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Abstract—The increase in data consumed by smart-
phones is becoming a huge problem for mobile operators.
In three years, mobile data traffic in AT&T’s network
rose 5000%. The US operators invest $50 billion in the
data networks every year and the technology upgrades
and innovation still fail to keep up with the demand.

In this paper we design two algorithms for delay-
tolerant offloading of bulky, socially recommended content
from 3G networks. The first one, called ”MixZones”,
uses opportunistic, ad hoc transfers between users, and is
assisted by predictions made by the network operator. The
second one, called ”HotZones”, exploits delay tolerance
and tries to download contents when users are close to
Wi-Fi access points; it is also assisted by predictions made
by the operator. We evaluate both algorithms using a large
data set, obtained from a major mobile operator and a
realistic application similar to Apple’s Ping music social
network. The metrics address the amount of offloading,
delay and mobile energy efficiency.

We find that both solutions succeed in offloading a
significant amount of traffic, with a positive impact on
user battery lifetime. Surprisingly, we also find that all
the benefit obtained from the operator with the MixZones
algorithm (i.e with ad hoc exchanges between users) can
be achieved with the HotZones algorithm and a small
investment in Wi-Fi access points. Note that the latter is
considerably less complex to deploy than the former.

I. INTRODUCTION

The rapid proliferation of smartphones is pushing

the existing 3G networks to the limit. Although the

backbone capacities are usually sufficient, it is be-

coming difficult and expensive for mobile operators,

with a strong smartphone offer to provide sufficient

access capacity to their subscribers. After a series of

reported problems [1], AT&T (until recently the only

iPhone vendor in the US) purchased $2 billion mobile

bandwidth from Qualcomm in December 2010 [2].

In addition to this, the increase in the amount of

video clips, music files and photos available on the

Internet is changing the way mobile users search and

access content. In two weeks, YouTube users upload

120-years’ worth of movies in IMDb [3]. This user

generated content is often served to users through social

networks, social bookmarking services and websites
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for organization of social news, such as del.icio.us,

Citeulike, StumbleUpon, Digg or Reddit [4].

Several studies have shown the Zipf popularity dis-

tribution of contents recommended through social net-

works [5]. This means that popular contents are down-

loaded without constraints by a large number of sub-

scribers. Such behavior leads to bottlenecks, especially

in densely populated urban areas during peak usage

hours. This is a strong incentive for operators to offload

a part of the traffic from their 3G access networks, while

preferably maintaining the ability to charge for data.

From users’ perspective, the availability of affordable

data plans and growing popularity of social networks

can be mapped into systematic overuse of battery in-

tensive 3G connection and an avalanche of community

recommended content. Socially recommended content

may not necessarily be needed in real time, however it

is always treated as such and downloaded immediately

via 3G at a high energy cost. For this reason, in the

case of socially recommended content, we propose to

users to trade some delay for energy, and thus extend

the constrained battery life of their smartphones.

We propose two Wi-Fi based solutions for energy

efficient offloading of 3G networks. The focus is on

socially recommended, delay-tolerant content. The first

solution, which we call the MixZones algorithm, ex-

ploits opportunistic exchanges between smartphones, in

the areas called MixZones. The second solution, which

we refer to as the HotZones algorithm, requires covering

a fraction of cells, which we dub HotZones, with Wi-Fi

access points. Both solutions replace a part of the costly

3G transfers with Wi-Fi transfers. In both algorithms the

problem of high Wi-Fi scanning overhead is solved by

the use of prediction, provided by the operator.

We evaluate the algorithms by using a large, oper-

ator provided data set, which contains three months

of activity and mobility for more than half a million

users, in a European capital and its major commuting

suburbs. We compare their performances with the real

time offloading solution, currently deployed by some

mobile operators, which allows users to seamlessly

switch between Wi-Fi and 3G (we call it RT Wi-

Fi Zones). For the evaluation purposes, we design a

realistic application similar to Apple’s Ping music social



network. It allows users to request music, by relying on

social recommendation, from a catalogue characterized

by Zipf popularity distribution.

Our contributions are the following:

We design two different algorithms for delay-tolerant

offloading of large, socially recommended content from

3G networks (MixZones, based on opportunistic trans-

fers and HotZones supported by Wi-Fi access points).

We evaluate the algorithms using a large data set and

we compare them with the real-time offloading solution

currently deployed by operators.

We find that both solutions succeed in offloading

a significant amount of traffic, with a positive effect

on user battery lifetime. More specifically, we show

that prediction and delay (in the order of a few hours)

can reduce the battery consumption coming from 3G

transfers of delay-tolerant content for up to 50%. We

also show that the Wi-Fi coverage needed to offload

a significant amount of traffic (80 − 90%) is reduced

very quickly (by a factor of 3 to 4) when some delay is

tolerated. Finally, we show that both algorithms deliver

content with lowest delay during the peak hours, when

offloading is most needed.

