receiving n URLs, we reassign the
URLs they receive by picking these n URLs randomly from
the same URL popularity distribution (i.e., popular URLs
appear more often, exactly as in the real data). This pop-
ularity distribution is determined by the number of times
each URL was received. Importantly, we perform these ran-
dom draws without replacement, thus not allowing a user to
receive the same URL twice. The blue line in the figure de-
notes the Null Hypothesis, and we observe a very slight (al-
most flat) decreasing trend. This slight decrease comes from
the following effect: Since the distribution is highly skewed,
a small set of popular URLs are likely to be chosen first
as the set of received URLs is constructed in this random
model. For a larger set, since the set of URLs is constructed
without replacement, after the first popular URLs are cho-
sen, the random choices will be biased to less popular URLs.
Note that regardless of the precise metric (e.g., number of
times URL received, number of times URL posted, number
of Bit.ly clicks received by URL, etc.) we use to construct
the URL popularity distribution for the Null Hypothesis, the
resulting trend is flat. On these plots, we show the median
popularity of URLs received by users in both the Null Hy-
pothesis model, and in the real data, and we also show the
25th and 75th percentiles of these URL popularity distribu-
tions. Note that because we are plotting percentiles, and
not confidence intervals, the number of users in each bucket
doesn’t necessarily shrink the size of the 25%-75% interval.

We observe that real data shows a trend much stronger
than the replacement effect of the Null Hypothesis. For any
activity level, the difference between the distributions are
statistically significant: a standard Student test on the log
of popularity always returns statistical difference with p ≤
10−6. Moreover, this trend is universal: we observe it for all
popularity metrics, as shown in Fig. 2, and when considering
URLs received by various subsets of the population (like
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Figure 2: The filtering law. (x-axis) Users grouped by number of URLs received, (y-axis) Popularity distri-
bution of URLs received by these users, shown using median and 25%-75% percentiles. Red circles denote
real data, blue triangles denote a random null hypothesis model. The 3 plots correspond to different metrics
of URL popularity: (left) number of bit.ly clicks, (middle) number of times this URL was posted, (right)
number of FB likes.

Active or Active VIP users, and Bloggers). Our results are
encouraging because they suggest that users of social media
are effectively navigating the volume/quality trade-off: users
who receive less are focusing on the most promising URLs.

These positive results demand further study. The only
factors affecting the URLs a user receives are the intermedi-
aries she follows, and the content they post. Are information
intermediaries behaving in a way that explains this law? If
so, are they naturally encouraged by social media to behave
as such? Does this generally lead to an efficient propagation
of information? In the rest of this section, we will exam-
ine the posting behaviors of information intermediaries, and
their consequences.

3.3 Intermediaries’ posting behavior
We begin our study of the content posted by intermedi-

aries by observing another filtering law: URLs posted by less
active intermediaries are disproportionately popular. That
is, as intermediaries decrease the number of URLs they post,
they are more likely to post the most popular URLs. Fig. 3
illustrates this trend; as before, the trend is much stronger
than predicted by a random null hypothesis, where for each
user we fix the number of URLs they post, and pick these
URLs randomly according to the same overall popularity
distribution. With similar tests, we observe statistical sig-
nificance with p < 10−3 (except for users posting exactly
5 URLs where p = 0.02). This observation suggests that
intermediaries are filtering when choosing what content to
post (more on that below).

Our trend is remarkably universal. No matter what URL
popularity metric is used, or what intermediary definition is
used, the trend is statistically significant. We present a few
representative results in Fig. 4.

The posting filtering law shows that the network at a
macroscopic level filters information to bias small volume
towards popular content. However this does not detail how
intermediaries select URLs at the microscopic level. It could
be that they simply selectively repost a fixed fraction of
the content they receive. Intermediaries who receive less,
post less; those who follow them receive still less, etc. Fig-
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Figure 3: The posting filtering law. (x-axis) Users
grouped by number of URLs posted, (y-axis) pop-
ularity distribution (by number of bit.ly clicks) of
URLs posted by these users; median and 25%-75%
percentiles shown. Red circles denote real data, blue
triangles denotes a random null hypothesis model.

ure 5 proves the contrary. We first observe (see top plot)
that across activity levels, the popularity of URLs received
by users is roughly the same. By comparison, the URLs
which users choose to post are significantly more popular
than those received; the difference in popularity is even more
striking when only considering the subset of received URLs
that users choose to repost. These gaps narrow for users
posting more than 20 URLs, but this represents less than
1% of intermediaries. Moreover, Fig. 5 (bottom) shows that
the average number of URLs received by intermediaries is
more or less constant across activity levels. However, users
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Figure 4: The posting filtering law is universal
(same axes as Figure 3): (top) posting filtering law
is unchanged when the definition of intermediaries
changes, (bottom left) Blogs All data set, (bottom
right) FB Iphone5 data set (y-axis denotes FB likes).

with different activity levels differ very much in their repost-
ing frequencies. In other words, intermediaries more or less
receive similar URLs (both in number and popularity), but
they choose to repost different subsets of it, usually com-
posed of URLs that are more popular. Note that in addi-
tion to “reposting” URLs they receive, users can also post
URLs which they discover from outside Twitter; however,
even these are quite popular on average (as can be seen by
the gap between the green-triangle line and the blue-square
line in Fig. 5).

