
Distributed Caching over Heterogeneous Mobile Networks

Stratis Ioannidis
Technicolor, France

stratis.ioannidis@technicolor.com

Laurent Massoulié
Technicolor, France

laurent.massoulie@technicolor.com

Augustin Chaintreau
Technicolor, France

augustin.chaintreau@technicolor.com

ABSTRACT
Sharing content over a mobile network through opportunis-
tic contacts has recently received considerable attention. In
proposed scenarios, users store content they download in a
local cache and share it with other users they meet, e.g., via
Bluetooth or WiFi. The storage capacity of mobile devices
is typically limited; therefore, identifying which content a
user should store in its cache is a fundamental problem in
the operation of any such content distribution system.

In this work, we propose Psephos, a novel mechanism for
determining the caching policy of each mobile user. Psephos
is fully distributed: each user computes its own policy in-
dividually, in the absence of a central authority. Moreover,
it is designed for a heterogeneous environment, in which de-
mand for content, access to resources, and user mobility may
vary across different users. Most importantly, the caching
policies computed by our mechanism are optimal : we rigor-
ously show that the caching strategies assigned to users by
our mechanism maximize the system’s social welfare. Our
results are derived formally using techniques from stochas-
tic approximation and convex optimization; to the best of
our knowledge, our work is the first to address caching with
heterogeneity in a fully distributed manner.

1. INTRODUCTION
In this work, we consider a peer-to-peer content sharing

system built over a network of mobile devices. The users of
these devices download content from the Internet whenever
they have access to a dedicated service infrastructure—e.g.,
a wireless connection at their home or office environment.
The downloaded content is subsequently stored and shared
among users in an opportunistic fashion: the mobile users
exchange their stored content, e.g., via Bluetooth, whenever
they meet.

Such content sharing systems have received considerable
attention recently [1, 2, 5, 8, 12]. Their appeal can be at-
tributed to two fundamental properties. First, through shar-
ing, users gain access to content even when they are not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS 2010, June 14–18, 2010, New York, NY, USA.
Copyright 2010 ACM 978-1-60558-005-0/08/06 ...$10.00.

within the infrastructure’s coverage. Second, by utilizing the
bandwidth available during opportunistic contacts, sharing
can assist the distribution of content and reduce the overall
load on the infrastructure.

The above systems therefore extend the reach of the ded-
icated service infrastructure while also improving its scala-
bility. As such, they are ideal for the distribution of content
both when access to the infrastructure is intermittent as well
as when the downlink bandwidth available for content dis-
tribution is limited. Their inherent drawback is delay: users
can retrieve content only when they have access to the in-
frastructure or when they encounter other users storing it.
For this reason, the content shared should be delay-tolerant,
in the sense that prompt delivery is not a strict requirement.

Given that mobile devices typically have limited storage
capacity, an important design challenge in the above content
sharing systems is determining a user’s caching policy. In
short, a user’s caching policy characterizes what content she
should retrieve and store when accessing the infrastructure.
In general, users should store content that is likely to be of
use either to themselves or other users they encounter. From
a system-wide perspective, a natural goal when selecting
such policies is to minimize delay : the content stored at
different users should be chosen so that, e.g., the average
delay for retrieving requested content is minimized.

Addressing this problem in the context of a mobile system
is challenging for a variety of reasons. The most important
one is heterogeneity. First, system resources may vary across
users: any two users may have different storage capacities
and access the infrastructure at a different rate. Second,
users may not value content the same way: they may not
necessarily be interested in the same content, and might be
more or less sensitive to finding it quickly. Finally, they
might follow diverse mobility patterns, thereby having dif-
ferent opportunities to share their cached content and to
retrieve content from other users.

All of the above three sources of heterogeneity (access to
resources, user preferences and mobility) play an important
role in determining what content a user should store. Het-
erogeneity implies that caching policies aiming to minimize
delays may vary considerably among different users. An ad-
ditional challenge arises from the fact that at least two of
the above parameters, namely user preferences and mobility,
may not be a priori known. In this sense, any mechanism
for determining a user’s caching policy cannot readily access
this information.