Surprisingly, we find that all the benefit achieved with

the comprehensive, operator supported opportunistic

algorithm (MixZones) can be achieved with the less

complex HotZones algorithm and a small investment

in Wi-Fi access points.

The rest of the paper is organized as follows:

In Section II we present the problem background. In

Section III we introduce our offloading solutions. In

Section IV we describe the evaluation setup. In Sec-

tion V we present the performance evaluation results. In

Section VI we present the related work. In Section VII

we conclude the paper and in Section VIII we discuss

some interesting directions for the future work.

II. PROBLEM BACKGROUND

A. Mobile Data Explosion

When mobile data was introduced in the early 2000s,

operators unsuccessfully looked for applications that

would instigate subscribers to use slow 2.5G networks

on their voice-centric phones. It was the e-mail appli-

cation on the first data-centric smartphones that started

to reverse the situation. The appearance of iPhone in

2007 finally changed everything and exposed users to

rich data services, such as mobile video.

This event transformed users’ perception of mobile

Internet, but it also transformed the problem of unused

capacity in cellular data networks into a problem of

enormous growth of mobile data traffic. According to

AT&T, from March 2006 to May 2009, mobile data

traffic in AT&T’s network rose 5000% on the national

level. Figure 1 compares the growth in voice and data

Figure 1. The growth of data relative to voice traffic in North
America. The two inflection points for data correspond to releases of
iPhone (July 07) and iPhone 3G (July 08).(Source: Rysavy Research)

traffic in the North America, from January 2007 to May

2009. The impact iPhone releases is clearly visible.

B. Offloading vs. Capacity Increase

The problem the growth of mobile data traffic creates

is particularly difficult to solve in the radio access part

of the network. The part of the spectrum that an operator

has at its disposal is limited and the efficiency of its

exploitation depends on the deployed technology.

Building new cell sites or upgrading to new technolo-

gies are expensive fixes that have been applied for the

past few years. It is estimated that cellular operators

in the US invest $50 billion in their data networks

every year [6]. Innovation on the other hand evolves

the efficiency of transmission and reception, but it can

not eliminate the fact that the number of bits that can

be sent in a radio stream is limited. In spite of the

continuous effort to deliver higher bandwidth over more

spectral efficiency, even the new generation 4G/LTE

networks are not capable of serving growing demand

in the densely populated urban areas.

An alternative to capacity build-up is traffic offload-

ing through orthogonal solutions. Licensed spectrum

femtocells or unlicensed Wi-Fi can allow to increase

capacity in an area, while avoiding network bypassing

(connections via alternative Wi-Fi networks). Operators

want to avoid bypassing and maintain control over data

exchanged through the unlicensed spectrum, in order to

monetize it. Since May 2010, AT&T has been deploying

Wi-Fi access points in areas with consistently high 3G

traffic and mobile data use [7]. We compare this solution

with our delay-tolerant, prediction based algorithms.

C. The Challenges of Wi-Fi Offloading

Given the classification in II-B, our approach can

be classified as orthogonal offloading through the un-

licensed spectrum, namely Wi-Fi. As previously ex-

plained, our principal goals are (i) to offload data from

the 3G network and (ii) to offer users a possibility to



trade delay for extended battery lifetime. We want to

achieve these goals by replacing the energy costly 3G

transfers with more efficient Wi-Fi exchanges. The chal-

lenges are however the Wi-Fi’s limited range, inefficient

idle state and high scanning overhead.

The energy consumption of different networking in-

terfaces present on today’s smartphones depends on

multiple factors, such as distance, interference, signal

strength or device model. Thus, the dependency between

the size of the transferred data and the energy consumed

by the used networking interface is commonly obtained

by averaging series of measurements at different lo-

cations, at different times of the day and by different

devices [8], [9], [10], [11]. In Table I we summarize

the results presented in [8] and [12].

Transfer (J/MB) Idle (W) Scan (W)
3G 100 0 0
Wi-Fi 5 0.77 1.29
Bluetooth 0.1 0.01 0.12

Table I
CONSUMPTION OF SMARTPHONE NETWORKING INTERFACES.

We see that, observed purely from the aspect of

energy required for data transfers (and ignoring the

range), Wi-Fi is much more efficient than 3G. However,

any solution that requires smartphones to keep their

Wi-Fi interfaces switched on, constantly scanning for

transfer opportunities, would actually consume more,

and not less energy than 3G transfers. Let’s see it on

the example of an iPhone 4 and its 5.25Wh battery.

When switched on, an iPhone’s Wi-Fi interface inter-

changeably scans for 1s and then spends 8s in idle state.

Given the values in Table I, simple calculus gives us

that in this regime the daily consumption of iPhone’s

Wi-Fi interface would be 19.87Wh. This means that

the battery of an iPhone that performs continuous Wi-

Fi scanning empties in less than 6.5h.

