
Incentivizing Peer-Assisted Services:
A Fluid Shapley Value Approach

Vishal Misra Dept. of Computer Science,
Columbia University,
New York, NY, USA

misra@cs.columbia.edu

Stratis Ioannidis, Augustin Chaintreau,
Laurent Massoulié

Technicolor, France
Paris, France

firstname.lastname@technicolor.com

ABSTRACT
A new generation of content delivery networks for live stream-
ing, video on demand, and software updates takes advan-
tage of a peer-to-peer architecture to reduce their operating
cost. In contrast with previous uncoordinated peer-to-peer
schemes, users opt-in to dedicate part of the resources they
own to help the content delivery, in exchange for receiving
the same service at a reduced price. Such incentive mecha-
nisms are appealing, as they simplify coordination and ac-
counting. However, they also increase a user’s expectation
that she will receive a fair price for the resources she pro-
vides. Addressing this issue carefully is critical in ensuring
that all interested parties—including the provider—are will-
ing to participate in such a system, thereby guaranteeing its
stability.

In this paper, we take a cooperative game theory approach
to identify the ideal incentive structure that follows the ax-
ioms formulated by Lloyd Shapley. This ensures that each
player, be it the provider or a peer, receives an amount pro-
portional to its contribution and bargaining power when en-
tering the game. In general, the drawback of this ideal in-
centive structure is its computational complexity. However,
we prove that as the number of peers receiving the service
becomes large, the Shapley value received by each player
approaches a fluid limit. This limit follows a simple closed
form expression and can be computed in several scenarios
of interest: by applying our technique, we show that several
peer-assisted services, deployed on both wired and wireless
networks, can benefit from important cost and energy sav-
ings with a proper incentive structure that follow simple
compensation rules.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications;
K.4.4 [Electronic Commerce]: Payment schemes
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1. INTRODUCTION
Peer to peer networks (P2P) have long been demonstrated

to be technically superior to client-server architectures in
terms of scalability. With the widespread adoption of broad-
band access at the residential level, P2P networks promise
even larger scalability while maintaining the same quality
of service as dedicated data-centers or content delivery net-
works [9]. Under the radar, the success of BitTorrent makes
it probably the world’s largest (virtual) content delivery net-
work, transmitting primarily illegal content, albeit scalably
and efficiently. Many commercial streaming systems employ
P2P networks like Coolstreaming [27], PPLive, UUSee, PP-
Stream1, etc. This trend is not likely to reverse. ISPs and
content owners on the other hand are in a constant cat and
mouse game with P2P users, trying to disrupt, throttle and
shut down P2P traffic. The primary reason for this is loss of
revenue for content rights owners. Measures like port block-
ing, deep packet inspection, application identification, etc.,
are circumvented by counter measures like random port se-
lection and packet encryption. Our view of this situation
is that it requires an economic rethink rather than an engi-
neering battle.

Peer-assisted services [5, 12, 23, 24] were introduced re-
cently as an alternative to illegal P2P networks. In such
systems, users commit part of their resources (e.g., upload
bandwidth and storage capacity) to assist a service provider
in the distribution of content. By taking advantage of peer-
to-peer scalability to reduce the provider’s operating cost,
such services can be offered at a significantly reduced price.
This ensures that content owners and ISPs can then directly
compete with illegal content distributors by enhancing user
experience though added features (e.g., ease of use, content
authentication, etc.). The cost reductions achieved by peer
assistance, which are reflected on the low price of the ser-
vice, are significant. As an example, architecture may utilize
the set-top boxes (STBs) installed in residential locations
as a semi-permanent P2P infrastructure to serve content to
users [12,24]. Studies have shown that this architecture, by
replacing monolithic data centers with distributed (nano)

1see www.pplive.com, www.uusee.com, www.ppstream.com



data-centers, can result in important savings (60-80%) for
the provider in terms of energy costs [24].

However, they key challenge in the deployment of a peer-
assisted service is maintaining user participation, i.e., en-
suring that users contribute the resources under their con-
trol. For example, users can easily throttle their upload
bandwidth, disconnect their device whenever they do not
actively use it, or simply neglect to maintain it in an oper-
ational status. As opposed to current illegal P2P networks,
which are based at least partially on altruistic behavior [7],
users of a peer-assisted service will require appropriate in-
centives to contribute their resources. Such incentives can
be implemented by restricting price reductions only to users
that actively contribute their resources. However, such price
reductions should be carefully designed: the provider’s re-
spective revenue reduction should be properly offset by the
cost reductions achieved by user participation. If not, de-
ploying the peer-assisted service would become unprofitable
for the provider. To that end, the goal of this paper is to de-
velop an economic framework for Peer-Assisted services that
creates the right incentives for both users as well as providers
to participate.

Based on the concepts of cooperative games, we design an
incentive scheme based on Shapley values that achieves the
above goal. Our scheme has a wide range of applications,
as it allows us to capture the cost reduction achieved by
peer assistance at the service provider through a generic cost
function. One of the key features of this incentive scheme
is that it ensures participation by applying the principle of
balanced contribution: both the service provider and users
share any generated revenues according to the value that
they add to the system through their participation.

Our contributions in the paper are the following:

• We show that, under a general condition, both peers
and providers have an incentive to participate when
the total revenue is shared according to the Shapley
value (Section 4, Theorems 4.1 and 4.2).

• Computational complexity has long been the bane of
incentive schemes based on Shapley values: in general,
the complexity of computing a user’s Shapley value
may grow exponentially in the number of participants.
We show that the axioms describing the Shapley value
of each participant admit fluid a limit as the system
gets larger. This allows us to obtain a simple closed
form of the Shapley value for a large user population
(Section 4, Theorem 4.3).

• The result above is obtained for a generic cost function
and we illustrate how the Shapley value changes as the
structure of the cost function follows different proper-
ties. Moreover, we extend this result to incorporate
the existence of several atomic players, which capture
the special roles played, e.g., by the ISP and/or the
content owner (Section 5).

• We apply our model to various scenarios, including file
dissemination, live streaming and video on demand.
Our analysis shows that a common principle, where
users receive half of their contribution to the system
efficiency, credited as “upload miles”, guarantee user
participation in all these cases. We explain the intu-
ition behind this principle, how it extends to the case of

a third-party content provider and/or network neutral-
ity, and how it applies to global bandwidth and energy
saving in both wired and wireless contexts. (Section 6).

Our results considerably depart from previously proposed
incentive schemes, as we adopt a principled approach, build-
ing on well-known principles from the field of economic the-
ory. Though similar revenue sharing principles have been
introduced before for IP-routing and cooperative settlement
between ISPs [14], to the best of our knowledge, the effect
of peer assistance on cost reductions has never been studied
before. Moreover, by exploiting the asymptotic behavior of
large populations, our paper demonstrates that Shapley val-
ues can be incorporated in such systems without suffering
from computational complexity restrictions.