Finally, we studied the factors affecting the relative “suc-
cess” of an information intermediary, defined by her num-
ber of followers. We noticed that in general, intermediaries
who post more URLs have more followers, though this trend
shows diminishing returns. Figure 6 plots the raw measure
of success (followers in Twitter, number of likes received by
their comments in Facebook) for users of various activity
levels. We observe that success correlates with user’s ac-
tivity (roughly in proportion of the square root of activity,
also plotted for reference. Note that we do not perform pre-
cise trend fitting here). This trend is observed across our
data sets. Note that we do not claim causality: it is also
possible that popular people tend to become more active.
One can also interpret these diminishing returns naturally
in light of the filtering law. Posting more often correlates
with more occasions to get noticed and gather followers and
likes. At the same time, it corresponds to posting less pop-
ular URLs, which perhaps contribute to overall success to a
smaller degree. For future work, we intend to study what
other attributes of intermediaries (e.g., average popularity
of URLs they post, earliness) correlate with success.
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Figure 5: Selection of popular content by interme-
diaries: (x-axis) User posting activity in number of
URLs, (top y-axis) popularity distribution of URLs
received by these users, and the popularity distri-
butions of URLs posted or reposted by the users.
(bottom left y-axis) distribution of number of URLs
received plotted as red triangle, (bottom right y-
axis) distribution of reposting fraction plotted as
blue circle. (Boxplots show 25%-75% percentiles).

In summary, we have observed two important phenomena
about the posting behavior of intermediaries: First, they are
selective in what they post, such that the average popularity
of URLs posted by an intermediary is inversely proportional
to the amount they post. Secondly, this difference in posting
behavior is explained not by differences in the sets of URLs
received by these intermediaries, but rather by their distinct
decisions of what to post. In effect, we see that intermedi-
aries differ widely in their posting behaviors. In the next
section, we attempt to better understand why such a wide
range of posting behaviors might arise.
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Figure 6: The diminishing return of posting activity: (x-axis) user internal activity in number of URLs,
(y-axis) user “success” (followers, likes).

4. INFORMATION FILTERING MODEL
The previous section showed that information interme-

diaries pick different subsets of content to post, the size of
which also relates to content popularity. Understanding this
behavior in the context of social media efficiency as a whole
raises two questions: Can the intermediaries’ behavior be
understood as the optimization of some natural objective?
If so, would this derived model imply that social curation is
efficient?

Motivation for Model.
It seems natural to assume that intermediaries wish to

increase the attention they receive. The factors that deter-
mine which intermediaries a user chooses to pay attention to
could be classified into two groups: First, endogenous fac-
tors related to the content posted by the intermediary, and
exogenous factors which capture all other variables, such as
the identity of the blogger, her writing quality and style,
etc. Ideally, a model would allow for both types of factors,
reproduce our observations, and remain tractable.

We first note that a model based purely on exogenous
factors cannot satisfactorily answer the two questions above.
If users choose who to follow independently of the content
posted, this could allow for outcomes in which users never
receive content they are interested in. Furthermore, in this
type of model, bloggers can’t optimize their posting behavior
to gather a larger audience. This type of model is both
unrealistic, and makes it impossible to study the questions
we are interested in.

In contrast, a model with endogenous factors immediately
provides a natural explanation for the filtering law. Consider
the following simple example: All content items belongs to
a single topic, and vary only based on their quality. Every
user has an “interest threshold” indicating that they are in-
terested in seeing all content above that quality level. In
response these user interests, each blogger picks a “posting
threshold” and posts all items above that quality level. Each
user follows the blogger whose posting threshold is closest
to their interest threshold, breaking ties randomly. In this
scenario, how would a strategic bloggers behave? Assum-
ing that there was a wide range of user interest thresholds,

it would be in the best interest of bloggers to “spread out”
their posting thresholds – for some to only post the high-
est quality content (to satisfy users only interested in the
highlights), while others post a larger set (to attract more
interested users). If all bloggers posted the same content,
any of the bloggers could change their posting strategy and
attract a larger set of users who prefer them to the rest of
the bloggers.

This simple unidimensional scenario is sufficient to repro-
duce our main findings: (i) Users who receive less content
tend to receive the most popular content. (ii) Intermediaries
have very different posting thresholds / frequencies. (iii)
Less active intermediaries / bloggers generally post more
popular content.

Model Definition: “Blog-Positioning Game”.
We now formally describe our model, which we call the

“blog-positioning game”. This model accounts for arbitrary
content spaces, both endogenous and exogenous attributes
of bloggers, and different ways in which users may decide
which blogger to follow. We define and motivate each com-
ponent of the game below:

Sets of Agents: We use B to denote the set of all bloggers
(these are the strategic agents in our game), and U to de-
note the set of users in the “audience”.

Content Space: We assume that every item of content
lives in an arbitrary space Ω. Every day k, a set of news
items Xk ⊂ Ω are generated from Ω following an arbitrary,
possibly probabilistic, but time-invariant process.