So, in the ideal case, 3G transfers would be replaced

with energy more efficient Wi-Fi transfers whenever

possible, but Wi-Fi interfaces would be switched off

whenever transfer opportunities are not present. In other

words, Wi-Fi craves for alternative solutions for the

detection of transfer opportunities. In order to solve this

problem, we use prediction provided by the operator.

III. OUR OFFLOADING SOLUTIONS

A. HotZones Algorithm

A HotZone is a cell, partly covered by the operator

owned Wi-Fi access points. We do not expect this

coverage to be perfect. So, when in a HotZone, a user

can expect to receive a requested content through one

of these access points with probability p. We assume

that an operator deploys the Wi-Fi access points in

Procedure 1 Serving user’s requests in a network

with HotZones.

if (Su
r (t) 6= ∅) then

if (c ∈ H) then

Turn on WiFi interface;
Try to serve all r ∈ Su

r (t) via WiF i;
//a success with probability p

else

Get τu
H

= time before u enters a cell ∈ H ;
for all r ∈ Su

r
(t) do

if (τr expires in ≤ τu
H
) then

Serve r via 3G;
else

Do nothing;
end if

end for

end if
end if

addition to the existing 3G infrastructure, with the goal

of offloading a part of the traffic from the 3G network.

In the process of HotZones selection, an operator

first extracts typical mobility profiles of its subscribers.

We refer to these profiles as User Mobility Profiles

(UMPs). The process of their extraction is described

in Section III-D. With the UMPs created, an operator

ranks cells based on the average number of daily visits.

Then, a set of HotZones H is chosen in a greedy way,

so that a cell with the highest number of daily visits

is added first to the set, the second most visited cell

is added second, etc. The cardinality of the set H is a

tradeoff between the cost of the Wi-Fi deployment and

targeted benefits. As we show in Section V, this number

strongly affects the observed performance measures.

The rationale behind the greedy selection of Hot-

Zones is that a user’s request does not have to be served

in a cell where it is created. As we target delay-tolerant

offloading (keeping in mind that Wi-Fi access points are

affordable, but not free) it makes sense to concentrate

on cells with a high number of daily visits.

Once the set of HotZones H is created, an operator

sends it to each user, along with her UMP. The operator

can also send occasional updates if needed (for example

if a new cell is covered by Wi-Fi). As any mobile

application can obtain the real-time information about

the current cell, it can use the set of HotZones and

the UMP for the prediction of Wi-Fi availability. A

whole class of mobile applications, where delay-tolerant

content is requested can benefit from such prediction.

One such application, which we use in our evaluation

is described in Section IV-B. Let us denote by Su
r
(t)

the collection of pending requests of a user u (i.e. the



user u’s requests that are still not served at time t). Let

us denote by c the current cell of the user u. Finally,

let us denote by D the maximum delay users permit.

Each time a request r is created, a timer τr with timeout

equal to D is set by the application. If the request is not

served before the expiry of the timeout, it is served via

3G. Using these parameters, the application on user u’s

smartphone performs Procedure 1 every TP minutes.

We see that the application relies on the user’s UMP

for the prediction of possible Wi-Fi transfer opportuni-

ties within the allowed delay D (enforced with timers

τr). If such an opportunity is not likely to emerge, the

pending requests in the set Su
r (t) are served immedi-

ately through 3G in order to minimize delivery delays.

B. MixZones Algorithm

A MixZone is a (c, t) pair (where c denotes a cell and

t denotes an hour of the day). The set of MixZones M is

selected by an operator using the following probabilistic

geometric model. Let us denote by Ae
c the effective area

of a cell c. Let us denote by R the Wi-Fi radio range

(90m) and let us denote by Nc(t) the number of users

in cell c during hour t. A pair (c, t) is added to the set

M if, on average, the following condition is satisfied

for hour t:

pc(t) = 1− (1 −
R2π

Ae
c

)Nc(t) ≥ Pthresh

Probability pc(t) is an estimate of the probability

that a user in a cell c enters the range of another user

during hour t. We assume that the spatial distribution

of users in cell c is uniform. Pthresh is the value of the

probability pc(t), which needs to be exceeded at hour t
in order for the pair (c, t) to be added to the set M . The

effective area of the cell Ae
c is introduced to compensate

for the assumption of uniformity, as there are regions

in each cell that are less likely to be visited by users.

Thus, Ae
c represents 90% of the cell area in the case of

small cells (A < 4km2), 75% in the case of medium

cells and 60% in the case of large cells (A > 25km2).

The HotZones algorithm has only the spatial dimen-

sion. With the MixZones algorithm, we also have the

temporal dimension. A cell that is a MixZone at time

t1 is not necessarily a MixZone at time t2, t2 6= t1.