2. RELATED WORK
Peer-assisted services and specifically P2P content distri-

bution have attracted a lot of attention recently. Compared
to traditional client-server VoD systems [1], a P2P-based
VoD solution is less costly and more scalable [9]. In the con-
text of provider managed P2P VoD systems, there are few
related papers. [12] proposed a P2P architecture for set-top
boxes. [1] empirically evaluated the benefits of using the stor-
age of set-top boxes in a P2P fashion. [23] designed an archi-
tecture for pushing content into boxes, and analyzed optimal
placement strategies. Empirical evaluation of such an archi-
tecture for IPTV is provided in [5]. The NaDa project [24]
is postulating enormous energy savings in a peer-assisted
architecture for VoD delivery as compared to a traditional
monolithic datacenter or CDN approach.

To the best of our knowledge, this is the first paper on
designing economic incentive mechanisms for peer-assisted
services. The Shapley value concept has been previously
studied in the context of network economics in [13–16]. The
concept of fluid or continuous Shapley values for non-atomic
games was introduced in [2], and was proposed as a basis for
instance for sharing telephone call costs at Cornell Univer-
sity in [3] or allocating costs for transportation problems [6].

3. BACKGROUND ON SHAPLEY VALUE
Here, we briefly introduce the concept of Shapley value

and its use under our incentive structure context.

3.1 Cooperative games
We consider a a set of players denoted as N . We denote

by N = |N | the number of players in this set. We call any
nonempty subset S ⊆ N a coalition of players. For each
coalition S, we denote by V (S) the worth function, which
measures the total revenue produced by the service when all
players of this coalition S are active. Let Pi(S) denote the
profit (monetary payment received minus operating cost) of
player i in the coalition S, we then have:

V (S) =
X
i∈S

Pi(S) . (1)

The contribution of each player to a coalition can be de-
fined as follows.

Definition 3.1. The marginal contribution of player i to
a coalition S ⊆ N\{i} is defined as ∆i(V,S) = V (S ∪{i})−
V (S).
Note that the contribution of a player only depends on the
worth function V . We introduce two more definitions.



Definition 3.2. A worth function is superadditive if

V (S ∪ T ) ≥ V (S) + V (T ), for all S, T ⊆ N s.t. S ∩ T = ∅.

I.e., the worth of any two disjoint coalitions is no greater
than the worth of their union. In some sense, this indicates
that such coalitions are “better off” forming a larger coali-
tion.

Definition 3.3. A worth function is supermodular if

V (S∪{i})−V (S) ≤ V (T ∪{i})−V (T ), ∀ S⊆T ⊆N\{i}, ∀ i∈N .

A supermodular function exhibits the property of increas-
ing returns: a player entering a larger coalition brings “more
value” than a player entering a smaller coalition. Note that
supermodularity implies superadditivity (though the con-
verse is not true).

3.2 Shapley value: axioms and definition
The Shapley value, originally proposed by Lloyd Shap-

ley [21], serves as an appropriate mechanism for players to
share revenues inside a given coalition. In particular, given
a cooperative game with worth function V and a coalition
S, the Shapley value determines how the total worth of the
coalition, captured by V (S), should be shared among the
players in S.

More specifically, for each player i and coalition S, the
Shapley value of player i is denoted by

ϕi (S, V )

and is uniquely defined by the following three axioms

Axiom 1 (Efficiency).
X
i∈S

ϕi(S, V ) = V (S).

Axiom 2 (Symmetry). If for all S ′ ⊆ S\{i, j},

V (S ′ ∪ {i}) = V (S ′ ∪ {j})

then ϕi(S, V ) = ϕj(S, V ).

Axiom 3 (Fairness/Balanced Contribution). For
any i, j ∈ S, j’s contribution to i equals i’s contribution to
j, or, in other words
ϕi(S, V )− ϕi(S\{j}, V ) = ϕj(S, V )− ϕj(S\{i}, V ).

The efficiency axiom states that the total revenue assigned to
each player equals the actual profit created by their coali-
tion. In other words, the mechanism does not contribute
or receive extra profit. The symmetry axiom requires that
if two players contribute the same to every subset of other
players, they should receive the same amount of revenue. Fi-
nally, the balanced contribution axiom addresses the fairness
between any pair of players. It may be illustrated on a two-
player system where N = { 1 , 2 }. By efficiency we have
that, for a coalition of a single player, ϕi({i}, V ) = V ({i}).
The fairness axiom states that the gain (or loss) of revenue
from cooperation, as seen by player 1 and 2, should be the
same ϕ1(N , V ) − V ({1}) = ϕ2(N , V ) − V ({2}). In that
case it means that the global gain of cooperation, defined
as V (N )− V ({1})− V ({2}), is split evenly among players.
The balanced contribution axiom preserves and generalizes
this egalitarian property [17].

Based on the axioms above, one can show that the Shapley
value ϕ can be computed as follows [21].

∀ i ∈ S , ϕi(S, v) =
1

|S|!
X
π∈Π

∆i(v, S(π, i)) (2)

where Π is the set of all |S|! orderings of S and S(π, i) is the
set of players preceding i in the ordering π.
The Shapley value of a player i can thus be interpreted as the
expected marginal contribution ∆i(V,S ′) where S ′ is the set
of players in S preceding i in a uniformly distributed random
ordering of S.

The Shapley value was originally derived axiomatically by
Shapley using the axioms of efficiency, symmetry, dummy
and additivity. In 1977 Myerson [20] replaced the axioms of
dummy and additivity by the above axiom of balanced con-
tribution (also known as fairness) and showed that together
with efficiency and symmetry it was enough to uniquely de-
termine the Shapley value, the other two axioms following
as properties.

3.3 Pros and cons of the Shapley value
The Shapley value exhibits the following property

Lemma 1. If V is superadditive, then the Shapley value
is individually rational, i.e., for all S ⊂ N ,

ϕi(S, V ) ≥ V ({i}) ∀ i ∈ S.

Intuitively, individual rationality implies that no user has
an incentive to abandon a coalition: the return it accrues
through the Shapley value exceeds the individual profit that
it would gain by abandoning S. In this sense, individual
rationality guarantees the stability of a coalition.

A stronger statement holds if the worth function is super-
modular.

Lemma 2. If V is supermodular, then, the Shapley value
lies in the core of V , i.e.,X

i∈S

ϕi(N , V ) ≥ V (S),∀ S ⊆ N . (3)

In other words, if V is supermodular, no given subset of
players has an incentive to leave the “grand coalition” N
and form a smaller coalition. This implies that the “most
stable” coalition is, in fact, the grand coalition.

In general, the core of a game consists of any payoff scheme
that satisfies (3) and the efficiency axiom. An interesting
fact is that the Shapley value in fact lies in the middle (center
of gravity, to be precise [22]) of the core for a supermodular
(also known as convex) game.

It points to another property of the Shapley value, namely
it is robust if the game is convex. Deviations from the Shap-
ley value of any solution, due to imperfect measurements or
computations are still likely to remain in the core, whereas
other solutions might be marginally stable, and can easily
deviate into unstable versions.

