
Distributed Rating Prediction in
User Generated Content Streams

Sibren Isaacman∗, Stratis Ioannidis†, Augustin Chaintreau‡, and Margaret Martonosi∗
∗Princeton University, †Technicolor, ‡Columbia University

isaacman@princeton.edu, stratis.ioannidis@technicolor.com,
augustin@cs.columbia.edu, mrm@princeton.edu

ABSTRACT
Recommender systems predict user preferences based on a
range of available information. For systems in which users
generate streams of content (e.g., blogs, periodically-updated
newsfeeds), users may rate the produced content that they
read, and be given accurate predictions about future content
they are most likely to prefer. We design a distributed mech-
anism for predicting user ratings that avoids the disclosure
of information to a centralized authority or an untrusted
third party: users disclose the rating they give to certain
content only to the user that produced this content.

We demonstrate how rating prediction in this context can
be formulated as a matrix factorization problem. Using this
intuition, we propose a distributed gradient descent algo-
rithm for its solution that abides with the above restriction
on how information is exchanged between users. We for-
mally analyse the convergence properties of this algorithm,
showing that it reduces a weighted root mean square error
of the accuracy of predictions. Although our algorithm may
be used many different ways, we evaluate it on the Neflix
data set and prediction problem as a benchmark. In ad-
dition to the improved privacy properties that stem from
its distributed nature, our algorithm is competitive with
current centralized solutions. Finally, we demonstrate the
algorithm’s fast convergence in practice by conducting an
online experiment with a prototype user-generated content
exchange system implemented as a Facebook application.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms
Algorithms

1. INTRODUCTION
A considerable portion of web activity today can be at-

tributed to direct interactions between online users. Blogs,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys’11, October 23–27, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-0683-6/11/10 ...$10.00.

social networks such as Facebook, micro-blogging appli-
cations such as Twitter, and video sharing sites such as
YouTube have provided online platforms through which
users author and share original content, establishing an on-
line following that often overlaps with their real-life social
circles.

The sheer volume of content generated daily in the blogo-
sphere and on social networks makes identifying relevant and
interesting content a challenging task. At present, providers
of these services have deployed rating mechanisms though
which a user can give feedback on content generated by
other users. Facebook and Twitter have expanded their rat-
ing mechanisms to the blogosphere, competing with other
traditional aggregators such as Digg, Reddit and Stumble-
Upon that offer similar rating interfaces. Access to such
ratings allow such companies to improve their recommenda-
tions but also to profile users; such profiles are a resource
that companies monetize, e.g., through advertising.

On the other hand, the increased monetization of private
data has been met by a sharp rise in privacy concerns within
advocacy groups like the Electronic Frontier Foundation and
regulatory bodies like the US Congress [2]. Privacy in gen-
eral, and online privacy in particular, is recognized as a fun-
damental human right by laws such as the European Direc-
tive on Protection of Personal Data and the Electronic Com-
munications Privacy Act in the U.S. Nevertheless, there are
many reasons why online users readily disclose private infor-
mation to the above companies. Behavioral economists have
identified bounded rationality, immediate gratification, un-
derestimating risk [1] and the paradox of control [4] as some
of them. Nevertheless, the importance of respecting the pri-
vacy of online users has been recognized not only by the
authorities and non-profit organizations but by companies
as well. For example, Google and Microsoft have struggled
to find compromises that respect the privacy of their users
without significantly undermining their profits [23, 25].

The challenge thus arising from this state of affairs is en-
abling users to view and access relevant, interesting, user-
generated content without releasing their private informa-
tion to untrusted third parties. In this paper, we propose
a solution to this problem by designing a distributed rating
prediction mechanism that allows users to restrict informa-
tion sharing only among trusted parties.

More specifically, we consider a general system in which
users generate and share streams of content items. For ex-
ample, a content producer in such a system may maintain a
blog, a Facebook wall or a Twitter feed. Updates generated
by users (i.e., new blog posts, wall entries or tweets) are
shared with select subscribers, who may respond to received
content by rating it. Note that, at present, such systems are
centralized. However, this need not be the case in the sys-

tem we consider here: users may generate and share both
their content as well as their ratings with each other in a
peer-to-peer fashion.

Our goal is to design a fully distributed mechanism that
learns and predicts the ratings of content consumers—i.e.,
the subscribers. More specifically, we would like to devise a
collaborative filtering scheme operating under the constraint
that information is shared only between (a) a content pro-
ducer and (b) its subscribers. For example, a user rating
certain content should share this rating only with the user
that generated the content.

Again, the main reason motivating our focus on distributed
rating prediction is privacy: we wish to avoid the disclosure
of ratings or, in fact, any user information (such as pro-
files), to a central authority or an untrusted third party.
Another reason is scalability, as a distributed approach can
scale as the number of content producers and consumers in-
creases. Furthermore, since ratings are exchanged among
content producer/consumer pairs, our algorithm naturally
exploits the social relationships between them: if two friends
subscribe to each other’s feed, training our predictor based
on content exchanges between them can exploit latent sim-
ilarities between their interests.

Our contributions can be summarized as follows:

• We propose a mathematical model of a system for
distributed sharing of user-generated content streams.
Our model captures a variety of different applications,
and incorporates correlations both on how producers
deliver content and how consumers rate it.

• We illustrate that estimating the probability distribu-
tion of content ratings can be naturally expressed as
a Matrix Factorization (MF) problem. This is in con-
trast to standard MF formulations that focus on esti-
mating ratings directly, rather than their distribution.
To the best of our knowledge, our work is the first to
apply a MF technique in the context of rating predic-
tion in user-generated content streams.