Blogger strategies: We assume that each blogger b picks
a filtering function Fb : Ω → {0, 1}, that indicates for each
possible news item, whether or not the blogger will post it.
We will denote the strategy space of all possible filtering
functions Fb : Ω→ {0, 1} by σ. So, the strategy vectors s in

this game live in the space σ|B| ≡ Σ, where each element of
s corresponds to a specific blogger’s choice of filtering func-
tion. Note that our model can extend to the case where
the blogger filtering functions are stochastic. In this set-
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ting, Fb : Ω→ [0, 1] indicates, for each possible point in the
space, the probability that the blogger will post an item at
this point. All our results carry over to the case of stochas-
tic filtering functions by replacing the utility of a user with
their expected utility, but for ease of notation, we restrict
our analysis to the deterministic case.

The set of items a blogger posts on a given day is not al-
ways the same since the content generated on a given day is
created randomly. However, it seems natural to assume that
when the same exact content is produced, then the blogger
will select the same exact subset to post. Thus, we are in-
terested in pure strategies for bloggers, modeling blogs that
apply an invariant filter to content items that are generated
randomly every day. This contrasts with a mixed strategy,
where the blogger initially fixes a set of strategies, and then
randomly chooses one of them each day based on a coin
toss. Mixed strategies are more general, but seem unnat-
ural: why would a blogger decide to randomly change her
behavior from day to day, in a potentially drastic fashion,
when her target audience has deterministic tastes? 5

Blogger objectives: We assume that bloggers are attempt-
ing to maximize their number of followers (or expected num-
ber of followers). More specifically, they are attempting to
maximize the amount of attention they receive from their
followers. Each follower is worth 1 “attention unit”; in the
case where a user chooses to follow several bloggers, this at-
tention unit is split across these bloggers.

User Utility: How much utility does a user u get from
following blogger b with filtering function Fb? We assume
a user u gets utility Vu(Fb, b) ∈ R from following blogger b
with filtering function Fb. Note that we include b as a sepa-
rate parameter of Vu so that a user’s utility from following
a blogger can depend on the identity of the blogger (this
can capture all exogenous factors), and not simply on the
content they post (the endogenous factors). Also, note that
this utility could be negative, in which case the user would
not choose to follow this blogger. In general, we always al-
low the option for a user to not follow any blogger and get
utility 0 (we assume for simplicity’s sake that if a user has
the choice between following a blogger who gives them util-
ity 0, and not following any blogger, they will choose to not
follow any blogger).

For the sake of illustration, we can specify the following
functional form for Vu, even though the specifics of how Vu is
defined do not affect our theoretical results. We can assume
each user u has an interest function hu : Ω→ R that assigns
a real number to every item, according to its position in Ω.
This value represents how much the user would enjoy seeing
this item. If a user receives a set X of content, we assume
they receive utility

∑
x∈X hu(x) (or it could be a function

of this sum, with diminishing returns). So, if on day k a
user u chooses to follow a blogger b, they will receive utility∑

x∈Fb(Xk) hu(x), where Fb(Xk) = {x ∈ Xk : Fb(x) = 1} is

the set of items posted by blogger b on day k. The value
of this sum may vary by day as content gets randomly pro-

5Note that mixed strategies are fundamentally different from
stochastic filtering functions: The latter model minor day-
to-day “random” variations in an essentially consistent fil-
tering process, but the former imply that bloggers explicitly
make a (perhaps widely) different random choice each day
based on the outcomes of a coin toss.

duced. Thus, we can define the utility Vu(Fb, b) that this
user gets from following b as this sum’s expected value. More

explicitly, Vu(Fb, b) = E
[∑

x∈Fb(Xk) hu(x)
]
, where this ex-

pectation is taken over the probability distribution from
which the daily set of news Xk is drawn from Ω (as well
as over the stochastic filtering function, when appropriate).

How do users pick what blogger to follow?: We spec-
ify 3 separate ways in which a bloggers could pick who to
follow. It turns out that the precise way in which a user
picks her blogger has an enormous effect on the equilibria of
the game. The three models are:

1. Greedy Model: In this model, each user u chooses
to follow blogger b = arg maxB Vu(Fb, b). Note that,
in order for a user to behave this way, she must have
perfect information about every blogger’s posting be-
havior, a strong assumption to make.

2. Satisficing Model: In this model, we assume a user
“satisfices”, meaning that they randomly pick a blog-
ger to follow amongst the ones that make them “happy
enough”. More formally, we assume each user u has a
utility threshold vu, and that they pick which blog-
ger to follow randomly from the set of bloggers b such
that Vu(Fb, b) ≥ vu

6. An alternative and equiva-
lent interpretation is that a user splits their atten-
tion evenly across these bloggers. If we let Su(s) =
{b | Vu(Fb, b) ≥ vu} denote the set of bloggers who
provide user u with at least the required utility under
strategy vector s ∈ Σ, then every blogger b ∈ Su re-
ceives a fraction 1

|Su| of u’s attention (in expectation).

This model can be seen as relaxing the assumption
that users have perfect information about the blogger
behaviors, and could perhaps be seen as more realistic
as a result.