Recently , there has been a lot of interest in the appli-
cation of Shapley values to issues related to Internet Eco-
nomics. In [14] the authors applied the Shapley value con-
cept to the settlement issue between Content, Eyeball and
Transit ISPs. One of the interesting insights from the analy-
sis was that the current settlement structure of the Internet
(customer provider and zero-dollar peering) is potentially
unstable, and new settlements (reverse customer provider



and paid peering) are needed for stable coalitions. This is
a result of the evolution of the Internet from a symmet-
ric entity in terms of traffic to one where there are well
defined content providers (Google/Yahoo/EBay/Microsoft
etc.) and consumers (end customers), and the authors demon-
strated the current settlement structure is far away from the
Shapley values, and hence potentially outside the core.

However, the calculation of the Shapley value through
(2) involves an exponential time complexity. This has re-
stricted its use mostly as a reference for theoretical interest,
and limited its appeal as an implementable revenue distribu-
tion mechanism. In this paper we present a method based
on fluid approximation for large player population, which
drastically reduces the complexity of computing the Shap-
ley value. We show that its computation only involves one or
a small number of atomic players and the collective effect of
peer-assistance for peers belonging to different classes. This
makes it feasible to indeed use the Shapley value directly to
incentivize peer-assistance.

4. INCENTIVE FOR PEER-ASSISTANCE
In this section, we first describe a model for peer-assistance

as a cooperative game. This model, which focuses on provider
cost reduction through peer-assistance, allows to obtain the
Shapley value of any user in a simple closed form. As we
show in the next sections, this model can be extended and
used to understand several scenarios of practical interest.

4.1 A peer-assisted service
Peer-assisted services may be seen as cooperative games.

Players.
We assume here that all the profits and costs in this sys-

tem are incurred by a single player, called the provider,
which we denoted by P . Other cases where profit and cost
are shared among several players are discussed in Section 5.3.
The game contains other players which are the users of the
services. Without loss of generality we assume that users
belong to m distinct classes, inside which all users are sta-
tistically identical. As an example, users may form a flat
networks, where they are only characterized by different up-
load bandwidths. The set of all users is denoted by U , with
cardinality N , so that the global set containing (N+1) play-
ers is N = {P} ∪ U .

Revenue, operational cost.
Assuming the provider decides to enter in the game, a

service is received by all users of this network, for which they
all pay a flat rate R to the provider. The flat rate R can be
thought of either as a monthly subscription rate, or as a per
content price, say for Video on Demand or a live streaming
event. However, the provider incurs an operating cost CN ,
which depends on the number of users N and depends on
the set of users who decide to join the coalition, as described
below.

Coalition, worth function.
As opposed to a regular service, this service allows peer-

assistance, which reduces the operational cost CN . This
works as follows: all users of the service are offered with the
opportunity to opt-in for a “peer-assistance option”, where
their resources can be used by the system to serve other

users. This has two consequences: for the provider, these
additional resources reduce the value of CN needed to serve
theseN users; for the user a part of this reduction is reflected
in a price reduction for the service it receives. The value of
this incentive is set as can be seen below.

Thus, a coalition may consist of the provider (if it decides
to enter the game), as well as the set of users Ua ⊆ U who
decide to “opt-in” for this option. Denote by (N1, · · · , Nm)
number of users in each class which sign on for this option,
and define the vector containing the respective fractions of
users opting in as

X̄ =

„
N1

N
, · · · , Nm

N

«
.

Then, we make the following assumption

Assumption 1. The operational cost of the provider CN :
R
m → R is a differentiable function of X̄, i.e., CN =

CN (X̄).
In other words, the operational cost does not depend on the
actual set of users participating in the coalition; instead, it
is a function of the fraction of participants from each class.

Under this assumption, if the provider enters a coalition
S = {P} ∪ Ua, the worth of the coalition is:

V ({P} ∪ Ua) = NR− CN (X̄) . (4)

On the other hand, the worth of any coalition that does not
include the provider is 0. This means that the provider is a
veto player: if it has no incentive to stay in a coalition and
departs, the coalition no longer has any value.

Definition 4.1. We denote by ϕNP (X̄) (resp. ϕNi (X̄) the
Shapley value of the provider (resp. of a user, in class i,
that allows peer-assistance), for the coalition {P} ∪ Ua.

When no user allows peer-assistance the value of the coali-
tion S = {P} is given by

V ({P}) = NR− CN (0̄) .

In this case, this value is also the Shapley value (or profit)
of the provider, since it is the only player in the coalition,
and no other player receives any share of the profit.

When a subset of the users allow peer-assistance, the oper-
ational cost goes down to CN (X̄), which results in an addi-
tional profit for the provider. We propose a simple incentive
scheme for provider and users of the coalition to share the
total worth of a coalition: all players in a coalition (includ-
ing, potentially, the service provider) receive their associated
Shapley value as revenue. For simple users, this is essentially
a subsidy, given to them for the additional profit the bring
to the service provider by assisting it. They receive this as
an incentive to enter the coalition and assist the provider.
Similarly, the Shapley value of the provider is the revenue it
accrues, which also incentivizes it to remain in the coalition.

This can be implemented through a“discount price”, where
user i pays R−ϕNi (X̄) (instead of R) to the provider to re-
ceive the same service. Note that if the Shapley value of
a user exceeds the value of the flat rate R, this user may
even be able to make a net profit; this may be the case if
the resources it makes available drastically reduce the cost
of the whole system.

The goal of this paper is to show that this incentive mech-
anism is the right one for both the provider and the users,
and to determine precisely how the value of the incentive
depends on operational costs.



4.2 Main results

Individual rationality and grand coalition stability.
We first prove formally that under a general assumption

on the operational cost, namely that it decreases with peer-
assistance, our proposed incentive system based on Shapley
values is individually rational. That is, for any coalition of
the form S = {P} ∪ Ua, neither the users in Ua nor the
provider P have an incentive to leave the coalition.

Theorem 4.1. If the cost function CN (·) is monotoni-
cally decreasing in all of its coordinates, then the incentive
structure suggested is individually rational.

Proof. It suffices by Lemma 1 to show that V is super-
additive, i.e.,

V (S ∪ T ) ≥ V (S) + V (T ), for all S, T ⊆ N s.t. S ∩ T = ∅.

This is trivially true if neither S nor T contain the provider,
as then V (S) = V (T ) = V (S ∪ T ) = 0. Otherwise, as
S ∩ T = ∅, at most one of them will contain the provider,
say S. Then, V (T ) = 0 and V (S ∪ T ) ≥ V (S) by the
monotonicity of CN , so superadditivity follows.

By placing an additional constraint on CN we can show that
the Shapley value is in the core, i.e., the “grand coalition”
made up by the provider and all players is the “most stable”
coalition.

Theorem 4.2. Assume that the cost function CN (·) is
monotonically decreasing, twice differentiable, and

∂2CN

∂xi∂xj
≤ 0, for all classes i, j. (5)

Then the incentive structure suggested lies in the core of the
game.

Proof. By Lemma 2, it suffices to show that V is super-
modular, i.e.,

V (S∪{j})−V (S) ≤ V (T ∪{j})−V (T ), ∀ S⊆T ⊆N\{j}, ∀ i∈N .