• Using the above intuition, we propose a decentralized
rating prediction algorithm in which information is ex-
changed only across content producer/consumer pairs.
Producers and consumers maintain their own individ-
ual profiles; a producer shares its profile only with
consumers to which it delivers content, and consumers
share a rating they give to an item, as well as their
profile, only with the producer that generated it.

• In spite of the above restriction on how information
is exchanged among users, our distributed prediction
algorithm optimizes a global performance objective.
In particular, we formally characterize the algorithm’s
convergence properties under our model, showing that
it reduces a weighted mean square error of its rating
distribution estimates.

• We validate our algorithm empirically. First, we use
the Netflix data set as a benchmark to compare the
performance of our distributed approach to offline cen-
tralized algorithms. Second, we developed a Face-
book application that reproduces the main features of
a peer-to-peer content exchange environment. Using
a month-long experiment with 43 users we show that
our algorithm predicts ratings accurately with limited
user feedback.

The remainder of this paper is organized as follows. In
Section 2 we briefly describe the relationship of our work

to previous rating prediction mechanisms. In Section 3 we
introduce our mathematical model, and in Section 4 we
present our distributed prediction algorithm as well as our
main results on its convergence. Our numerical evaluation
over the Netflix data set and our case study using a Face-
Book application are in Sections 5 and 6, respectively. Fi-
nally, we conclude in Section 7.

2. RELATED WORK
A traditional approach to distributed rating prediction in

peer-to-peer networks involves computing a similarity met-
ric (e.g., Pearson correlation) among neighboring peers; pre-
dicted ratings are obtained as a function of the ratings in a
peer’s neighborhood, taking into account its similarity to its
neighbors [8,15,18,20,24]. Neighbor selection is part of sys-
tem design, as predictions improve when neighbors have high
similarity scores. We depart considerably from these works
by focusing on dynamic user generated content, rather than
static content, as well as by providing formal performance
guarantees on the prediction error.

Matrix factorization is popular among collaborative filter-
ing methods due to its ability to scale over large datasets [3,
13,22]. A simple method for obtaining a low-rank factoriza-
tion of a rating matrix is gradient descent on the prediction
RMSE, potentially with added regularization terms (see,
e.g., [22], and the references therein). Assuming that rat-
ings follow the Gaussian distribution, minimizing the RMSE
is equivalent to maximizing the likelihood of observed en-
tries [21]. In this work, we do not rely on a Gaussian as-
sumption; instead, we directly apply MF to the probability
distribution of ratings in dynamic user generated streams.
Moreover, our distributed algorithm behaves as gradient de-
scent over a weighted RMSE metric, whose weights corre-
spond to content delivery rates across different consumers.

Recent work on MF has demonstrated that if entries of a
low-rank matrix are removed uniformly at random, the ma-
trix can be reconstructed accurately with high probability
[5, 6, 11]. These approaches yield stronger results than [22]
as gradient descent does not always converge to the original
matrix, or even a minimizer of the RMSE. Nevertheless, gra-
dient descent methods reduce the RMSE even when entries
are not removed uniformly at random—which is true for the
system we study. Moreover, the algorithms in [5, 6, 11] are
centralized and cannot be directly applied to the distributed
setting we consider.

There are known distributed algorithms for principal com-
ponent analysis (PCA) of the adjacency matrix of a graph
permitting message exchanges only across adjacent nodes
[10,12]. These relate to our work as PCA can be used to con-
struct an optimal low-rank approximation of the adjacency
matrix. We cannot apply such approaches as we do not
factorize the random adjacency matrix restricting commu-
nication between nodes/users (matrix A(k) in our model):
we factorize the distribution of ratings, which are decou-
pled from the communication process. The above methods
are also not fully distributed, as ortho-normalizing principal
components requires broadcasting or gossiping normaliza-
tion factors across all nodes.

Privacy in collaborative filtering was previously addressed
using homomorphic encryption [7], randomized perturba-
tion [19] and concordance measure [14] techniques. Our ap-
proach, in contrast, relies on trust between participants: we
restrict information exchanges only between trusted content
producer-consumer pairs. Within this context, secure multi-
party computation is not required to predict ratings without
disclosing user ratings publicly.

3. SYSTEM MODEL
In this section, we present the mathematical model that

we use in our analysis.

3.1 Content Sharing
We consider a set U of users generating and sharing con-

tent in a peer-to-peer manner. A subset N ⊆ U of all users,
whom we call producers, generate a stream of items. For
example, producers could maintain a blog, a news-feed or
a twitter-feed. Time is divided into timeslots, and in each
timeslot every producer generates a new content item (i.e., a
blog entry or a tweet) that is added to her locally-maintained
feed; this is subsequently shared with other users in a set
M⊆ U , which we call consumers. Note thatM and N may
intersect, as a user may both produce and consume content.

Producers share items only with consumers that belong
to their social circle and/or subscribe to their feed. Even
so, items may fail to reach all such consumers, either be-
cause the producer shares them selectively or because the
consumers fail to receive them (e.g., because they do not
observe the feed continuously).

We model this as follows. Let ai,j(k) ∈ {0, 1} be a binary
random variable indicating whether the item generated by
i ∈ N at timeslot k is delivered to j ∈ M, and let A(k) =
[ai,j(k)]i∈N ,j∈M be the corresponding |N |×|M|matrix. We
make the following assumption:

Assumption 1. {A(k)}k∈N is an i.i.d. sequence.

I.e., deliveries are independent and identically distributed
across time. Let λi,j = E[ai,j] be the probability that i
delivers an item to j. If j does not subscribe to i’s feed,
then λi,j = 0. Different consumers may receive items from
a feed with different probabilities; our model thus allows
heterogeneity in how content is targeted by producers and
how often consumers fail to observe it. Note that Assump-
tion 1 does not imply that deliveries between different user
pairs are independent. E.g., A(k) may be such that an item
delivered to Alice is always also delivered to Bob.