3. Satisficing Model with Blogger Abilities: In this
model, we assume different bloggers have different in-
strinsic “abilities”, which allow us to represent various
external factors that can contribute differently to each
blog’s success (e.g., writing quality, fame, the time
since the blog was created). We model bloggers’ abil-
ities as follows: We suppose that each blogger has an
associated ability ab ∈ [0, 1], and if he provides a user
with at least her required utility vu, the user decides
whether to follow him or not based on his ability. In
particular, a user flips a biased coin that gives heads
with probability ab; if the coin lands heads, the user
follows the blogger, otherwise she does not. As in the
previous section, we can assume a user shares her at-
tention equally among all the bloggers for whom the
coin comes up heads (or that the user picks uniformly
at random from these bloggers). Note that this model
is a strictly more general than the previous model, be-
cause if all bloggers have ability ab = 1, then these
two satisficing models become equivalent. The pri-
mary reason we consider this more general model is
that it allows us to better explain differences in fol-
lower amounts between bloggers that post very similar
content.

6Of course, users need not calculate utility explicitly; they
may have a general notion of whether a blog is“good enough”
to keep them well-informed.
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Formal game definition: Our“blog-positioning game”is a
simultaneous game, in which all bloggers need to pick their
posting strategy Fb ∈ σ, in order to maximize their (ex-
pected) number of followers. We assume that all bloggers
have perfect knowledge of all users’ utility functions Vu, and
of which strategy the users are employing to pick their blog-
ger. Given a strategy vector s ∈ Σ containing every blogger’s
choice of filtering function Fb, each blogger can precisely cal-
culate Vb(s), the number of followers they expect to receive
under this strategy vector.

In the section that follows, we analyze the pure strategy
Nash equilibria of this game, and in addition study how
“efficient” these equilibria are by considering the “price of
anarchy” of the game. We perform this analysis for all three
variants of the game, corresponding to the 3 different ways
users can pick who to follow.

5. OUTCOMES OF BLOG COMPETITION
We now formally analyze the outcomes of the model pre-

sented in Section 4. As mentioned, the precise way in which
users pick their blogger has unexpectedly important con-
sequences on the nature of the game’s equilibria. We are
interested in 2 properties of these games: (i) Whether the
game has pure strategy Nash equilibria, and (ii) Whether
the equilibria of the game are “efficient” relative to the so-
cial optimum (we define social welfare to be the number of
users who follow at least one blogger. More details below).
At a high-level, we will show 3 primary results:

1. Under the greedy user model, there are cases in which
no pure strategy Nash equilibrium exists.

2. Under the satisficing user models (with and without
blogger abilities), the game is an“exact potential game”
and always admits a pure strategy Nash equilibrium.

3. The price of anarchy (ratio of social optimum to the
social welfare under the worst possible Nash equilibria)
of the game under either satisficing user model is at
most 2, and this bound is tight.

5.1 Greedy user model
The first question that we explore is: does the system

admit a pure strategy equilibrium in the greedy user model?
The answer is negative. In fact, we can prove that there
even exist simple cases where only two bloggers are present,
in which no such equilibrium exists.

Proposition 1. Under the greedy user model, there exist
cases where no pure strategy Nash equilibrium exists.

Proof. We will prove this by showing a specific, rela-
tively simple example of the blog-positioning game, in which
no pure strategy Nash equilibrium exists. The example is
as follows: Suppose that the generative process of news cre-
ation creates one item daily in each of 3 points of Ω: p1, p2

and p3, where p1 is the most important item, and p3 the
least. Let us assume that we have a population of 66 users,
distributed in three groups who value items differently:

Number of users Value for
p1 p2 p3

30 +1 +1 +1
20 +1 +1 −1
16 +1 −1 −1

Then with the greedy user model, there is no pure strategy
equilibrium in this scenario even with two bloggers.

First note that we can assume without loss of generality
that each blogger picks from one of the following 3 strategies:
(i) s1, posting only p1 (ii) s2, posting p1 and p2, and (iii)
s3, posting all 3 items. In fact, other strategies such as only
posting p3, or posting p1 and p3, are dominated. Now, we
can construct the 3 × 3 payoff matrix for this game (where
the first number in each pair corresponds to the number
of followers the row blogger gets when they play a given
strategy, and the second number corresponds to the column
blogger’s payoff):

s1 s2 s3

s1 (33, 33) (16,50) (26, 40)
s2 (50, 16) (25, 25) (20,30)
s3 (40,26) (30, 20) (25, 25)

This payoff matrix is computed by considering how many
followers each blogger would get, depending on their strategy
and their opponent’s strategy, under the greedy user model.
For example, if both bloggers play strategy s1, they give all
66 users utility 1, and thus they each in expectation receive
33 users. All other elements of this matrix are computed
similarly. For each column, we put in bold the optimal pay-
off for the row player (indicating their best response), and
similarly for each row we put in bold the best response for
the column player. The fact that there is no pure strategy
Nash equilibrium is immediately evident from the fact that
no element of this payoff matrix contains both elements in
bold font. This indicates that there is no scenario in which
both bloggers are playing optimally, given the behavior of
the other. So there is always incentive for at least one blog-
ger to deviate from their strategy, and this proves that no
pure strategy Nash equilibrium exists in this game.