This is because the MixZones algorithm is based on

opportunistic transfers, which means that users that want

to exchange content have to be in radio range, with their

Wi-Fi interfaces switched on during the same period of

time. As we want to avoid the Wi-Fi scanning, it is

the operator who decides when and where the Wi-Fi

interfaces on a group of users’ devices are switched on.

In the case of the MixZones algorithm the quasi-static

user mobility profiles (UMPs) are not sent to users.

Instead, an operator uses UMPs, along with the set M ,

Procedure 2 Serving user’s requests in a network with

MixZones.

if (c ∈ M) then
Turn on WiFi interfaces in set Uc(t);
Opportunistic WiF i transfers among users;

else
for all users u in cell c do

Get τu
M

= time before u enters a cell ∈ M ;
for all r ∈ Su

r (t) do
if (τr expires in ≤ τu

M
) then

Serve r via 3G;
else

Do nothing;
end if

end for

end for

end if

to concurrently signal to a group of users’ smartphones

if their Wi-Fi interfaces need to be switched on. As

UMPs and set M are stored only on the operator side,

they can be refreshed more often, using the information

coming from calls and data sessions.

As the MixZones algorithm is based on opportunistic

exchanges, it is assumed that every user has a cache,

where she stores content that can be sent to other users.

Additionally, it is assumed that an operator has the

real-time insight in the content requested by users and

content available in users’ caches. Whenever a user

creates an item request or receives an item, she notifies

the operator’s cloud, by sending the ID of the item.

Similarly as in the HotZones algorithm, let us denote

by Su
r (t) user u’s collection of pending requests. Let us

denote by D the maximum permitted delay. Each time

a request r is created, a timer τr with timeout D is set

by the application. If the request is not served before

the expiry of the timeout, it is served via 3G. Finally,

given the knowledge of items requested by users and

items available in their caches, at any time t and in any

cell c, an operator can select a set of users Uc(t), such

that each selected user: (i) either has items requested by

some other users in c or (ii) requests items available in

caches of some other users in c. Using these parameters,

a server in the operator’s cloud performs Procedure 2
every TP minutes, for every cell c in the network.

The idea behind the creation of the set Uc is to switch

on only the users that can contribute to data transfers.

The problem is similar to the NP hard set cover problem,

where a set of items is to be covered with a number of

subsets. It differs in that in our case each requested item

should be covered by preferably more than one copy, in

order to increase the delivery probability.



C. Implementation Aspects

From the implementation aspect, HotZones algorithm

is less complex to deploy. It requires an operator to

create UMPs and set H and to deliver them to users.

Apart from this initial support from the operator (and

possible occasional updates), the HotZones algorithm

is completely distributed. All decisions with regard

to the use of networking interfaces are made locally

by the smartphone application. The APIs of today’s

smartphone operating systems (such as iOS) enable

applications to switch between 3G and Wi-Fi. An inter-

working WLAN client application on the handset offers

the ability for two functions. The switchover is seamless

and presents a transparent view to the user.

In the case of MixZones algorithm, support for ad hoc

exchanges between users’ smartphones is needed. Such

support exists in the case of iPhone and it is additionally

improved with the release of the iOS 4.3.

Regarding the operator’s assistance, MixZones al-

gorithm is more demanding. First, an operator is re-

quired to maintain a fine-grained knowledge of users’

requests and caches, in order to avoid switching on

Wi-Fi interfaces on devices that can not contribute

to data exchanges. This task can be performed by a

server in the operator’s cloud. The server can receive

small incremental updates, sent by users, following

the changes in their caches or requests. The updates,

containing only item IDs, can be uploaded via 3G. Due

to their small size, they would consume few resources.

Second, MixZones algorithm requires an operator

to switch on Wi-Fi interfaces on users’ smartphones

remotely, so that a group of users in a cell have their Wi-

Fi interfaces turned on during a same time period. There

are multiple possible solutions to this problem. One of

them is the use of control channels. In order to quickly

locate called users, base stations maintain communica-

tion with subscribers, even when they are inactive. Cell

phones send location updates to base stations through

the access channel and base stations occasionally page

users using the paging channel. Control channels are

also used for sending text messages and similarly, an

operator can use them to signal to a smartphone if a

networking interface needs to be switched on.

D. Inferring Users’ Mobility

The most commonly stored users’ activity (and mo-

bility) records are Call Detail Records (CDRs). A CDR

contains calling and called users’ numbers (blank in

case of a data session), date and time, session duration,

caller’s cell ID, cell coordinates, etc. As explained in

Section IV-A, these are precisely the records we have

at our disposal.

As both proposed algorithms rely on users’ mobility,

we use CDRs to obtain it. The approaches to describe

users’s mobility can be classified as: (i) quasi-static,

where a rather permanent list of pre-computed locations

describes the mobility of a user and (ii) dynamic, where

a list of cells is dynamically adjusted (with expires of

cells).