3.2 Content Ratings
Whenever a producer i delivers content to a consumer

j, the consumer provides some feedback to i in the form
of a rating. We denote by O the set of possible ratings
provided by consumers. In general, ratings are application-
dependent. For example, consumers may indicate through
an appropriate interface whether they liked, disliked or were
neutral towards the content, so that O = {+,−, ∅}. Con-
sumers may also indicate their interest on a scale from 1
(lowest interest) to 5 (highest interest), i.e.,O = {1, 2, 3, 4, 5}.

Let Ii,j = {k ∈ N : ai,j(k) = 1} be the set of timeslots
at which i delivers content to j. W.l.o.g., for all k ∈ Ii,j , j
provides a rating to i within the duration of the timeslot k.
Depending on the application, lack of feedback can be mod-
elled either as a failed delivery (ai,j(k) = 0) or an additional
rating (element in O). For k ∈ Ii,j , let ri,j(k) ∈ O be the
the rating given by j to i’s content. We assume that:

Assumption 2. {ri,j(k)}k∈Ii,j
is an i.i.d. sequence.

Note that ratings need not be independent across users. For
example, Alice and Charlie may always give the same rating
to an item from Bob.

3.3 Rating Distributions
Denote by π̃o

i,j , o ∈ O, the probability that ri,j(k) = o for
k ∈ Ii,j . For every rating o ∈ O, let

Π̃o = [π̃o
i,j]i∈N ,j∈M. (1)

This is a |N | × |M| matrix; each element corresponds to
a producer/consumer pair i, j, and contains the probability
that j gives rating o to an item from i. Our goal is to
correctly estimate the probability matrices Π̃o, for all o ∈ O.
I.e., for any producer/consumer pair and any rating, we
wish to find the probability that the consumer will react to
content generated by the producer by providing this rating.
Most importantly, we wish to do so in a distributed fashion,
by restricting information exchanges only directly between
producers and consumers.

Note that every time a consumer rates a content item the
rating is in effect a sample from the distribution defined by
the matrices Π̃o, o ∈ O. However, due to the heterogeneity
of the process A(k), samples are not obtained at the same
rate. In fact, if λi,j = 0, the distribution of ratings of the
(i, j) producer/consumer pair is never sampled; this relates

the estimation of Π̃o to matrix completion, as certain entries
of Π̃o are missing and cannot be directly observed.

Contrary to traditional matrix completion, missing entries
of Π̃o are not selected uniformly at random—their absence
is determined by, e.g., the feeds to which a consumer sub-
scribes. However, just as in traditional matrix completion,
it is very natural to make the following assumption:

Assumption 3. The probability matrices Π̃o are low-rank.

This assumption implies that MF techniques can be applied
to estimate these matrices; indeed our algorithm, presented
in Section 4, exploits this relationship. Note that the low-
rank property holds for the rating distribution, rather than
the ratings themselves—as each producer generates an infi-
nite number of items, this distinction is necessary.

Assumption 3 can be interpreted as a consequence of a
generative latent factor model and the total probability the-
orem. As such, it is indeed very natural in the context of
our system. We illustrate this below.

3.4 A Low-Rank Latent Factor Model
In this section we give an example of how the low-rank

property of the matrices Π̃o may manifest by making addi-
tional assumptions on how users generate and rate content.
This is only for the sake of illustration and to motivate our
approach: our main results (Theorems 1 and 2) rely only
on the assumptions we have made so far (in particular, As-
sumptions 1 and 2).

Suppose that content items generated by producers are
grouped by similarity with respect to some features, thus
forming a partition of the “content universe” into categories.
For example, categories may pertain to topics (e.g., news,
music, sports, etc.). Formally, assume the existence of a set

F̃ , whose elements we refer to as categories, such that every
content item generated by a producer belongs to a single
category. When i∈N generates new item, this item belongs
to category f ∈ F̃ with probability

p̃i,f ≥ 0, where
P

f∈F̃ p̃i,f = 1, (2)

independently of any categories of items the producer has
generated in the past. Moreover, when j∈M views an item
in category f ∈F̃ , j provides rating o ∈ O with probability

q̃o
j,f ≥ 0, where

P

o∈O q̃o
j,f = 1, (3)

independently of any ratings the user has given in the past.
Then, from the total probability theorem, the probability

that j gives rating o when viewing content from i is:

π̃o
i,j =

P

f∈F̃ p̃i,f q̃o
j,f = 〈p̃i, q̃

o
j 〉, o ∈ O, (4)

or, in matrix form,

Π̃o = P̃ · (Q̃o)T , o ∈ O, (5)

where P̃ = [p̃i,f]i∈N ,f∈F and Q̃o = [q̃o
j,f]j∈M,f∈F . I.e., the

matrices Π̃o, o ∈ O, admit a |F̃ |-rank decomposition and,

as such, their ranks are at most |F̃ |. Thus, if the number of

categories is small, the matrices Π̃o are low-rank. Moreover,
the l.h.s. matrix P̃ is the same in all |O| decompositions. The
low-rank property is thus a consequence of the existence of
content categories and the total probability theorem.

4. DISTRIBUTED RATING PREDICTION
The rating prediction problem in the context of this work

is to correctly estimate the probability matrices Π̃o, o ∈
O, in a distributed fashion. Below, we first formulate this
problem as a MF problem and then present our distributed
gradient-descent mechanism for its solution.