We note that though this proposition applies to a specific
news generation process and scoring function, it is in fact
possible to come up with many such examples, particularly
in continuous content spaces Ω, with continuous user interest
functions iu. The greedy strategy followed by users generally
forbids that bloggers that only use a deterministic strategy
converge to a stable Nash equilibrium. This seems at odds
with the state of the blogosphere. Though chaotic, it seems
to be a reasonably stable environment, with blogs following
fairly consistent strategies.

Note that the greedy model seems a natural simple first
step, but it generally ignores any exogenous factors differ-
entiating bloggers, and the search costs, frictions or lack of
perfect information that in practice make it difficult for a
user to pick the blogger who is “optimal” for her interest.
How is the expected behavior of the game altered if one
changes this greedy model to assume that users satisfice:
that is, they pick a blogger who is “good enough”. In such
cases, bloggers still compete for attention but, surprisingly,
this relaxation of the greedy model is sufficient for the game
to always reach a stable state with deterministic filtering.

5.2 Satisficing user models
We now discuss the theoretical results for the satisficing

user models. We will prove all our results for the more gen-
eral model with blogger abilities, and thus all the results
hold for the model without blogger abilities as well (recall
that the model without blogger abilities is a special case
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of the model with blogger abilities, where all bloggers have
ability 1).

The way we will prove that pure strategy Nash equilib-
rium exist will be by using results from potential games; in
particular, our approach is inspired by the proof of existence
of an equilibrium in [12], following a result from [15]. We
review the relevant notation, as well as this corollary, below;
the notation is adapted from [15]:

We consider games Γ with n players B = {1, . . . , n}. Each
player i picks a strategy from their set of strategies σi. The
set of strategy profiles is Σ = σ1 × σ2 × . . . × σn. Player
i has payoff function Vi : Σ → R. For A ⊆ B, we denote
the complement of A by −A, and we denote the Cartesian
product ×i∈Aσi by ΣA. For sets A with one or 2 elements
{i} or {i, j}, we denote Σ−A by Σ−i or Σ−i,j . Lastly, for a
function G : Σ → R, we will sometimes use G as if it were
a function G : σi × Σ−i → R, or as a function G : σi × σj ×
Σ−i,j → R.

Definition 1. A game Γ is an exact potential game if
there exists a function Φ: Σ→ R such that for any player i,
any xi, zi ∈ σi, and any s−i ∈ Σ−i,

Vi(xi, s−i)− Vi(zi, s−i) = Φ(xi, s−i)− Φ(zi, s−i).

Definition 2. A game Γ is a finite game if it has a finite
number of players, each with a finite number of strategies
(i.e., both B and Σ are finite).

Now, we review Corollary 2.9 from [15], which we will use
to prove that our game is an exact potential game:

Theorem 2. A game Γ is an exact potential game if and
only if ∀i, j ∈ B, ∀a ∈ Σ−i,j, ∀xi, x′i ∈ σi and ∀xj , x′j ∈ σj,
the following holds:

Vi(x
′
i, xj , a)− Vi(xi, xj , a) + Vi(x

′
i, x
′
j , a)− Vi(x

′
i, xj , a) +

Vi(xi, x
′
j , a)− Vi(x

′
i, x
′
j , a) + Vi(xi, xj , a)− Vi(xi, x

′
j , a) = 0.

Now, we review a (slightly modified) version of Corollary
2.2 from [15], which we will need as well in our proof:

Theorem 3. Every finite exact potential game possesses
a pure strategy Nash equilibrium.

Now we can prove our equilibrium result:

Theorem 4. The blog-positioning game in the satisficing
user model with blogger abilities is an exact potential game,
and has a pure strategy Nash equilibrium.

Proof. To prove the statement we use Theorem 2, adapt-
ing its notation to our setting. Let Σ−i,j denote the strat-
egy space of all bloggers except i and j. According to
Theorem 2, we must prove that for any pair of bloggers
i, j ∈ B, for any s−i,j ∈ Σ−i,j , and for any posting strate-
gies Fi, F

′
i , Fj , F

′
j ∈ σ,

Vi(F
′
i , Fj , s−i,j)− Vi(Fi, Fj , s−i,j) + Vj(F

′
i , F

′
j , s−i,j) +

− Vj(F
′
i , Fj , s−i,j) + Vi(Fi, F

′
j , s−i,j)− Vi(F

′
i , F

′
j , s−i,j) +

+ Vj(Fi, Fj , s−i,j)− Vj(Fi, F
′
j , s−i,j) = 0

where Vi(s) is blogger i’s payoff under strategy profile s ∈ Σ
(as above).