Using only one month of the data set, we extract

what we refer to as quasi-static, user mobility profiles

(UMPs). A UMP is an array of 24 elements, which

contains the most visited cell by a user for each hour

of the day. For each of the half of a million users that

we observe, we extract two such profiles, one for the

weekdays and one for the days of weekend. We use the

remaining two months of data to test how accurately

UMPs predict users’ mobility. With only one month of

data used for the creation of profiles, we obtain a 69%

match with the remaining two months. This relatively

high prediction accuracy, based on a few weeks of data,

is the result of a high correlation between daily mobility

patterns of individual users, especially for the weekdays.

Users tend to visit the same cells at the same hours.

Once an operator has the UMPs extracted, these can

be sent to users (i.e. every user is provided with her own

mobility profile). Although we find that UMPs show

little change over time, it is possible for an operator

to occasionally recalculate UMPs. This way, the quasi-

static mobility profiles can be made more dynamic and

adjustable to possible changes in mobility, which can

occur over time (the change of workplace, address, etc.).

Our algorithms use UMPs for predictions of upcom-

ing areas suitable for Wi-Fi transfers to switch between

networking interfaces. More generally, the mobility

profiles can be used by a wider range of smartphone

applications (for example, any application that sends

push notifications to users based on expected mobility).

Finally, from the perspective of HotZones algorithm,

it is interesting to check if most users generate their

requests from a small subset of frequently visited cells.

Unfortunately, our data shows that this is not the case.

By observing only data session CDRs, over the period of

three months, we can see that users tend to download

content from a wide range of locations. Similarly, by

focusing on MMS records we can see that uploads1 are

made from a variety of locations. Although users request

content from a variety of locations, we notice that a

relatively small subset of cells reoccurs in the majority

of UMPs. These are precisely the highly frequented

cells that are top candidates for HotZones.

CDRs are not the most detailed location logs an

operator can store. Every cellular operator has access to

more detailed location records. They contain informa-

tion exchanged via the paging and access channels. Log

files containing this additional information would allow

1Uploads are less important for the application studied in this paper.



us to recreate UMPs with more accuracy. However, from

the aspect of our goal, CDRs seem to naturally fit the

purpose. They permit us to observe mobility through

activity and as the goal is an activity driven offload,

what is needed are the areas with high user activity.

IV. EVALUATION SETUP

A. About the Data Set Used in the Study

The data set we use is obtained from a major mobile

operator and it consists of CDRs from 1 million users

for a period of three months (October-December 2009).

The data covers an area of a Western European capital

and its major commuting suburbs. We focus our analysis

on 533, 189 users, which had more than 50 records

(calls/data sessions) per month.

B. Social Music Sharing Application

In order to estimate the proposed algorithms’ poten-

tial for offloading of socially recommended contents,

such as music or video, we consider an application that

allows users to request media items based on social rec-

ommendation. All items are part of a catalogue of size I ,

characterized by Zipf(1) distribution. It was shown that

Zipf distribution describes content popularity in many

social and content sharing networks; a recent study of

del.icio.us [15] found Zipf distribution in tags associated

with the URLs flickr.com (photos), del.icio.us (social

bookmarking), pandora.com (music) and youtube.com

(video). The same distribution was found to describe

the popularity of YouTube videos in [3].

We assume that each user has a cache (a library)

with b items. The caches are refreshed following one of

the three popular caching strategies: FIFO, LRU (Least

Recently Used) and LFU (Least Frequently Used). The

LRU and LFU algorithms are completely distributed;

they are based only on user’s local observations of the

requests for each of the items in her cache.

The total of N users request items following two

request dynamics: (i) every time a user A calls a user B,

she requests an item from B’s cache, with the constraint

that the item is not already requested by user A or that

it is not in her cache; (ii) every time a user initiates a

data session she requests an item from the catalogue,

following the Zipf distribution of items’ popularities.

Given these request dynamics, at each moment in

time t, the state of a user u is described by: (i) the

current cell c, (ii) the collection of pending requests

Su
r
(t) and (iii) the collection of available items Su

a
(t)

(i.e. the b items in the user’s cache).

The described application has certain similarities with

two recent Apple projects. In May 2010 Apple filed a

patent application that describes a system for targeted

ads based on the contents of friends’ media libraries. In

September 2010, Apple added a music social network

to iTunes, called Ping, that enables users to share music

preferences with friends [16].

C. Trace Driven Simulation

We design a Java simulation framework that enables

us to perform discrete event simulations, exploiting the

real user mobility and activity, extracted from the data

set described in Section IV-A. The framework permits,

at any moment in time, to keep track of users present

in different cells, the contents of their caches (Su
a (t))

and the lists of their requests (Su
r
(t)); they come as a

result of real calls and data sessions initiated by users.

It also allows us to simulate different caching strategies

and different cache sizes.

We simulate the proposed algorithms with N =
533189 users, who move between C = 1141 cells,

following their real mobility recorded in the CDRs. The

simulation lasts for 30 days, which are different from

the month used to extract UMPs.