The above is trivially true by the monotonicity of CN if
j is the provider P . It is also trivially true, again by the
monotonicity of CN , if P ∈ T but P /∈ S. We therefore
focus in the case where P ∈ S.

In this case, let S = {P} ∪ Ua and T = {P} ∪ U ′a, where
Ua ⊆ U ′a, and denote by X̄ and X̄ ′ the fraction vectors
corresponding to Ua and U ′a, respectively. Then X̄ ≤ X̄ ′,
coordinate-wise.

Assume now that j belongs to the i-th class. Let ēi the
vector with a 1 at the i-th column and 0 every where else.
Then,

V (S ∪ {j})− V (S) = −CN (X̄ + ēi
1

N
) + CN (X̄)

= −
Z xi+ 1

N

xi

∂CN (s, X̄−i)

∂xi
ds (6)

where X̄−i is X̄ excluding the i-th coordinate. Similarly

V (T ∪ {j})− V (T ) = −CN (X̄ ′ + ēi
1

N
) + CN (X̄ ′)

= −
Z x′

i+ 1
N

x′
i

∂CN (s, X̄ ′−i)

∂xi
ds

Observe that (5) implies that ∂CN (·)
∂xi

is decreasing in all its

coordinates. Since [s−(x′i−xi), X̄−i] ≤ [s, X̄ ′−i] coordinate-
wise, we have that

V (T ∪ {j})− V (T ) ≥
Z x′

i+ 1
N

x′
i

∂CN (s− (x′i − xi), X̄−i)
∂xi

ds

s′=s−x′
i+xi

=

Z xi+ 1
N

xi

∂CN (s′, X̄−i)

∂xi
ds′

and the theorem follows from (6).

These two results establish that, assuming that the cost
function CN is monotone, using the Shapley value provides
the right incentives for both the provider and all users to
not leave a coalition. With the additional property (5) we
can guarantee that the “grand coalition” {P}∪U is the most
stable among all coalitions

In what follows, we prove that if the number of users
playing the peer-assistance game becomes large, then the
Shapley value approaches a fluid limit. Interestingly, this
fluid limit involves two kind of players: the atomic player
(i.e., the provider), and infinitesimal players. The impact
of the decision of a single infinitesimal player is negligible;
nonetheless, the collective effect of their behavior determines
the Shapley value of each player.

Limit axioms for a large population of users.
We assume that average cost per user converges to a smooth

function of X̄, as N goes to infinity. In other words, we have

lim
N→∞

C̃N (X̄) = C(X̄) where C̃N (X̄) =
CN

`
X̄
´

N
.

C(X̄) can be thought of as the asymptotic operational cost
per user served in a very large system where, for each class
of users, the fraction of peer-assisting users is fixed. We also
introduce the Shapley value of the Provider per user, defined
as ϕ̃NP

`
X̄
´

= 1
N
ϕNP (X̄) . The efficiency axiom can then be

rewritten as:

N · ϕ̃NP (X̄) +

mX
i=1

N ·XiϕNi (X̄) = N ·R−N · C̃N (X̄) .

while the balanced contribution states, for any i, j8<: ϕNi (X̄)− ϕNi (X̄ − 1

N
· ej) = ϕNj (X̄)− ϕNj (X̄ − 1

N
· ei) ,

and ϕNi (X̄) = N(ϕ̃NP (X̄)− ϕ̃P (X̄ − 1

N
· ei) ,

where ei denotes the vector containing all null entries except
for a 1 in the i th component.

As the number of users becomes large, the Shapley values
ϕi and ϕ̃P converge to a smooth function of X̄ that should
hence satisfy:8>><>>:

ϕ̃P (X̄) +

mX
i=1

Xiϕi(X̄) = R− C(X̄) ,

∀i, j , ∂ϕi
∂xj

=
∂ϕj
∂xi

, and ϕi(X̄) =
∂ϕ̃P
∂xi

.

(7)

Solution of the limit axioms.
As we show below, the limit axioms lead to a simple ex-

pression of the Shapley value, which greatly simplifies its



computation for a given case. We give the general expres-
sion for any cost function C. All the examples found in
this paper uses a special case of this formula, where the cost
function is fixed.

Theorem 4.3. As the number of users goes to infinity,
the Shapley values of users in all classes as well as the
provider’s Shapley value per user converges to solution of
Eq.(7), uniquely defined as:8>><>>:

ϕ̃P (X̄) = R−
Z 1

0

C
`
sX̄
´
ds

∀i , ϕi(X̄) = −
Z 1

0

s
∂C

∂xi
(sX̄)ds .

Proof. By the axiom of balanced contribution, we can
replace ϕi(X̄) by ∂ϕ̃P

∂xi
in the first line of (7) which implies

∀X̄ , ϕ̃P (X̄) +

mX
i=1

Xi
∂ϕ̃P
∂xi

(X̄) = R− C(X̄) . (8)

The key observation is then that the second term of the LHS
is the derivative of a ”diagonalized” version of the function
ϕ̃P . More precisely, for any given X̄ if we define ψP : s 7→
ϕ̃P (s · X̄), this function of a real variable is differentiable

and we have: ψ′P (s) =
Pm
i=1 Xi

∂ϕ̃P
∂xi

(s · X). We can then

obtain the value of ψP and ϕ̃P by solving a simple ordinary
differential equation of dimension 1.

The following lemma generalizes the above observation:

Lemma 3. Let F,G : Rm → R, and α > 0

∀X̄ , α · F (X̄) +

mX
i=1

Xi ·
∂F

∂xi
(X̄) = G(X̄) .

is equivalent to ∀X̄ , F (X̄) =

Z 1

0

sα−1G
`
s · X̄

´
ds

Before proving this lemma, let us observe that it directly
implies the Theorem, since we can apply the lemma with
α = 1 to Eq.(8) and obtain the expression for ϕ̃P , which is
uniquely characterized. A simple derivation w.r.t. xi then
provides the expression for ϕi, which again is uniquely char-
acterized. We can then immediately observe that the bal-
anced contribution among nodes of different class is satisfied,
so that this unique solution satisfy all limit axioms (7).

We now prove the lemma: The first condition may be
rewritten

∀X̄, ∀s , α · F (s · X̄) + s ·
mX
i=1

Xi ·
∂F

∂xi
(s · X̄) = G(s · X̄) .

Note the additional term in the second term of the LHS, due
to the multiplication.

If we introduce, for a given X̄, the function ψF : s 7→
F
`
s · X̄

´
the equation above may be written as

∀s , α · ψF (s) + s · ψ′F (s) = G(s · X̄) ,

or, equivalently, after multiplying by sα−1 each side

∀s , αsα−1 · ψF (s) + sα · ψ′F (s) = sα−1G(s · X̄) ,

The LHS can be recognized as the derivative of the function
s 7→ sα · ψF (s). This function takes value 0 for s = 0. The

following equality of the derivative is then equivalent to:

∀s , sαψF (s) =

Z s

0

uα−1G(u · X̄)du .