First, let us compute the utility of a blogger i when she
selects a posting strategy Fi. Recall that Su(s) denotes the

set of bloggers which“satisfy”user u. We abuse notation and
write Fi ∈ Su if blogger i is in Su when she plays Fi. We
use Ui = {u ∈ U : Fi ∈ Su} to denote the users to whom a
blogger i would provide their required utility if she picked a
posting set equal to Fi. Similarly, we let U ′i = {u ∈ U : F ′i ∈
Su}. Uj , and U ′j are defined similarly for blogger j. Let
G(u)−i be the random variable for the number of bloggers
followed by u not including i, when these bloggers play s−i =
(Fj , s−i,j). Similarly, let G(u)−i,j be the random variable
for the number of bloggers followed by u not including i, j,
when those bloggers play s−i,j :

Vi(Fi, Fj , s−i,j)

=
∑
u∈Ui

ai E

[
1

G(u)−i + 1

]

=
∑

u∈Ui−Uj

ai E

[
1

G(u)−i + 1

∣∣∣∣ u /∈ Uj

]

+
∑

u∈Ui∩Uj

ai E

[
1

G(u)−i + 1

∣∣∣∣ u ∈ Uj

]

=
∑

u∈Ui−Uj

ai E

[
1

G(u)−i,j + 1

]

+
∑

u∈Ui∩Uj

aiaj E

[
1

G(u)−i,j + 1

]

+
∑

u∈Ui∩Uj

aiaj E

[
1

G(u)−i,j + 2

]
,

where aj = 1 − aj . Subsequently, we use the following no-
tation:

e(u) = E

[
1

G(u)−i,j+1

]
,

e′(u) = E

[
1

G(u)−i,j+2

]
.

Now, we can rewrite the utility of blogger i playing Fi as:

ai
∑

u∈Ui−Uj

e(u) + aiaj
∑

u∈Ui∩Uj

e(u) + aiaj
∑

u∈Ui∩Uj

e′(u)

= ai
∑
u∈Ui

e(u) − ai
∑

u∈Ui∩Uj

e(u) + ai(1− aj)
∑

u∈Ui∩Uj

e(u)

+ aiaj
∑

u∈Ui∩Uj

e′(u)

= ai
∑
u∈Ui

e(u) − aiaj
∑

u∈Ui∩Uj

e(u) + aiaj
∑

u∈Ui∩Uj

e′(u)

Now we can write the formula of Theorem 2:

Vi(F
′
i , Fj , s−i,j)− Vi(Fi, Fj , s−i,j) + Vj(F

′
i , F

′
j , s−i,j)

−Vj(F
′
i , Fj , s−i,j) + Vi(Fi, F

′
j , s−i,j)− Vi(F

′
i , F

′
j , s−i,j)

+Vj(Fi, Fj , s−i,j)− Vj(Fi, F
′
j , s−i,j) =
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ai
∑
u∈U′i

e(u) − aiaj
∑

u∈U′i∩Uj

e(u) + aiaj
∑

u∈U′i∩Uj

e′(u)

−(ai
∑
u∈Ui

e(u) − aiaj
∑

u∈Ui∩Uj

e(u) + aiaj
∑

u∈Ui∩Uj

e′(u))

+aj
∑
u∈U′j

e(u) − aiaj
∑

u∈U′i∩U
′
j

e(u) + aiaj
∑

u∈U′i∩U
′
j

e′(u)

−(aj
∑
u∈Uj

e(u) − aiaj
∑

u∈U′i∩Uj

e(u) + aiaj
∑

u∈U′i∩Uj

e′(u))

+ai
∑
u∈Ui

e(u) − aiaj
∑

u∈Ui∩U′j

e(u) + aiaj
∑

u∈Ui∩U′j

e′(u)

−(ai
∑
u∈U′i

e(u) − aiaj
∑

u∈U′i∩U
′
j

e(u) + aiaj
∑

u∈U′i∩U
′
j

e′(u))

+aj
∑
u∈Uj

e(u) − aiaj
∑

u∈Ui∩Uj

e(u) + aiaj
∑

u∈Ui∩Uj

e′(u)

−(aj
∑
u∈U′j

e(u) − aiaj
∑

u∈Ui∩U′j

e(u) + aiaj
∑

u∈Ui∩U′j

e′(u))

with one line for each of the 8 terms of the formula. Now,
if you look carefully down each of the three columns of the
above formula, you will notice that all the terms in each
column cancel out. For example, in the first column of terms,
the expressions in rows 1 and 6 cancel out. Similarly, in the
second and third columns of terms, the expressions in rows
2 and 7 cancel out. Thus, adding these all together, we
obtain a sum of 0, which completes the proof that the blog-
positioning game is an exact potential game. Now, by simply
noticing that this game is a finite game when Ω is finite, and
the number of bloggers is finite, we are able to conclude that
a pure-strategy Nash equilibrium always exists7.

We now define the efficiency of a certain strategy profile
s ∈ Σ as the fraction or number of users who end up fol-
lowing at least one blogger under this configuration of the
bloggers; note that this is equivalent to the sum of all the
bloggers’ utilities. We will now analyze the efficiency of the
pure strategy Nash equilibrium of this game, by finding a
bound on its price of anarchy. We recall the concept of price
of anarchy:

Definition 3. Let W : Σ → R+ be the social welfare
function of a game, where Σ is the space of strategy profiles.
Let E ⊆ Σ be the set of strategy profiles which are equilibria.
The price of anarchy is defined as:

PoA =
maxs∈Σ W (s)

mins∈E W (s)

The closer to 1 the price of anarchy of a game is, the more
robust it is to its players behaving selfishly. The idea here
is that if players behave selfishly, we expect their behavior

7These results extend to the case of an infinite and/or con-
tinuous content space Ω. No matter the nature of the con-
tent space, the space σ of posting strategies can always be
divided into 2|U| discrete areas, where each area corresponds
to the set of posting strategies that would result in a subset
Z ⊆ U of the users being “satisfied”. A blogger’s payoff sim-
ply depends on which of these areas she chooses her posting
strategy from. Thus, regardless of the nature of the content
space, or of the user’s utility functions, this can be seen as
a finite game.

to converge to an equilibrium; and if the price of anarchy
is close to 1, that implies that the social welfare at this
equilibrium must be close to the social optimum.