With both algorithms, the turning on of a Wi-Fi

interface incurs the energy cost of two 1s-scanning

intervals and 8s of idle state, even if no data transfers

occur. The energy consumption is calculated using the

values in Table I. The parameter Tp is set to 10min.

Figure 2. HotZones (light cells) and the cells that form the MixZone
pairs (dark cells) in the city center. The circle-shaped markers contain
numbers of cell towers in different regions.

There are I = 100K items in the considered media

catalogue. The popularity of items follows Zipf(1) dis-

tribution. Users’ caches are initially filled with items fol-

lowing the same distribution (i.e. the probability that an

item is found in a user’s cache depends on its popularity

obtained from Zipf(1) distribution). The caches remain

full throughout the simulation. The items in them are

replaced following one of the caching strategies. The

item size is uniformly distributed between 5 and 10MB,

which is comparable to the size of a large music file or

an average YouTube video. We run simulations with

cache sizes of b = 100 and b = 1000 items, which



corresponds to 0.75 − 7.5GB of storage space. The

media catalogue size can be compared with sizes of

large music catalogues (such as iTunes), whereas the

simulated cache sizes are a reasonable estimate of the

sizes of personal smartphone media libraries.

We first infer the set of MixZones by setting the

parameter Pthresh. The choice of this parameter is

conditioned by the energy efficiency requirement. As

shown in Figure 9, the value Pthresh = 0.8 saves most

energy and allows to 225 cells to form 2612 MixZone

(c, t) pairs. Next, we look for the set of HotZones that

provides comparable performance to the HotZones algo-

rithm. We find that the top 30 cells, selected following

the procedure described in Section III-B meet this goal.

The HotZones specific parameter p (which denotes the

probability that a request is served via a Wi-Fi access

point in a HotZone) is set to 0.9.

The HotZones in the city center, and the cells that

participate in the MixZone pairs, are shown in Figure 2.

We simulate both algorithms with the value of pa-

rameter D (maximum permitted delay) equal to 1h, 6h
and 24h. In order to evaluate the impact of prediction

and delay tolerance, we also simulate the special case

of the HotZones algorithm, with D = 0, which we dub

the Real-Time Wi-Fi Zones. This solution is currently

considered (or deployed) by a number of operators.

Smartphones (such as iPhone) support it with seamless

switchover between 3G and Wi-Fi.

V. PERFORMANCE EVALUATION RESULTS

Both algorithms achieve significant energy saving.
Up to 75% of traffic offloaded by only 30 HotZones.

For the selected sets of HotZones and MixZone pairs,

we plot the traffic offloaded from the 3G network

and the amount of energy saved, as a function of the

maximum permitted delay D (Figure 3). We see that

for D = 1h, roughly 20% to 40% gets offloaded to

Wi-Fi and 20% to 35% less energy is consumed by the

application. For D = 6h, this fraction goes up to 50%.

In the case of D = 24h, the impressive 60-75% are

offloaded with as few as 30 HotZones.

We can also see that the HotZones algorithm is less

efficient than the MixZones algorithm in case of lower

permitted delays (D = 1h). This is because one can

not expect users to enter one of the very few HotZones

every 60 minutes. However, as the permitted delay in-

creases, users become more likely to enter the HotZones

and the performance of the algorithm improves.

Caching strategy has little effect on performance.
Cache size is crucial for the MixZones algorithm.

One of the first things we observe is that for the

mobility and request dynamics obtained from our data

set, caching strategies have a very limited effect. With

an average of 80 requests per month, and the user cache
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Figure 3. Offloaded traffic and saved energy as a function of permit-
ted delay D. The curves are obtained for the MixZones (225 cells)
and HotZones (30 cells) algorithms, with LRU caching strategy. The
curves for the HotZones algorithm almost overlap.

sizes of b = 100 and b = 1000, the initial Zipf(1)

distribution of items in users’ caches is well maintained

after 30 days, for all three simulated caching strategies.

The Complementary Cumulative Distribution Functions

(CCDFs) in Figure 4 show the initial distribution of

items in users’ caches and the distributions after 30-

day simulations, with LRU, LFU and FIFO caching

strategies. We see that even with the caches of b = 100
items, the system stays stable. Consequently, the values

of the performance metrics that we obtain for these

caching strategies are very similar. In order to avoid

the unnecessary repetition, in the rest of this section we

show the results for the LRU caching strategy only. The

other figures are provided in the technical report.
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Figure 4. Evolution of item popularity distribution: The four curves
are plotted on the log-log scale and they show the initial distribution of
items in users’ caches and the distributions after 30-day simulations,
with LRU, LFU and FIFO caching strategies.