∀X, ∀s , sαF (s · X̄) =

Z s

0

uα−1G(u · X̄)du .

which is equivalent to the second condition of the theo-
rem.

Remarks

• Our fluid Shapley value results are of similar flavor
to the Aumann-Shapley (A-S) prices [2] derived for
non-atomic games, whereas our problem has a distin-
guished “atomic” player, the provider. The A-S prices
are a special case of our formula for the infinitesimal
player in Theorem 4.3, when there is no distinguished
atomic player. The only difference is that the term “s”
multiplying the partial derivative inside the integral
disappears.

• The A-S formula is also called the “diagonal” formula,
and an intuitive interpretation of the Aumann-Shapley
(A-S) value is the following: assume that the vector
X̄ share in an homogeneous way, starting from 0 and
ending at X̄. Suppose also that along the above shar-
ing process each time a ”small” proportion (an ”in-
finitesimal” one) of X̄ start sharing, the ith class user
produces a marginal cost benefit. Then the average
cost benefit per unit of the ith class once X̄ are fully
sharing will be its A-S value. Hence, the Aumann-
Shapley value is computed by calculating the integral
of marginal cost benefit for class i along the diagonal
of the vector from 0 to X̄. Our formula for the in-
finitesimal user can be interpreted in the context of
the A-S formula in the following way: for every value
of s along the diagonal [0, sX̄], the probability that
the atomic (veto) player is part of the coalition is sim-
ply s. In the absence of the veto player, the value
of the coalition and hence the A-S value is 0, in the
presence of the veto player the value is the A-S value.
Thus, our formula for the infinitesimal user can be in-
terpreted as the expected A-S value, conditioned on
the presence/absence of the veto player.

• Note that we are also able to obtain a much simpler
and compact derivation of our general formula as com-
pared to the Aumann-Shapley [2] result or Hart [8]
that looked at mixed atomic-continuous games. This
is because we exploit the axiom of balanced contribu-
tion extensively to obtain partial derivatives of various
Shapley values directly and obtain differential equa-
tions that can be easily solved. The axiom of balanced
contribution was introduced a few years after [20] the
results of Aumann-Shapley and Hart were derived.

5. SPECIAL CASES & EXTENSIONS
We consider now some special cases and extensions of the

model described above. We start with a study of the qual-
itative property of the Shapley value in the case of a single
class of user. We then consider two possible features that
can be incorporated in our analysis: cost incurred by users
for peer-assistance, and a case with multiple atomic players.



5.1 The single-class case
For the case of a single class of users, the Shapley value

for users ϕi(X̄) reduces to ϕ(X) given by

ϕ(X) = −
Z 1

0

s
dC

dx
(sX)ds

Some properties of the Shapley value immediately follow
Convex cost function. If the cost function is convex,

then the user Shapley value decreases monotonically. The
interpretation is that increasing sharing brings diminishing
returns in the improvement of the cost function. Thus, while
the provider continues to benefit, the number of users that
share grows faster than the total subsidy sent back. Addi-
tional level of sharing brings about “competition” amongst
users and reduces their intrinsic value to the provider. Note
that even in this case, every new sharing user sees an in-
crease in value and so does the provider, so the system still
converges to a full sharing mode.

Concave cost function. If the cost function is concave,
then the user Shapley value increases monotonically. The
implication here is the reverse of the convex case, i.e., in-
creasing levels of sharing brings increasing returns in the
improvement of the cost function. This super linear growth
in the Shapley value is passed back to the sharing users.

Linear cost function. If the cost function is linear, of
the form A−BX, then the Shapley value of the users reduces
to

ϕ(X) = −
Z 1

0

s
dC

dx
(Xs)ds =

B

2

and is thus independent of the level of sharing. This is be-
cause of the fact that the marginal contribution of a user
stays constant for all levels of sharing. Note however that
the provider’s Shapley value per user continues to increase
linearly with increased level of sharing. This linear cost
function presents a particularly simple and attractive pricing
scheme from the users perspective. While the provider can
always have access to the precise knowledge of X to com-
pute the exact price for the users, a flat rate pricing scheme
is inherently more attractive to users.

Sigmoid cost function. If the cost function is Sig-
moid —i.e., the cost function first decreases slowly with
small amounts of sharing, then decreases rapidly and finally
the decrease saturates— the user Shapley value may have
a unique maximum. If such a maximum exists, it will ap-
pear after the inflection point of the cost function. Exam-
ples of such cost functions would be A − B/(1 + e−x) or
A − Bx/(

√
1 + x2). Note that like convex cost functions,

new users continue to increase in value and hence every-
body still has an incentive to share even after the level of
sharing corresponding to the maximum user Shapley value.

The behavior of the user Shapley values as well as provider
Shapley values per user are shown in Figure 1.

5.2 Including peer-assistance cost for users
In our model of cost so far, we have assumed that the oper-

ational cost CN (X̄) comes only from the provider, and hence
that it decreases with any (component-wise) increase in X̄.
Let us now assume that each peer of class i incurs an addi-
tional cost δi for participating through peer-assistance. The
previous expressions of the Shapley value still hold, where
the function CN (X̄) is simply replaced by the total sum of
cost in the system: CNP (X̄) +

Pm
i=1 N ·Xi · δi.

Under the assumption that the cost reduction for the
provider is always larger than the cost of peer-assistance
to a user, all the results we proved in the previous section
still hold. This condition may be written for a finite N , or
respectively for large N , as

CNP (X̄) ≤ CNP (X̄− 1

N
·ei)−δi or, for N →∞, −∂CP

∂xi
≥ δi .

In such case, it is in everyone interest, including the provider,
to join a coalition and receive their associated Shapley value
by lowering the overall operational cost. The cost incurred
by the user is then compensated by adding this value to
the rebate received by the user for enabling peer-assistance.
This may be a symbolic cost perceived by users, or a con-
crete expenditure to pay for energy or bandwidth used. A
real world example of such a system is People CDN2. This
company compensates peers for residential broadband con-
nection and provides peers with residential gateway boxes
to be used as content delivery network nodes.

5.3 Multiple atomic players
We now extend the concept to a system with multiple

atomic players. An example could be a network provider
that has a limited catalog of titles in a video on demand
system, and then a third party provider (E) that extends
the catalog. Let us assume that the extension in catalog is
priced E dollars per user by the system (i.e., the user pays
R+E with the add-on service of the third party provider).
We also assume that the operational cost to the provider
C(·) increases by an amount C′(·) due to the presence of
the extra catalog. Again, this additional cost may change as
users opt-in to offer peer-assistance to other users, so that
it depends on N and X̄.

We denote by ϕNi (X̄) (resp. ϕ̃NP (X̄)) the Shapley value
of a user in class i (resp. the per-user Shapley value of the
provider) when E is not in the coalition. Since the worth
function has not changed, all players receive the same Shap-
ley value as seen before. In addition, we denote by ϕ′Ni (X̄)

(resp. ϕ̃′
N

P (X̄)) the Shapley values when E decides to join.