4.1 Formulation as Matrix Factorization
To estimate Π̃o through MF, we construct low-dimensional

profiles of producers and consumers. The inner product
of two such profiles yields an estimate of the rating prob-
abilities π̃o

i,j . More specifically, let d ∈ N be a small inte-
ger such that d � min(|N |, |M|) and denote by F the set
{1, 2, . . . , d}. For now, we make no assumptions on how d

relates to the rank of Π̃o (i.e., the number of “categories”

|F̃ | in the example given by (5)).

Each producer i ∈ N maintains a vector pi ∈ [0, 1]d that
satisfies (2), which we call the production profile of i. Simi-
larly, each consumer j ∈ M maintains |O| vectors qo

j ∈ R
d
+,

one for every rating o ∈ O, that satisfy (3). These |O| vec-
tors constitute the consumption profile of j:

qj = (qo1

j , qo2

j , . . . , q
o|O|
j).

Given the above profiles, our estimate of the probability
π̃o

i,j (the probability that when j views content generated by
i it gives rating o)—is computed as follows:

πo
i,j =

P

f∈F pi,fqo
j,f = 〈pi, q

o
j 〉, o ∈ O. (6)

Note the similarity between Equations (6) and (4). The
constraints (2) and (3) immediately imply that the inner
products in (6) are non-negative and

P

o∈O πo
i,j = 1, i.e.,

the latter indeed constitute a probability distribution.
Our goal is then to devise an algorithm for finding pro-

files pi, qj such that the prediction πo
i,j is as close to π̃o

i,j

as possible. More formally, we wish to solve the following
optimization problem:

Rating Prediction

Minimize E =
P

i∈N ,j∈M λi,j

P

o∈O |π̃
o
i,j − πo

i,j |
2, (7a)

subject to: pi ∈ D1, i ∈ N , and (7b)

qj ∈ D2, j ∈M, (7c)

where D1 and D2 are the sets of profiles that satisfy (2) and
(3), respectively. We call the objective function E in (7a) the
error of our estimate. It corresponds to the error of a rating
selected uniformly at random among ratings within a times-
lot. Its minimization is equivalent to minimizing a weighted
root mean square error (RMSE), with weights equal to the
delivery rates λi,j . In particular, when λi,j = 0 (i.e., when
i never delivers content to j), then E does not account for
the distance between πo

i,j and π̃o
i,j . This is not a bug but a

useful feature: we never have to predict how j would react
to content from i unless it receives such content.

Assumption 3 implies that there exists a small dimension,
namely |F̃ |, such that if d ≥ |F̃| the minimum error will be

zero. When d < |F̃ |, there may not exist profiles yielding
E = 0. In other words, underestimating the number of cat-
egories may preclude achieving a zero error; this is possible
as the number of “categories” is often unknown.

4.2 A Distributed Learning Algorithm
Our distributed algorithm for solving Rating Predic-

tion is specified in Figure 1. It is fully distributed, and en-
sures that a consumer discloses the rating of a content item
only to the producer that generated it. Moreover, produc-
ers share their profiles only with consumers that subscribe
to their feeds, and vice-versa.

In more detail, whenever producer i ∈ N delivers content
to consumer j ∈ M, the following interactions take place.
First, in addition to the content item, i sends to j its profile
pi. Second, the consumer views and rates the content item
with a rating ri,j ∈ O. Third, the consumer reports to the
producer (a) the rating ri,j for this content, as well as (b)
its consumption profile qj . We assume that consumer j re-
ports its rating and consumption profile to i instantaneously,
upon receipt of the item. Nevertheless, our results can be
directly extended to the case where these are reported with
an arbitrary delay within the current timeslot (see [9]).

Upon exchanging the above information, i and j update
their profiles as follows:

pi ← pi + γ
P

o∈O(
�

ri,j=o − 〈pi, q
o
j 〉)q

o
j (8a)

qo
j ← qo

j + γ(
�

ri,j=o − 〈pi, q
o
j 〉)pi, o ∈ O (8b)

where γ = γ(k) is the learning rate. We assume that γ(k) ≥
0,

P∞
k=1

γ(k) =∞, and
P∞

k=1
(γ(k))2 <∞; these conditions

hold if, e.g., γ = 1/k.
Finally, at the end of the timeslot, after (8a) and (8b)

have been applied at every encounter the producers and
consumers further update their profiles by forcing them to
satisfy (2) and (3):

pi ← ΠD1
(pi), i ∈ N (9a)

qj ← ΠD2
(qj), j ∈ M (9b)

where ΠD1
: R

|F| → D1, ΠD2
: R

|O|×|F| → D2 are the or-
thogonal projections to D1 and D2, respectively. Due to the
simple geometry of D1, D2, there are known algorithms that
compute these projections efficiently [16, 17]. In particular,
ΠD1

can be computed in O(|F|) steps, while ΠD2
can be

computed in O(|O||F|) steps.

4.3 Convergence Properties
In this section, we state our main result: the dynamics

of our algorithm always lead to a decrease in E. This im-
portant property ensures that updating the production and
consumption profiles improves our predictions, even if we un-
derestimate the number of dimensions (i.e., when d < |F̃ |).
The proof is omitted for brevity, and can be found in our
technical report [9], which also includes additional results
regarding the stability of (8) and (9) around local minima.

Our argument is as follows. First, we show that the trajec-
tories defined by the adaptations (8) and (9) asymptotically
converge to the solution of a system of ordinary differential
equations. Second, we prove that the error E always de-
creases. Our result relies on Assumptions 1 and 2 but not
on Assumption 3: in particular, the weighted error E always
decreases even if the matrices Π̃o, o ∈ O, are not low-rank.
Nevertheless, as discused in Section 4.1, when Assumption 3
fails to hold, profiles under which E is zero may not exist.