Unlike caching strategy, the cache size plays a major

role in the case of the MixZones (Figure 3). Larger

cache sizes increase the probability that an encoun-

tered user can serve a request. Hence, the improvement

brought by the cache size, is significant. On the contrary,

as expected, the cache size does not affect the HotZones

algorithm, where serving requests depends only on

users’ mobility and the selected set of HotZones. Thus,

the curves for b = 100 and b = 1000 almost overlap.



Most energy saving comes from prediction and
delay tolerance. The special case of the HotZones

algorithm with D = 0 (which we refer to as the RT

Wi-Fi Zones), allows us to estimate the offloading and

energy saving that do not come from prediction and

delay tolerance, but purely from the placement of Wi-Fi

access points. As we see in Figure 3, with 30 HotZones

and D = 0, only about 10% of traffic is offloaded and

about the same amount of energy is saved. This means

that the rest of the improvement observed for higher

values of D comes from prediction and delay tolerance.

The energy improvement brought by prediction can

be better observed in Figure 5. The figure contains

the Cumulative Distribution Functions (CDFs) for the

daily energy consumption of the application, for both

evaluated algorithms and cache sizes. The dotted curve

in two bottom figures is the CDF for the case of RT Wi-

Fi Zones. We see that it almost overlaps with the CDF

coming from pure 3G transfers, yielding less than 10%
improvement (as shown in Figure 3). Again, the increase

in cache size affects only the MixZones algorithm.
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Figure 5. Cumulative Distribution Functions (CDFs) for the daily
energy consumption of the application. The subfigures correspond to
different combinations of the offloading algorithm and cache size b.

In order to better understand the origin of the energy

savings with MixZones and HotZones, we plot two

histograms that show the energy consumed to serve

users’ requests (Figure 6). We see that in the case of

both algorithms a portion of requests is served via 3G.

The energy required to serve such a request ranges from

500 to 1000J , depending on the item size (as explained

in Section IV-C, item sizes are uniformly distributed

between 5 and 10MB). In the case of a pure 3G delivery

(without either of the proposed algorithms) only this

part of the distribution would exist.

However, with MixZones and HotZones algorithms,

we observe a mode on the left, which comes from the

requests served via Wi-Fi. In the case of HotZones, the

mode is formed around the value that corresponds to the

energy needed for a single item download via a Wi-Fi

access point, plus the energy needed for switching on a

Wi-Fi interface. In the case of the MixZones algorithm,
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Figure 6. Request energy histograms show energy consumed to serve
users’ requests. The uniform portion on the right comes mostly from
the requests served via 3G. The modes on the left come from the
requests served via Wi-Fi.

the mode is moved towards the value corresponding to

two Wi-Fi transfers (sending and receiving users), plus

the energy cost of turning on of two Wi-Fi interfaces.

Additionally, in the case of the MixZones algorithm,

this part of the distribution is more skewed, as it is more

likely that a user, with her Wi-Fi interface turned on,

would miss a transfer in a MixZone, than in a HotZone.

This comes from the fact that a user in a HotZone finds

an access point (with access to all items) with proba-

bility p = 0.9 and a user in a MixZone meets another

user (with only b items) with probability Pthresh = 0.8.

Thus, the MixZones algorithm sometimes requires users

to have their Wi-Fi interfaces switched on several times

before a request is served.
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Figure 7. The average delay with which requests are served as a
function of the time of the day and the maximum permitted delay D.

Effective delay in the system is much lower than

the maximum permitted delay D. Another important

performance metric is the delay with which users’

requests are served. The maximum permitted delay D
sets the upper limit on item delivery time. However, as

we can see in Figure 7, the average time with which

users’ requests are served is often much lower than the

value of D. For D = 24h, the requests are actually

served in less then 7h, and as fast as 2h during some

periods of the day (depending also on the algorithm



used). In case of D = 6h, the actual delay is between

1.5h and 3h, while for D = 1h, the requests are served

in 15 − 50 minutes. In Figure 7 we also observe the

time of the day dependency, with lowest delays during

the peak activity hours. This means that the proposed

algorithms offer best offloading performance during the

hours when a 3G network is most heavily loaded.

Real-time offloading requires 3-4 times more Wi-

Fi cells than the delay-tolerant HotZones algorithm.

It is interesting to compare the offloading potential of

the RT Wi-Fi Zones with our delay-tolerant HotZones

algorithm. In order to perform this comparison (in

addition to the analyzed setup with 30 HotZones), we

run the HotZones algorithm with 60, 120, 240, 480 and

960 Wi-Fi covered cells. We do it for the values of

permitted delay D = 0h, 1h, 6h and 24h.
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Figure 8. Offloaded traffic as a function of the number of HotZones.

On Figure 8, we can see that for D = 6h, covering

only 10% of cells with Wi-Fi, results in offloading of

80% of traffic. In order to offload the same amount

of traffic with D = 0h, an operator has to cover four

times more cells with Wi-Fi. Similarly, the HotZones

algorithm permits offloading of more than 90% of traffic

with only 20% of Wi-Fi covered cells, while the RT

Wi-Fi Zones require coverage of more than 70% of

cells for a similar effect. This significant quantitative

improvement, brought by prediction and delay tolerance

in the HotZones algorithm, is even more valuable know-

ing that on average the delays are much lower than D.