Let us denote in this case by ϕ̃′
N

E (X̄) the per-user Shapley
value for this new player.

As shown in the next theorem, the method we described
above can be extended to analyze the Shapley value for this
case with multiple players. The proof (see Appendix A.1)
follows the same type of argument: deducing limit axioms
when the population gets large, which leads to simple dif-
ferential equations.

Theorem 5.1. As N tends to infinity, the provider’s (per
user) Shapley value and the Shapley values of users in all
classes converge to the following smooth functions of X̄:8>>>>>><>>>>>>:

ϕ̃′P (X̄) = R+
E

2
−
Z 1

0

C
`
sX̄
´
ds−

Z 1

0

sC′
`
sX̄
´
ds

ϕ̃E(X̄) =
E

2
−
Z 1

0

sC′
`
sX̄
´
ds

∀i , ϕ′i(X̄) = −
Z 1

0

s
∂C

∂xi
(sX̄)ds−

Z 1

0

s2 ∂C
′

∂xi
(sX̄)ds .

An intuitive explanation of the formula is the following: If
there are no excess operational costs involved (i.e., C′ = 0),
the third party provider simply gets E/2 of the additional

2see http://www.pcdn.info
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(a) Shapley values with a Convex cost function
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(b) Shapley values with a Concave cost function
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(c) Shapley values with a Linear cost function
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(d) Shapley values with a Sigmoid cost function

Figure 1: Provider and user Shapley values obtained through Theorem (4.3) in the single class case, for cost
functions with different curvatures. The Shapley values corresponding to a convex cost function are shown
in (a): in this case, the user Shapley value decreases monotonically with the fraction X of users sharing,
as increasing the latter brings diminishing returns in the cost reduction. The exact opposite behavior is
observed in (b), when the cost function is concave. For a linear cost function, shown in (b), the Shapley value
does not depend on the fraction of users sharing. Finally, when the cost function is sigmoid, there exists a
critical fraction of sharing users for which the Shapley value is maximized. Note that, in all four cases, the
Shapley value of the provider increases with X; this is a consequence of the monotonicity of C.

per user revenue E. If there are costs involved which may be
reduced through peer assistance, users get compensated and
half of this compensation is subtracted from the revenue of
the third party provider. Revenues and user incentive are
equally shared among the network provider and the third
party content provider.

6. APPLICATIONS
We now apply the previous theory to various content ac-

cess services and related costs. We first treat extensively the
case of bandwidth saving in wired networks for three appli-
cations: file download, live streaming and video on demand.
We exhibit a common simple incentive scheme for all three,
which we extend to a more complex value chain containing
both content and network providers. We then demonstrate
the flexibility of this model by applying this technique to
two other applications: incentivize energy cost, and enable
collaborative dissemination of content update in a wireless
mobile network.

6.1 Bandwidth cost saving

A recurring theme in the study of P2P systems is that
in the fluid limit, feasibility conditions are often expressed
as separable, linear functions of the capacities of the P2P
users.

6.1.1 Three applications with a linear cost model

File download.
The peer uplink model by Mundinger et al. [18] proposed

for analyzing P2P file dissemination, they show that under
the fluid limit, the minimal makespan of a provider with
peer aided content distribution is

T ∗ = max


1

Cs
,

N

Cs +
P
iNiui

ff
,

where Cs is the upload capacity of the provider and uis are
the upload capacities of the Ni participating peers. We can
set the desired makespan as a constraint, and then calculate
the server capacity required to achieve the makespan. The
operational cost can then be computed as the cost of this
capacity (which includes bandwidth and server costs, and
costs at user end). The asymptotic cost function C(X̄) is



then given by

C(X̄) =
(1−

P
j XiuiT

∗)

T ∗
.

Live streaming.
In [26] the authors studied multichannel P2P live stream-

ing systems. The authors studied both isolated channel
(ISO) as well as View-Upload Decoupled (VUD) systems
and through queueing theoretic models demonstrated the
superiority of the VUD system. They introduce the follow-
ing threshold parameter α given by

α =
rP
iXiui

,

Where r is the streaming rate, and Xi is the fraction of users
with upload bandwidth ui. The authors show that if α < 1,
then the universal streaming probability goes to 1, and all
users achieve a desired quality of service. If α > 1, then the
service provider needs to complement the upload capacity of
the users with dedicated servers. Note that P2P streaming
provider like UUSee and PPLive maintain dedicated servers
to offer quality of service, fitting this analysis [25]. Assuming
that the system operates at the critical threshold α = 1 the
server capacity Cs required per user is

Cs = r −
X
i

Xiui .

Video on demand.
Let us assume a linear interpolation model for Video on

Demand. Let γs be the cost of transmitting a bit from a
datacenter or a CDN, and γp be the cost of transmitting the
same bit from a P2P user. From a bandwidth perspective,
if the P2P user has residential broadband access with no
upload limits, then this γp can be taken to zero. Otherwise,
it can be included as seen in Section 5.2.

The “cost” of serving a movie can be broken down into
two components. A fixed overhead A, which includes the
costs of licensing fee for the content, storage, maintenance
etc., and then a variable component which depends on the
cost per bit. Let us assume the size of the file is S bits. Let
us further assume that a user in class i uploads Si bits. If
we have N users and Ni in each class share, then we have

NS =
X
i

NiSi +NCs ,

where Cs is the portion of server bits required to compensate
for the capacity shortfall in the system. The bandwidth cost
per user is then given by

γsCs = γsS − γs
X
i

XiSi .

6.1.2 A general incentive scheme

Upload miles.
If the cost is directly proportional to this server capacity

(say KCs), we then have an asymptotically separable linear
cost function, with the classes of users characterized by their
upload capacities. By Theorem 4.3, the Shapley value for
the ith class is then given by ϕi = Kui

2
for the live streaming

case and file download case, or ϕi = KSi
2

for the Video on

Demand case. Note that there is a subtle difference between
ui and Si, with former referring to a rate whereas the latter
is the total number of uploaded bits—one can go back and
forth between them with an appropriate normalization of
relevant time periods.

The incentive scheme becomes then a simple one: A peer
earns half the cost savings that it provides as“upload miles”,
and because of the linear relationship, it translates to an
“upload two get one free” scheme as far as distribution costs
are concerned. The result is intuitively satisfying, since users
providing more resources in terms of upload bandwidth or
capacity end up with a proportionately higher Shapley value.
In the asymptotic case Shapley value of a specific peer is also
independent of what other peers are doing, so for a service
provider it is a very easy to implement and explain pricing
scheme.
Remarks:

• There is no restriction on the value of ui or Si. It can in
fact be greater than the per user resource requirement,
as a peer may satisfy the demand of multiple users and
continue to earn credits. High uploading peers can
take over the slack of low uploading/non-sharing users
(similar to the design architecture VUD in [26]), as an
opportunity to earn more. The peer is compensated
directly in proportion to the resources it contributes.