Producer i at timeslot k:
i generates new content item
γ ← γ(k)
for every pair i, j s.t. ai,j (k) = 1 :

i sends its item and pi to j.
i receives ri,j and qj from j.
pi ← pi + γ(k)

P

o∈O(
�

ri,j=o − 〈pi, q
o
j 〉)q

o
j

pi ← ΠD1
(pi)

Consumer j at timeslot k:
γ ← γ(k)
for every pair i, j s.t. ai,j (k) = 1 :

j receives item and pi from i.
j rates item with ri,j ∈ O.
j sends ri,j and qj to i.
for every o ∈ O:

qo
j ← qo

j + γ(
�

ri,j=o − 〈pi, qj〉)pi.

qj ← ΠD2
(qj).

Figure 1: Distributed learning algorithm.

Consider the partial gradients

∇pi
E = [∂E/∂pi,f]

f∈F , ∇qj
E =

ˆ

∂E/∂qo
j,f

˜

f∈F,o∈O
,

and the following system of ODEs:

dpi

dt
= −∇pi

E + zD1
, i∈N , (10a)

dqj

dt
= −∇qj

E + zD2
, j∈M, (10b)

where zD1
, zD2

, defined formally in [9], are the minimum
forces required to keep the evolution of the system within
the constraint set D1 × D2. In other words, the ODE (10)
can be viewed as a projected gradient descent for the Rating
Prediction problem.

Let pi(k), qj(k), be the production and consumption pro-
files of i ∈ N , j ∈ M, respectively, at timeslot k ∈ N. We
extend these to continuous-time functions pi : R+ → D1,

qj : R+ → D2 as follows. Let tk =
Pk

i=1
γ(k) and define for

all i and j the continuous-time interpolated processes:

pi(s) = pi(k), qj(s) = qj(k), for s ∈ [tk; tk+1[.

Theorem 1 below establishes that after sufficiently long
time, the continuous-time interpolated trajectories of our
system can be arbitrarily well approximated by solutions to
(10). Moreover, any limit points of our system must also be
limit points of the ODE (10).

Theorem 1. Consider the interpolated processes

[pi(t), qj(t)]i∈N ,j∈M, t ∈ R+.

Then, for any T > 0 there exist solutions of (10)

[p∗i (t), q
∗
j (t)]i∈N ,j∈M, t ∈ R+,

such that, as k→∞, the quantity

sup
tk≤τ≤tk+T

`

X

i

‖pi(τ)− p∗i (τ)‖∞+
X

j

‖qj(τ)− q∗j (τ)‖∞
”

converges to 0, in probability. In addition, [pi, qj]i∈N ,j∈M

converge, in probability, to the limit set of ODE (10).

Armed with the above description of system dynamics,
the following theorem establishes that under any solution of
(10) the error E decreases with time.

Theorem 2. If, pi(t), qj(t), t ∈ R+, evolve according to

(10), then dE
dt
≤ 0.

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0 50 100 150 200 250 300

R
M

S
E

Training Period (views)

D 10
D 20
D 30

Average

(a) RMSE v. training time

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 0 10 20 30 40 50 60 70 80 90 100

R
M

S
E

% through trace

Predictor
Average Method

(b) RMSE Evolution

Figure 2: (a) RMSE as a function of the training pe-
riod. (b) RMSE evolution through the course of the
Netflix trace. Most of the drop in RMSE occurs in the
first 10% of the trace.

Hence, the evolution of (10) pushes the system in the right
direction, reducing the error function E. The above result is
true irrespective of whether the user profiles have the same
dimension as the rank of Π̃o. Even if the ranks of the prob-
ability matrices are underestimated, the dynamics of (10)
still push towards a decrease.

5. COMPARISON ON NETFLIX DATA SET
In this section, we test our rating prediction algorithm on

the Netflix dataset. The wide use of the dataset as a bench-
mark allows us to implicitly compare the performance of our
algorithm to the one achieved by state-of-the-art algorithms.

5.1 Netflix Data Set
In 2006, Netflix announced a competition for recommen-

dation systems, and released a dataset on which competitors
could train their algorithms. The Netflix dataset consists
of pairs of anonymized movies and anonymized users. Each
trace entry includes a timestamp, the user ID, and the user’s
rating (on an integer scale of 1 to 5).

The dataset includes both publicly-available training data,
for which ratings were provided, and a testing dataset, for
which ratings were not disclosed. If for every movie in the
test set, we simply always predict its average rated value
from the training set, this approach would yield a root mean
square error of 1.0540 on the test set. The winning team of
the Netflix Prize challenge generated predictions with RMSE
of 0.8572 [3], a 10% improvement of the RMSE of Cinematch
(0.9525), the algorithm designed by Netflix engineers.

We apply our algorithm as follows. Each movie is given
a production profile pm ∈ [0, 1]d. Similarly, each user is
given an consumption profile qu ∈ [0, 1]5×d, corresponding
to ratings with one, two, three, four, or five stars respectively
(i.e., O = {1, 2, 3, 4, 5}). The Netflix dataset is arranged
chronologically and as users rate movies, p for the movie
and q for the user are updated according to (8a) and (8b)
with each rating and are subsequently projected to D1 and
D2 according to (9).

5.2 Evaluating our Predictions on Netflix
We evaluate the performance of our predictions of user

behavior in two ways, as discussed below.

RMSE of rating prediction.
Prior to each rating event, we predict the rating that a

user, u, will give to a movie, m. We make this prediction
by reporting the expected rating based on our estimation of

the rating probabilities, i.e.,

PredictedRating(u,m) =
P

o∈O o · 〈qo
u, pm〉.

We can then compare our prediction to the user’s rating for
this movie as recorded in the dataset, to calculate an RMSE.