Another challenge posed by determining caching policies
is the need for decentralization. To begin with, as impor-

tant system parameters are not a priori known, determining
caching policies in a centralized manner requires collecting
data from users, such as mobility or content access traces.
Such a data collection process may not scale. Moreover, as
in traditional, wired peer-to-peer systems, mobile users may
wish to cooperate and share downloaded content in the ab-
sence of any central authority—e.g., due to security, “single
point of failure”, or privacy concerns. For these reasons, dis-
tributed mechanisms for caching policy selection are of great
interest.

The main contribution of this paper is to address the
above issues by proposing Psephos1, a novel distributed
mechanism for determining optimal user caching policies.
In particular:

• Psephos is designed for an environment in which all
of the above three sources of heterogeneity (access to
resources, user preferences and mobility) can occur.
It is adaptive: it does not require a priori knowledge
of user demands or mobility patterns, but adapts to
them while constructing the caching policies. Finally,
our mechanism is also distributed : each user computes
its caching policy individually, by exchanging messages
with other users she meets.

• Psephos is simple and easy to implement. In short,
users maintain a “vote” for each possible item they can
store. These votes are computed using only local infor-
mation, and reflect the amount of requests for content
a user receives, as well as how much other users value
this content. Determining which content to store is
then straightforward: whenever a user accesses the in-
frastructure, she sorts these votes and fills her cache
with the content items that have the top votes.

• Surprisingly, in spite of the inherent simplicity of the
above voting scheme, the caching policies computed by
Psephos are optimal. Using methods from stochastic
approximation and convex optimization, we rigorously
show that the caching policies selected by our mech-
anism maximize the aggregate utility (i.e., the social
welfare) of users participating in the system.

Our work is the first to address caching with heterogeneity
in a fully distributed manner. Moreover, to the best of our
knowledge, we are the first to propose the aforementioned
voting scheme and rigorously show it converges to the so-
lution of a convex optimization problem (here, maximizing
the system’s social welfare). This result can potentially be
applied in solving convex optimization problems arising in
different contexts than the one considered in this work.

We note that our focus is on a theoretical study of the
optimality of Psephos; we leave possible experimental or
empirical studies of the mechanism as future work.

The remainder of this paper is organized as follows. In
Section 2, we overview related work in the area of content
sharing in mobile networks. In Section 3, we give a de-
tailed description of our system as well as our mechanism
for determining caching policies. In Section 4 we present
our main results, without proofs, and discuss the intuition
behind them as well as their implications. The full analysis,

1From y foc, the Greek word for “pebble”. Pebbles were
used in ancient Greece as ballots during elections.

and derivation of the above results, can be found in Sec-
tion 5. We discuss possible extensions of our methods and
results in Section 6, and conclude in Section 7.

2. RELATED WORK
Sharing content using opportunistic contacts between mo-

bile devices has been recently proposed within several dif-
ferent contexts, including website downloading (7DS project
[11]), podcast (Podnet project [10]) and newsfeed [1,5,8] dis-
semination, publish-subscribe systems [6, 14], and file shar-
ing [12]. With the proliferation of powerful mobile devices
(e.g., smartphones), the potential applications for such con-
tent sharing architectures are likely to grow.

The question of optimizing caching policies to minimize
delay in a mobile network was first introduced in [12]; the
present paper builds upon and extends this earlier work.
The authors introduce utilities that are functions of the time
required to retrieve a given item, thereby capturing user“im-
patience” [12]. They then seek item replication ratios that
maximize the social welfare, a formulation and objective we
also adopt here. They further prove that this problem is
convex and can be solved by gradient descent, a result we
reuse (see Lemma 1) and exploit to design Psephos.

A distributed replication mechanism that yields optimal
replication ratios is proposed in [12] under the assumption
of homogeneity: mobile users meet each other with the same
rate, have identical storage capacities and demands for con-
tent and exhibit the same impatience towards delays. The
mechanism works as follows: whenever a user retrieves an
item, she pro-actively replicates this item throughout the
system. The number of replicas generated is computed in
terms of the time required to retrieve the item and the
unique utility/impatience function, which is a priori known.
This mechanism is shown to be optimal in equilibrium; how-
ever, convergence to an equilibrium point is not established.