We will now prove that the blog-positioning game is ef-
ficient, in the sense that it has a low bound on its price of
anarchy.

Theorem 5. The blog-positioning game under the model
of satisficing users with blogger abilities has price of anarchy
at most 2.

Proof. From the definition of the Price of Anarchy, let
s∗ be the strategy profile in Σ that maximizes W (s∗) and
let s ∈ E be the strategy profile in E that minimizes W (s).
For each blogger i, let s∗i denote the strategy of i in s∗, and
si denote the strategy of i in the equilibrium strategy profile
s; similarly, s−i denotes the strategy of all bloggers except i
under strategy profile s.

Let Satu(s) and Satu(s∗) denote the set of bloggers which
satisfy user u under strategy profiles s and s∗ respectively.
Let Bu = Satu(s∗)−Satu(s), the set of bloggers who satisfy
u under s∗ which didn’t satisfy u under s. Let Pu(s) denote
the probability that user u follows at least 1 blogger under
strategy profile s. Note that Pu(s) = 1−

∏
i∈Satu(s)(1−ai).

Similarly, Pu(s∗) = 1−
∏

i∈Satu(s∗)(1− ai). Since the total
utility of the system is defined as the number of users who
follow at least one blogger, the difference between Pu(s∗) and
Pu(s), when summed over all users u, must account for the
difference in total welfare between W (s∗) and W (s). Below,
we will bound the difference between Pu(s∗) and Pu(s).

We first define the function P ′u(·), such that for any sub-
set A of the bloggers B, P ′u(A) = 1−

∏
i∈A(1− ai) denotes

the probability that u follows at least 1 blogger in A, un-
der the assumption that u is satisfied by all bloggers in A.
Thus Pu(s) = P ′u(Satu(s)). Now, for any blogger i, user
u, and strategy vector s, let bi,u(s) denote the expected at-
tention blogger i receives from user u under strategy vector

s. Note that for i ∈ Satu(s), bi,u(s) = ai E
[

1
1+G(u,s)−i

]
,

where G(u, s)−i denotes the random variable for the num-
ber of bloggers followed by u, not including blogger i, under
strategy vector s. We also use G(u, s) to denote the random
variable for the total number of bloggers followed by u under
strategy vector s.

To show the claim, we first prove two technical lemmas:

Lemma 1. Let {x1, . . . , xn} be a set of numbers xi where
0 ≤ xi ≤ 1. Then

∑n
i=1 xi ≥ 1−

∏n
i=1(1− xi)

Proof of Lemma 1: We use induction to prove the equiv-
alent inequality:

∏n
i=1(1 − xi) ≥ 1 −

∑n
i=1 xi. As the base

case (n = 1), note that
∏n

i=1(1−xi) = 1−x1 = 1−
∑n

i=1 xi,
so the inequality holds. For the inductive case, note the fol-
lowing:

∏n+1
i=1 (1 − xi) = (1 − xn+1)

∏n
i=1(1 − xi) ≥ (1 −

xn+1)(1−
∑n

i=1 xi) = (1−
∑n

i=1 xi)−xn+1+xn+1

∑n
i=1 xi ≥

1−
∑n+1

i=1 xi. 2

Lemma 2. If {A1, A2} is a partition of a set A ⊆ B, then
P ′u(A) = P ′u(A1) + (1− P ′u(A1))P ′u(A2).

Proof of Lemma 2: Recall that P ′u(A) = 1−
∏

i∈A(1−
ai). From this definition we can directly prove the claim:
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P ′u(A1) + (1− P ′u(A1))P ′u(A2)

= 1−
∏
i∈A1

(1− ai) + (
∏
i∈A1

(1− ai))(1−
∏
i∈A2

(1− ai))

= 1−
∏
i∈A1

(1− ai) +
∏
i∈A1

(1− ai)−
∏

i∈A1∪A2

(1− ai))

= 1−
∏

i∈A1∪A2

(1− ai)) = P ′u(A) 2

Now we will prove that for any user u:

Pu(s) +
∑

i∈Bu
bi,u(s∗i , s−i) ≥ Pu(s∗).