Our algorithm starts with a randomly selected p for each
movie and a random q for each user and adapts them as
users rate movies. To account for a training period, we dis-
card some of the early predictions before computing the
RMSE. More precisely, we compute an RMSE for predic-
tions with training period more than k by including predic-
tions for which either the movie or the user profile has been
adapted at least k times.

Although we do not know how the Cinematch algorithm
(Netflix’s baseline) performs on the training dataset, we
know that on the test set it performs roughly 10% better
than the näıve algorithm that guesses the average rating
for each movie. Therefore, to evaluate our effectiveness, we
compare our RMSE against this “average” algorithm applied
to the training dataset (100,480,507 ratings that 480,189
users gave to 17,770 movies). We know the RMSE of this
“average” algorithm for both training (1.015) and test (1.05)
datasets, and so we can compare to these numbers.

Figure 2(a) shows the improvement in RMSE as we vary
the training period for different numbers of dimensions d of
the vectors. Regardless of the length of the training period,
the RMSE of the“average”method remains at 1.015. Again,
though we do not know how the original Netflix algorithm
(Cinematch) functioned and how it performs on the train-
ing dataset, we expect this centralized solution to achieve
roughly 10% improvement (9.18 RMSE over the training
dataset). Our algorithm ourperforms this value with a train-
ing period of only 10 iterations; a 15% improvement can
be reached with training period of 300 views. Even when
the training period is set to zero (i.e., we include all predic-
tions in the RMSE), it improves on the “average”method by
8% for all values of d, only slightly worse than Cinematch.
Thus, our technique performs at least as well as some of the
leading systems, even though our algorithm functions in a
completely distributed manner.

Figure 2(b) shows how the RMSE evolves throughout the
course of the netflix trace. Our technique makes 50% of it’s
improvements in RMSE during the first 10% of the trace, in-
dicating that it performs well even in cold start situations.
The algorithm consistantly tracks the performance of the
“average”method while demonstrating a consistant improve-
ment of 8%-12%. Figure 3(a) shows the effect of modifying
the dimensionality of the prediction vectors on the RMSE for
different training periods. As the dimensionality increases,
we see a large drop; the RMSE quickly reaches a plateau be-
tween d = 3 and d = 10, and then increases slowly. We see
the same trend for all training periods, with longer training
periods tending to be flatter.

Thus, choosing the dimensionality is a tradeoff. On the
one hand, a minimum number is needed to capture the di-
versity of the system, while on the other hand, too many
dimensions makes the algorithm slow to learn and requires
a longer training period. In practice, the best number of di-
mensions can be small (typically, 5 or 10), which also means
that very little meta-data (5 to 10 floating-point numbers)
must be transferred with each piece of content.

Predicted vs. empirical rating distributions.
We have seen that our algorithm performs well in terms of

rating prediction RMSE. However, it can also be used to es-
timate the rating probability distribution. We now evaluate

 0.84

 0.88

 0.92

 0.96

 1

 0 5 10 15 20 25 30

R
M

S
E

Dimension

0 Views
100 Views
200 Views
300 Views

Average

(a) RMSE v. dimension

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l

Predicted

1 star
2 stars
3 stars
4 stars
5 stars

Ideal
Random

(b) Rating Distribution

Figure 3: (a) Effect of dimensionality on the RMSE,
which rapidly decreases until the time is insufficient to
train all dimensions. (b) Comparison between predicted
and empirical rating distributions.

whether our estimated distribution is observed in practice
across all users and movies: e.g., for all events where we pre-
dict that rating o is obtained with probability 0.3, do we
observe that this rating is seen 30% of the time? This is, in
effect, a measure of the precision of the rating predictor.

We measure the goodness of fit of our distribution to the
empirical distribution in Figure 3(b). To compute it, we
first bin our predicted probability into 10 bins (0 to 0.1,
0.1 to 0.2, etc.). We then compare the bin value to the
actual rate of occurrence in the bin, for different ratings.
Note that for all ratings, the square correlation coefficient
R2 is above 0.98 indicating a very good match. The slope
of the best fit line is thus nearly 1. Another metric is the
distance of our result to the line y = x which would represent
an ideal predictor. Random guessing, for instance, has a
mean distance of 0.415. Our rating predictor brings a large
improvement, with distance errors as small as 6× 10−4.

This accuracy implies that the system can do more than
provide a single estimated rating for a specific movie and
user, it can actually characterize its behavior on a finer grain
which may help provide additional confidence. As an exam-
ple, it is interesting to note that users are more predictable
when they express strong opinions (5 starts, 1 stars), slightly
less predictable when they are neutral, and even less pre-
dictable when they indicate 4 or 2 stars.

6. CASE STUDY: WEBDOSE
The evaluation of our rating prediction algorithm on the

Netflix data set demonstrates that it can, indeed, be used to
make accurate predictions. However, it does not illustrate
its behavior in a distributed, heterogeneous environment.

Therefore, we implemented our system as a Facebook ap-
plication (“WebDose”), which allowed Facebook users to
view, rate, and share content in the form of web pages. We
used Facebook as a distribution platform to ensure that the
application would be immediately available to a wide range
of users without requiring extensive development overhead.

6.1 Application Description

User interface and content propagation..
When users log into the system, WebDose presents them

with a screenshot of a web page and three rating icons:
“thumbs up,”“thumbs down,” or “next”. We interpret each
of these ratings as positive, negative or neutral, respectively
(i.e., O = {+,−, ∅}). By design, users are not shown a
new page until they have clicked a button and thus rated
the page they are currently viewing. Additionally, users

have the option to “Add” (i.e., produce) content to the sys-
tem by typing a url into a text box at the bottom of their
screen. WebDose, thus, follows the same producer/con-
sumer model used throughout this paper.