• Our simple analysis assumes a fixed cost of bandwidth
to the provider. However, the cost of bandwidth may
reduce as the volume purchased gets larger (i.e., “buy-
ing in bulk” is sometimes cheaper). The cost function
for the provider becomes nonlinear, the rebate given
to users for their upload follows then the general form
of Theorem 4.3.

Case study: Apple iTunes.
As a case study, we work with a simple example that of

Apple iTunes and try and estimate the impact of this frame-
work. Apple streams iTunes Movies, TV Shows, and Pod-
casts. As an example, the movie “Quantum of Solace” is
available in High Definition (HD) as for renting as well as
buying. We analyze the following renting scenario

Users can rent the HD version for $3.99, and the file size is
3.6 GB for. Note that the HD resolution is 720P, whereas the
industrial standard is trending towards 1080P, so called“full”
HD. Extrapolating from the ratio of the trailer files that are
encoded for 1080P, a 1080P version of the same file would
be about 6.8 GB. While CDN prices range anywhere from
$.5 to $1.00 per GB3, we assume buying in bulk is cheaper
and estimate Apple has negotiated an arrangement with its
CDN of $0.10/GB. This results in the raw bandwidth cost
for the 1080P version of the movie to be $.68. Thus, if
we look only at the bandwidth savings, the users get back
$.34 for a 1080P movie. Given current pricing, it works
out to a 5-10% subsidy, which is not insignificant. For the
provider, an equal amount comes back as saved costs and
thus increased profits. There are fixed overheads like movie
licensing rights that the provider has to pay for the content
owners like movie studios, but there are other operational
savings that are possible, for free content.

For every movie that viewers rent, they typically watch
previews of several movies. Assuming a preview size of 150

3see http://www.cdnpricing.com



seconds, this works out to a cost of about $.01 per viewing,
which is provided for free, and is recovered as overhead from
the paid content. Then there are millions of free Podcasts
downloaded daily by users, again provided by Apple for free.
Each one of those bits can be transferred to the P2P infras-
tructure, and users can earn“miles”by uploading content on
behalf of the provider. There are additional operational sav-
ings in terms of datacenter costs, storage and maintenance
that are possible with this approach, and our mechanism
provides an incentive for everyone involved to move over.

6.1.3 Influence of content and network providers
We now assume that a content provider gives access to

an extended catalog, as compared to the basic offer from
the network provider. Consistent with Section 5.3, we as-
sume that users are charged an additional value E to access
this additional catalog. If we assume a single class of users,
following previous linear models, the cost incurred by the
network provider is C(x) = C(0) − γsx with the restricted
catalog, and an additional cost C′(x) = C′(0) − βsx is in-
curred due to the increase in bandwidth needed to serve the
additional content.

Applying Theorem 5.1 we then have

ϕi(x) =
γs
2

+
βs
3
,

ϕE(x) =
1

2

»
E − C′(x)− βsx

3

–
,

ϕP (x) = R− C(x) +
γx

2
+

1

2

»
E − C′(x)− βsx

3

–
.

These equations can be interpreted as follows. When the
content provider joins, the additional system benefit, E −
(C′(x)), is shared equally among the two providers. In ad-
dition, any extra cost reduction βsx offered by peer uploads
leads to a subsidy of βs/3 for each assisting peer or βsx/3
in total. This amount is paid for at equal levels by each
provider.

In other words, when a peer serves some content, it gets a
subsidy equal to the corresponding cost saving, divided by
2 if this belongs to the basic catalog, hence made available
by a single veto player (the network provider), and by 3 if it
is made available by collaboration of two veto players. This
indicates how the simple“miles”scheme previously described
in the case of a single operator generalizes in more complex
scenarios.

Network neutrality.
Our results with atomic multiple players brings new lights

on the issue of network neutrality [11, 19] and revenue for
peer-assisted services. With network neutrality in place, the
network provider is no longer a veto player. It is obliged to
provide any and every kind of service that it offers to any
third party content provider that uses its network. The net-
work provider gets a flat amount for the bandwidth provision
and the subsequent value creation by peer assistance has no
bearing on the network providers share. Indeed, the net-
work provider stands to lose if the bandwidth requirements
of the content provider are provided by the peers directly,
but because of network neutrality the network provider is
not in a bargaining position to prevent that from happen-
ing. Peer-assistance then results in a cost reduction directly
for the third party, and it can be incentivize by the third

party provider using the same upload miles scheme built
when the network provider was the only atomic player.

6.2 Energy costs for Internet content delivery
In our discussion so far, we assumed that peers did not

incur any direct monetary cost for serving others’ requests.
This is however not entirely true: peer devices consume ex-
tra energy for serving extra jobs, which shows on the end
users’ electricity bill.

We shall now apply our theory to identify the incentives
required specifically to cover such energy costs, and com-
pensate the savings on the provider’s side. To this end,
we will rely on a recent study of energy savings in the so-
called Nano-datacenters (NADA) architecture [24]. NADA
is a managed system in which content is provided from end
users’ set-top boxes or Internet gateways, the latter being
the peer devices assisting in service delivery.

The measurements reported in [24] suggest that the en-
ergy cost to the provider is linear in the traffic served. We
shall denote by γs the provider energy cost per Gigabit
served. It also follows from [24] that the peer costs are linear
as well, and we shall denote by γp the corresponding cost per
Gigabit.

To estimate the rates γs and γp, we note from [24] that a
typical VoD server consumes 211 Joules per Gigabit (J/Gb).
This is further inflated by the so-called Power Usage Ef-
ficiency (PUE) of the datacenter hosting the server, which
accounts for all the additional costs related to cooling, power
transmission and conversion. State-of-the-art datacenters
such as Google’s have PUE’s of 1.2, resulting in a total cost
of 253.2 J/Gb.

In contrast, the cost of serving content from a standard
triple-play gateway, assuming the latter is already active, is
of only 100 J/Gb. We may thus take γs to equal 253.2 J/Gb
and γp to equal 100 G/Gb. In fact the NADA architecture
brings extra savings due to traffic localization: traffic reduc-
tion at routers brings about a reduction of approximately
900 J/Gbit for serving from NADA rather than Datacen-
ters. Thus, if we also take into account router energy costs,
we would take instead γs = 1153.2 J/Gb.

For the sake of simplicity, we chose here to express costs
in Joules; it is straightforward to translate cost into dollars,
given the energy prices for peers and for providers.

Eventually, with the provider cost function of Cs(x) =
γsV (1− x), where V is the volume (in Gigabits) served per
user, and the peer cost function of Cp(x) = γpV x, by ap-
plying the general formulas (4.3), we see that the provider
would return to an assisting peer an amount of γpV , covering
its energy cost, plus an incentive of (γs − γp)V/2.

If we take the above values, for one joule spent by a peer,
it is reimbursed of 1 + (2.53 − 1)/2 = 1.765 Joules, provid-
ing a non-negligible incentive. If we further factor in the
energy savings at routers, we would instead take γs = 1153
J/Gb. The reimbursement for one joule spent then becomes
1+(11.53−1)/2 = 6.265 Joules, which becomes rather com-
pelling. Another interesting outcomes is that, in addition to
save their energy expenditure, the players of this game are
naturally given incentive to limit their energy as much as
possible.