MixZones selection is a compromise: Impossible

to maximize both offloading and energy efficiency.
When selecting the number of MixZones (i.e. the al-

gorithm parameter Pthresh), we are guided by energy

efficiency. The value Pthresh = 0.8 is most energy

saving and it offers a solid offloading performance.

Nevertheless, one can opt for another criterion when

choosing the value of Pthres. On Figure 9, we plot the

amounts of offloaded traffic and energy saved for the

values Pthresh = 0.2, 0.5, 0.8 and 0.9. For these values

we get 732, 590, 225 and 131 MixZones respectively.

We see that although the value Pthresh = 0.8
guarantees most energy saving, more traffic gets of-
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Figure 9. The offloaded traffic and saved energy as a function of
the number of Pthreshold (i.e. the number of MixZones).

floaded for Pthresh = 0.2 and 0.5. On the other hand

for Pthresh = 0.9 both offloading and energy saving

deteriorate. This can be interpreted in the following way.

With the decrease of Pthresh (increase in the number

of MixZones), the number of Wi-Fi transfers increases.

However, these new MixZones have lower probability

of meeting between users, which results in the increased

number of Wi-Fi scanning events without data transfers.

This decreases the energy efficiency. On the other hand,

the increase of Pthresh beyond the value of 0.8, reduces

both, the amount of offloaded traffic and the energy

saving, due to too few cells that satisfy this condition.

VI. RELATED WORK

A body of work proposes exploiting different smart-

phone interfaces and mobility for improving download

and energy efficiency. In [17], the authors propose col-

laborative downloading as means of increasing down-

load speeds and battery life. In [11] policies for switch-

ing between multiple interfaces are proposed, with the

goal to increase battery lifetime. Modeling and com-

prehensive measurement studies of energy consumption

by smartphone interfaces were performed in [8], [9],

[10]. In [18], the authors investigate the correlation be-

tween locations and types of users’ activities. Anantha-

narayanan et al. [12] try to improve the energy efficiency

of Wi-Fi by replacing Wi-Fi scanning with Bluetooth

scanning. However, we are the first to estimate the

energy saving in a cellular network coming from the

use of opportunistic bandwidth, while accounting for

the real costs of data transfers and Wi-Fi scanning.

Another related body of work concerns studies of

human mobility [19]. In [14] and [13], the authors use

operator provided data to show that contrary to com-

mon beliefs, humans follow repetitive and reproducible

patterns. We show how this predictability is a key to

solve the issue of energy efficient 3G data offloading.

Finally, closely related to the application analyzed in

this paper are the applications that leverage the cloud

to surpass the limitations of mobile environment [20].



VII. CONCLUSIONS

In this paper we explore the use of prediction and

delay-tolerance for offloading of large, socially recom-

mended contents from 3G networks. We show that the

two algorithms we design enable users to trade delay for

energy and easily reduce battery consumption coming

from 3G transfers of delay-tolerant content for 50%. We

show that the real-time offloading requires Wi-Fi cov-

erage of 3 to 4 times more cells, than our delay-tolerant

algorithm. We find that both algorithms have lowest

delay during the peak hours, when offloading is most

needed. We also demonstrate how operators can benefit

the collected data to offer cloud solutions, appealing to

users (extending battery lifetime) and to the operators

(load balancing between orthogonal technologies).
Finally, we believe that performance evaluation of the

algorithms that uses a realistic application and a large

data set is a contribution on its own. It helps community

get better idea of the performance of a large scale delay-

tolerant application in a mobile network. It also allows

us to gain insight into the possibilities of orthogonal

3G offloading, which is a topic that is likely to become

increasingly important in the days to come.

VIII. DISCUSSION AND FUTURE WORK

In this section we discuss some possible extensions

of this study and a few viable directions for future fork.
First, a complementary study of an application that

relies on uploads could take advantage of the MMS

entries available in the CDR logs. Second, adding the

opportunistic component to the HotZones algorithm

could additionally improve performance. The solid per-

formance of the HotZones algorithm with very few Wi-

Fi covered cells (30) shows that little infrastructure can

match the performance of a comprehensive opportunis-

tic solution. Although many factors (primarily increased

storage) give greater capabilities to opportunistic nodes,

the growing popularity of social networks and the

increase in user generated content makes caching of

relevant content difficult and complicates the design of

pure opportunistic solutions.
It is also worth mentioning that although covering a

cell with access points incurs certain costs, such a de-

ployment could be facilitated by the use of home wire-

less routers that provide the Internet access to millions

of operator’s customers. The fairness scheme proposed

in [21] could be extended to mobile subscribers in order

to reduce cost and provide better coverage.
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