We emulate content sharing as follows. When a user logs
in (or refreshes the page), she or he “contacts” another user
that has also logged in within the previous three hours. If no
such user exists, no contact occurs. A user may experience
many contacts during a browsing session as other users log
in and trigger their own“contact events.” At a contact, users
swap pages they have generated or received from other users,
thereby propagating them through WebDose. To account
for social relationships, when multiple people have logged
in the system in the past 3 hours, we bias contact events
between users that are Facebook friends.

Behind-the-scenes prediction.
The first time a user u logs into the system, she is assigned

a random production profile pu and a random consumption
profile qu. The dimension of these profiles is set to d = 10;
this will be examined in Section 6.3.

We also incorporate item profiles in WebDose. When an
item is propagated among several consumers, rather than
modifying these profiles, it is preferable to adapt them as
the item is propagated from one consumer to the next. The
system is extended so that content items generated by a
producer a are associated with a profile vector t ∈ [0, 1]d,
that is initialized to t = pa when the item is generated. This
profile is delivered along with the item to every consumer
that it passes through. However, instead of remaining static,
the item profile is adapted through (8a) and (9). A formal
analysis of joint dynamics of a system in which publisher,
consumer and item profiles are adapted is quite intricate
and beyond the scope of the present paper. Nevertheless, we
verify the performance of such a combined evolution through
the WebDose experiment.

As web pages are rated by other users of the system, tw

and qu are updated according to Eq. (8a) and (8b) respec-
tively. Both the predicted as well as the actual rating are
logged. Web pages in the system carry an identifier of the
web page’s producer, i.e., the user that added it to Web-
Dose. When a user rates a page, the system stores the
producer and rating locally. Subsequently, when the two
users have a “contact”, the web page consumer informs the
web page producer of the rating given to its content. The
producer then uses this information to update its profile pu

according to Algorithm (8a). All updates are followed by an
immediate projection to D1, D2, as in (9).

WebDose uses our prediction algorithm to select pages
to show to a user. Each time a page is shown, WebDose
first calculates π+ for each as-yet-unrated web page in the
user’s cache. The page with the highest π+ is then shown to
the user. Once that page has been rated, π+ is recalculated
for each unrated page and the new highest page is shown.
We chose this form of recommendation to ensure that a user
is always able to view all of the content in their cache, and
that WebDose would not be hindered from training user’s
profiles through pages not viewed.

6.2 Webdose Experiment
During a 33 day period, 43 users spanning 12 time zones

registered for WebDose and viewed or added 326 web pages.
Although these small numbers make learning user prefer-
ences difficult, we will show in Section 6.3 that the system
was able to adapt well. Users were free to log in as fre-
quently as they wished and could rate as many pages as

they wanted. Once a page was rated, it was never shown
to that user again. As an incentive to add quality content
to the system, we provided each user with statistics of the
ratings their content received, as well as their ranking in
“thumbs-up” and “thumbs-down” received.

Users of the system had a wide range of usage behaviors.
Half of the users had more than 10 contacts and 20% had
over 50. The most active user rated over 180 pages; 25% of
users rated more than 20 pages. This is consistent with a real
environment: most users look for web pages occasionally,
while an active few regularly check for pages.

For the system to function as intended the pages must be
viewed frequently enough that the item profile t is trained.
The high number of pages in the system (over 300) compared
to the number of users means that each page is viewed by
only a limited number of users. Over the course of our exper-
iment, no page was viewed more than 11 times. However,
more than half the pages were viewed more than 4 times,
which proves to be sufficient.

It is not necessarily true that the highest producers are
also the highest consumers. The relatively low number of
high producers indicate that it is crucial that item profiles
are introduced, otherwise all pages from the same producer
will have the same profile, slowing learning. Item profiles al-
low the system to distinguish different pages from the same
producer, accelerating convergence by training individual
web pages while the production profiles train.

The majority of users favor neutral ratings, followed by
those that mostly rate pages thumbs down. With most peo-
ple being generally ambivalent or negative on most content,
it is important that the system make accurate predictions.

6.3 Predictive Power

WebDose prediction accuracy.
To assess the correctness of predictions in WebDose, we

repeated the evaluation of our predictors with respect to
the two metrics we considered over the Netflix data set, the
RMSE and the goodness of fit of the predicted distribution
to the empirical distribution. To compute the RMSE, we
associate the values -1,0,+1 to −, ∅, + respectively. Before
the rating of a web page w by a user u, we again generate
our estimate of the rating as

PredictedRating(u,w) =
P

o∈{−1,0,+1} o · 〈tw, qo
u〉,

where tw, qu the item and consumption profiles, respectively.
Figure 4(a) displays the RMSE of our predictions as a

function of the dimension d of our profiles. The dimension
10 was used in the actual experiment and other values were
obtained by running our algorithm on the collected trace.
As in Netflix, we again observe the error quickly decreases
up to a dimension of 10, after which it remains constant.
We note that the RMSE for d = 10 is 0.819, 42% less than
the RMSE obtained by predictions obtained by the running
average ratio of each rating.

Figure 4(b) shows that the outcomes “Thumb down” and
“neutral” are both predicted accurately, with slopes above
0.63 and exhibiting good fits (R2 above 0.8). The “thumbs-
up” predictions are considerably worse, with a slope of 0.29.
This is not surprising, given that most ratings in the sys-
tem were for “thumbs-down” and “neutral”: the experiment
does not provide enough data to train quickly enough for
“thumbs-up”ratings. For this reason, we repeated the good-
ness of fit test using instead the content and consumption
profiles at the end of the experiment. Figure 4(c) demon-

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 5 10 15 20 25 30 35 40

R
M

S
E

Dimension

Predictor
Average Method

(a) RMSE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l

Predicted

Up
Down

Neutral
Ideal

Random

(b) a priori prediction

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l

Predicted

Up
Down

Neutral
Ideal

Random

(c) convergence
Figure 4: Predictions of the thumb rate of pages. (a) shows the effect of the dimension chosen at the outset of the
experiment. As the dimension increases, the error decreases. Our selection of 10 occurs below the knee of the curve.
In (b) and (c) pages are binned according to estimated percentage of “thumbing” them in a given direction. (b) shows
a priori prediction and moderate accuracy, with slopes from 0.29 to 1.07. (c) shows convergence of π at the end of the
experiment and has slopes from 0.95 to 1.3. In all figures, the green line gives a comparison to other predictors.

strates that, after convergance, the algorithm makes high
accuracy predictions, with slopes between 0.95 and 1.3.