6.3 Update distribution over a mobile network
In [4], a wireless service provider pushes content updates

for certain content that changes dynamically (e.g., a news-



feed or a blog) to N mobile users. The mobile users can
share this content with each other in a peer-to-peer fashion
whenever they meet: a user whose content is most recent
pushes it to the one whose content is outdated.

We consider a multiple class case, in which users are parti-
tioned in M classes of equal size. Every user in class i meets
other users in its own class uniformly at random, with an
aggregate contact rate λi. Suppose that a only a fraction Xi
users in class i form a coalition and share their content. We
will assume that users share their content only with other
users in their class who are part of the coalition, i.e., also
share their content.

Suppose now that µi is the rate with which the service
provider pushes updates to users in class i that share their
content, while νi is the rate with which it pushes content
updates to users that do not share their content. Then, the
analysis in [4] implies that the expected age of the content
a user in the coalition is

Yi =
1

Xiλi
log

Xiλi + µi
µi

(9)

where Xi is the fraction of users sharing their content in
class i. On the other hand, the expected age of content at a
user not sharing content will be

Zi =
1

νi
. (10)

Assuming that the cost to the service provider is propor-
tional to its aggregate downlink rate, used to push updates
to the users, the average cost per user isX

i

R [(1−Xi)νi +Xiµi] (11)

where R is the cost per unit of bandwidth. We set the
following requirement on the quality of the content update
delivery service at each user: every user must have an ex-
pected age below a threshold τ . Under this constraint, the
cost at the service provider can be computed by solving the
following optimization problem, whose free variables are µi
and νi:

Minimize:
X
i

R [(1−Xi)νi +Xiµi] . (12a)

subj. to: Yi ≤ τ, Zi ≤ τ, for every class i. (12b)

where Yi, Zi can be computed from (9) and (10), respec-
tively. This is a convex optimization problem (see [10]), and
is solution yields the following cost function

C(X̄) =
X
i

R

»
1−Xi
τ

+
X2
i λi

eXiλiτ − 1

–
. (13)

Single class case.
When users belong to a single class the cost function be-

comes

C(X) = R

»
1−X
τ

+
X2λ

eXλτ − 1

–
. (14)

Function C(X) is decreasing and its curvature depends on
the product λτ , as illustrated in Fig. 2. For λτ ≤ α, where
α ≈ 3.4368, C is concave. For λτ > α, C is sigmoid, with
an inflection point at α/(λτ). The discussion in Section 5.1
implies that the maximal user Shapley value is attained after
this inflection point.
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Figure 2: The cost function C(X) for three differ-
ent cases of λτ (normalized by 1/τ). When λτ ≤ α,
where α ≈ 3.4368, C(X) is concave. For λτ > α, C(X)
is sigmoid —though, past the inflection point, the
curvature is almost negligible. In fact, for large λτ
the cost function becomes almost linear.

Nonetheless, if λτ � α the second term in (13) becomes
negligible, and the cost function becomes approximately lin-
ear. We will exploit this to obtain a simpler formulation in
the multiple class case.

Dense network with multiple classes.
We investigate the case where contacts occur very fre-

quently, in which

λiτ � α, for all i. (15)

In such a case, the contact rate among mobile users is very
high compared to the constraint placed on the expected age
through τ . Under (15), the second term in (13) becomes
negligible for all i: intuitively, the cost for serving the users
that share is negligible, as any update inserted in a few users
is very quickly (w.r.t. τ) propagated within the class. As a
result, the cost is dominated from serving the users that do
not share, and thus becomes linear

C(X̄) ≈ 1

τ
−
X
i

RXi
τ

,

and the Shapley value of a user in class i becomes

ϕi ≈
R

2τ
.

In short, whenever a user chooses to share, the service provider
can reduce its costs by R/τ —as this user can be served at
a negligible cost through sharing. Half of this cost saving is
then returned, as compensation, to the mobile user (similar
to the “upload miles” scheme in Section 6.1.2).

7. CONCLUSION
In this work, we study incentives in peer-assisted service

from a new standpoint. Instead of starting by enforcing a set
of rules that should constrain what users will be providing
and receive, we answer the following question: “How can
we value the fair share of profits of all interested parties in
a distributed system and and how easy is it to compute?”



If feasible, this approach clearly brings the benefit of not
having to worry about free riding and users misbehaving in
reaction to an unfair advantage gathered by the provider. It
also greatly simplifies pricing of peer-assistance, as provider
and users can simply focus on the price of the service they
receive, and what the rebate is.

The main contribution of this paper is to demonstrate
that such approach is indeed feasible. First, because the
large number of users participating is an opportunity for
computational efficiency (through fluid limit approximation)
rather than an obstacle. Second, because this approach can
easily accommodate multiple classes of users, any arbitrary
relation between the cost incurred by the provider and the
peer-assistance, as well as other players of the value chain
(provider of content, network operator).

The results we provide in this paper present a first step
for a comprehensive study of the value of peer-assistance in
distributed services. The connections between the cost func-
tion, which depends on peer-assistance, and the properties
of the incentive received seems a promising area to explore,
especially in the multi-class case. More applications should
be considered, in particular in providing reliability and fault
tolerance through peer-assistance. It also seems important
to account that, for some services, peers do not only act as
relay of a P2P network, but may also provide content them-
selves which increases the value of the service. We believe
that all these research challenges can be considered in a new
light due to the insights obtained through this analysis.
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APPENDIX
A. PROOF

A.1 Proof of Theorem 5.1
One could deduce that these Shapley value converge for

large population to smooth functions of X̄ which satisfy, in



addition to the axioms (7) the following conditions.8>>>>>><>>>>>>:

ϕ̃′P (X̄) + ϕ̃E(X̄) +

mX
i=1

Xiϕ
′
i(X̄) = R+ E − C(X̄)− C′(X̄) ,

∀i, j , ∂ϕ
′
i

∂xj
=
∂ϕ′j
∂xi

, ϕ′i(X̄) =
∂ϕ̃′P
∂xi

,

ϕ̃′P (X̄)− ϕ̃P (X̄) = ϕ̃E(X̄) , ∀i , ϕ′i(X̄)− ϕi(X̄) =
∂ϕ̃E
∂xi

.

(16)
Taking the differences between the two efficiency axioms

(with and without additional content provider), and replac-
ing using the two last balanced contribution property (last
line above), yields the following condition:

∀X̄ , 2ϕ̃E(X̄) +

mX
i

Xi
∂ϕ̃E
∂xi

= E − C′(X̄) .

We immediately deduce, by applying Lemma 3 with α = 2,
the value of ϕ̃E as given in the theorem.

The Shapley value of user and network provider without
the additional content provider are the same as before, and
the additional term in the Shapley value are given by the
balanced contributions. According to the last line above,
the new term only depends on ϕ̃E , which we can replace
with the above expression. The theorem follows then from
the fact that unique solution characterized by these axioms
also naturally satisfy the balance property for other players.