In fact, Pu(s) +
∑
i∈Bu

bi,u(s∗i , s−i)

= Pu(s) +
∑
i∈Bu

ai E

[
1

1 +G(u, s)−i

]
≥ Pu(s) +

∑
i∈Bu

ai Pr[G(u, s)−i = 0]

= Pu(s) +
∑
i∈Bu

ai Pr[G(u, s) = 0]

= Pu(s) +
∑
i∈Bu

ai(1− Pu(s))

= Pu(s) + (1− Pu(s))
∑
i∈Bu

ai

≥ Pu(s) + (1− Pu(s))(1−
∏

i∈Bu

(1− ai))

= P ′u(Satu(s))
+ (1− P ′u(Satu(s))) · P ′u(Bu)
≥ P ′u(Satu(s∗) ∩ Satu(s))

+

(
(1− P ′u(Satu(s∗) ∩ Satu(s)))

∗ P ′u(Satu(s∗)− Satu(s))

)
= P ′u(Satu(s∗))
= Pu(s∗),

where the third step follows from the fact that user u defi-
nitely does not follow blogger i under strategy vector s (be-
cause i ∈ Bu, the set of bloggers which satisfy u in s∗ but not
s), so G(u, s) = G(u, s)−i, the sixth follows from Lemma 1,
the seventh by the definitions of Pu and P ′u, the eighth from
the fact that P ′u(Satu(s)) ≥ P ′u(Satu(s∗) ∩ Satu(s)), and
the ninth from Lemma 2. All the other steps follow from
the definitions or direct algebraic manipulations.

Now we are ready to prove the main claim that 2W (s) ≥
W (s∗). To do this, we take the final inequality, and sum
over all users u:

Pu(s∗)− Pu(s) ≤
∑
i∈Bu

bi,u(s∗i , s−i)

⇒
∑
u

(Pu(s∗)− Pu(s)) ≤
∑
u

∑
i∈Bu

bi,u(s∗i , s−i).

Notice, that
∑

u Pu(s∗)−
∑

u Pu(s) = W (s∗)−W (s). So:

W (s∗)−W (s) ≤
∑
u

∑
i∈Bu

bi,u(s∗i , s−i)

=
∑
i∈B

∑
u:i∈Bu

bi,u(s∗i , s−i)

≤
∑
i∈B

∑
u∈U

bi,u(s∗i , s−i)

=
∑
i∈B

Vi(s
∗
i , s−i)

≤
∑
i∈B

Vi(si, s−i)

= W (s).

Note that the last inequality follows from the fact that
Vi(s

∗
i , s−i) ≤ Vi(si, s−i), because s is a Nash equilibrium.

This concludes the proof that 2W (s) ≥W (s∗).

We note that one can also use the framework of [17] to
prove Theorem 5, but this requires a somewhat laborious
demonstration that the blog game is a “valid utility system”;
in our setting, it is easier to give a direct bound. Further-
more, this framework cannot be used to prove Theorem 4
and similar results on the existence of pure strategy equilib-
ria.8

Next we prove that the theorem above is essentially tight.

Proposition 6. The price of anarchy of the system in
the satisficing user model with blogger abilities is at least
2− ε for any ε > 0.

Proof. We present a simple equilibrium example with
the claimed gap. Suppose that in the system there are only n
bloggers, each with ability 1, and 2n−1 users. Furthermore,
suppose that n users are interested in the item in position
p1 and give positive score only to it, and each user n + i is
interested only in the item in position i and gives positive
score only to it.

In this scenario there is a strategy s∗ that covers all users;
one blogger covers the first n users and then each other blog-
ger can cover a distinct user. So strategy s∗ has welfare
2n − 1. But now consider the equilibrium in which all the
bloggers are covering the first n users; this is an equilibrium
because no blogger can increase her share of user attention
by moving, and the welfare of this equilibrium is n. The PoA
is then equal to 2n−1

n
. Thus, ε > 1

n
yields the claim.

6. DISCUSSION
Our results demonstrated a new prevalent effect in social

media: Users of various activity levels exert different content
selection within a topic, varying from broad-interest posts
to more niche content. As our empirical results suggest, this
phenomenon is present at various scales, for various social
media and topics. This observation has important conse-
quences. Most importantly even a population of intermedi-
aries with various abilities can collectively serve efficiently
the interests of an arbitrary population of users. A simple
reward by audience size, that is naturally implemented to-
day by advertising, is sufficient. However, this result is a
non-trivial one as it depends on reader’s aggressiveness to
react to various news offerings.

Our work relies on a few assumptions that also point
to interesting future research. First of all, we deliberately
avoided domain specific metrics of quality and success in

8The blog positioning game does not satisfy the require-
ments of a “basic utility system”, which would be required
to prove the existence of a pure strategy Nash equilibrium.
Therefore, Theorem 4 does not follow from previous work of
[17] and others.

54



our empirical study, to study how blogs behave in function
of popularity or quality within a topic. This was shown to be
fruitful as it applies well to blogs focusing on a single topic
of expertise. However, when more domain specific metrics
are available, relating filtering to multiple dimensions such
as political leaning and diversity of topics can bring addi-
tional insight on the ingredient of successful information in-
termediaries. Second, in our model a two-hop information
flow is sufficient to explain how a few selected news reach
a very large audience. Indeed, recent results highlighted
that viral dissemination generally goes only through a few
hops [8]. Nevertheless, a generalization of information filter-
ing through multi-hop dissemination could offer even more
insights. As an interesting example, we note that all our
results extend to the case where users cannot pick any blog
but need to choose one in a given subset. Many related top-
ics – such as predicting the success of a post or a user, and
understanding information cascades – can be revisited us-
ing a game theoretical model of information intermediaries.
Our work is a stepping stone to understand these issues as
it provides such a tool and shows how it already relates to
users’ behavior in today’s social media.
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