7. CONCLUSIONS
User generated content is a primary factor to the success of

the social web as it connects users through content sharing.
It presents unique challenges for collaborative filtering due
to a large volume and the sensitivity of sharing information
beyond one’s immediate circle of acquaintances. This pa-
per proves that information exchange can be deployed only
among trusted pairs while providing strong guarantees on
the rating prediction error, thanks to a fully distributed and
asynchronous learning algorithm.

Our results expand the scope of recommender systems to
operate on top of any social content sharing platform, which
unveils important research questions. The case where trust
is not reciprocal (such as the follower relationship within
Twitter) remains an interesting open case. Our algorithm
could leverage secure multiparty computation, to provide
at a smaller cost the privacy guarantee offered by central-
ized schemes. Finally, our model can be used to analyze
how social proximity, captured through “rate of delivery” for
producer-consumer pairs, impacts the efficiency of learning.
Both questions are interesting open problems.

8. REFERENCES
[1] Acquisti, A., and Grossklags, J. What can behavioral

economics teach us about privacy? In Digital Privacy:
Theory, Technologies and Practices (2007), pp. 363–377.

[2] Angwin, J. US seeks web privacy ‘bill of rights’. Wall
Street Journal (Dec. 17th 2010).

[3] Bell, R. M., and Koren, Y. Scalable collaborative
filtering with jointly derived neighborhood interpolation
weights. In Proc. IEEE ICDM (2007).

[4] Brandimarte, L., Acquisti, A., and Loewenstein, G.
Privacy concerns and information disclosure: An illusion of
control hypothesis. In Proc. CIST (2010).

[5] Candès, E., and Tao, T. The power of convex relaxation:
Near-optimal matrix completion. IEEE Trans. Inform.
Theory 56, 5 (2009), 2053–2080.

[6] Candès, E. J., and Recht, B. Exact matrix completion
via convex optimization. Found. of Comput. Math. 9
(2008), 717–772.

[7] Canny, J. Collaborative filtering with privacy via factor
analysis. In Proc. ACM SIGIR (2002).

[8] Castagnos, S., and Boyer, A. Personalized Communities
in a Distributed Recommender System. In Proc. ECIR
(2007).

[9] Isaacman, S., Ioannidis, S., Chaintreau, A., and
Martonosi, M. Distributed rating prediction in user
generated content streams. Tech. Rep. PAC-2011-05-01,
Technicolor.

[10] Kempe, D., and McSherry, F. A decentralized algorithm
for spectral analysis. Journal of Computer and System
Sciences 74, 1 (feb 2008).

[11] Keshavan, R., Montanari, A., and Oh, S. Matrix
completion from noisy entries. JMLR 11 (2010), 2057–2078.

[12] Korada, S. B., Montanari, A., and Oh, S. Gossip PCA.
Proc. ACM SIGMETRICS (2011).

[13] Koren, Y. Collaborative filtering with temporal dynamics.
In Proc. ACM KDD (2009).

[14] Lathia, N., Hailes, S., and Capra, L. Private distributed
collaborative filtering using estimated concordance
measures. In Proc. ACM RecSys (Oct. 2007).

[15] Liu, K., Bhaduri, K., Das, K., Nguyen, P., and
Kargupta, H. Client-side web mining for community
formation in peer-to-peer environments. Proc. WEBKDD
(2006).

[16] Maculan, N., Santiago, C., Macambira, E., and
Jardim, M. An O(n) algorithm for projecting a vector on
the intersection of a hyperplane and a box in Rn. J. of Opt.
Th. and App. 117, 3 (2003), 553–574.

[17] Michelot, C. A finite algorithm for fiding the projection of
a point onto the canonical simplex of Rn. J. of Opt. Th.
and App. 50, 1 (1986), 195–200.

[18] Miller, B., Konstan, J., and Riedl, J. PocketLens. ACM
Transactions on Information Systems 22 (2004), 437–476.

[19] Polat, H., and Du, W. Privacy-preserving collaborative
filtering using randomized perturbation techniques. In
Proc. IEEE ICDM (2003).

[20] Ruffo, G., and Schifanella, R. A peer-to-peer
recommender system based on spontaneous affinities. ACM
Transactions on Internet Technology 9 (2009), 1–34.

[21] Salakhutdinov, R., and Mnih, A. Probabilistic matrix
factorization. Advances in Neural Information Processing
Systems 20 (2008).

[22] Takács, G., Pilászy, I., Németh, B., and Tikk, D.
Scalable collaborative filtering approaches for large
recommender systems. JMLR 10 (2009), 623–656.

[23] Vascellaro, J. E. Google agonizes on privacy as ad world
vaults ahead. Wall Street Journal (Aug. 10th 2010).

[24] Wang, J., Pouwelse, J., Lagendijk, R., and Reinders,
M. Distributed collaborative filtering for peer-to-peer file
sharing systems. In Proc. ACM SAC (2006).

[25] Wingfield, N. Microsoft quashed effort to boost online
privacy. Wall Street Journal (Aug. 2nd 2010).