Our work extends [12] by proposing a novel mechanism
that deals with heterogeneity: we consider users having dif-
ferent contact rates, storage capacities, demands and utility
functions. The mechanism proposed in [12] does not ap-
ply to this case, as it crucially relies on homogeneity and
the a priori knowledge of the (unique) utility function. In
contrast, Psephos uses only local information and operates
under heterogeneity of all the aforementioned parameters.
Moreover, we establish formal conditions guaranteeing the
convergence of Psephos to optimal caching policies.

The above problem has also strong ties to delay-tolerant
broadcasting. In [1] and [2], updates for a single content
item are propagated in a homogeneous contact scenario, and
optimal broadcasting decision policies aiming to minimize
content age are designed. Optimal contact rates with the
infrastructure, maximizing a utility of the content age, are
computed in [8] under heterogeneous mobility, while ODEs
determining the content age distribution are derived in [5].
Our approach is orthogonal, optimizing the use of storage
rather than bandwidth, and further differs from the above
works by considering the joint propagation of multiple items.

Finally, the application we consider has connections to
data ferrying networks such as KioskNet [7,9]. In such net-
works, designated mobile devices act as “ferries” carrying
content and providing connectivity, e.g., to remote villages.
One possible use of Psephos is to determine optimal pre-
fetching policies for such devices, driven by user demand.

3. SYSTEM DESCRIPTION

3.1 Content Sharing over a Mobile Network

3.1.1 Mobile User Classes
Our system consists of N mobile users, partitioned in L

distinct classes C1, C2, . . . , CL. Denote by |Ci| the size of class
Ci. Some of our results will be proved for a large system,
i.e., one in which N tends to infinity; whenever considering
such limits, we will assume that the user population in each
class grows proportionally to N , i.e., for all i,

|Ci| = riN, (1)

where ri is a constant (in N).
We assume that users in the same class are statistically

identical. In particular, they have the same contact char-
acteristics and storage capacities, they exhibit the same de-
mand for content and accrue the same utility from locating
certain content.

Nonetheless, we assume that users are oblivious to the ex-
istence of these classes: a user does not know to which class
it belongs and cannot distinguish other users based on their
class. For this reason, decisions made by our mechanism
(e.g., on what to store in a user’s cache) will not depend on
a priori knowledge of classes.

3.1.2 User Contacts and Access to the Infrastructure
We will assume that users encounter each other according

to independent Poisson processes. In particular, we assume
that each user m ∈ Ci encounters users from class Cj accord-
ing to a Poisson process with rate λi,j ≥ 0. Conditioned on
the fact that m meets a user from Cj , the latter is selected
uniformly at random from Cj (i.e., each member of Cj is
equally likely to meet m). We assume that λi,j are constants
that do not depend on N . Hence, any given user meets —
and shares content— with only a constant number of other
users per second; this is important, as users typically have
limited bandwidth.

Contacts are symmetric, i.e., m meets m′ if and only if m
meets m′. As a result,

riλi,j = rjλj,i, for any i, j. (2)

To see this, observe that a given user m ∈ Ci meets a given
user m′ ∈ Cj with a rate λi,j/|Cj |, and the latter should
equal the rate with which m′ meets m.

Moreover, we will assume that each user m ∈ Ci accesses
the infrastructure according to a Poisson process with rate
µi > 0, also constant in N . An access event indicates, e.g.,
that the user is within the vicinity of its home or its office
and can access the Internet through a wireless connection.
Note that we require µi to be strictly positive: every user
accesses the infrastructure, eventually.

3.1.3 Content Sharing
The mobile users pre-fetch, store and share content they

obtain from the Internet. For the sake of concreteness, we
will assume that they share and access websites. In general,
a user may request and access the same content more than
once; hence, any type of dynamic content, such as a newsfeed
or a blog, can be captured through our model.

We denote the set of all possible websites users may down-
load byW. Each user m in class Ci maintains a public cache
in which it can store at most ci websites, where ci ≤ |W|.

The user makes the contents of this cache publicly available:
in particular, whenever m meets a user m′, any websites
stored in m’s cache are made visible to m′, and vice versa.

Furthermore, a given user m ∈ Ci generates requests for a
website w ∈ W according to a Poisson process with rate di,w.
Generated requests for websites are satisfied as follows. If
the user m stores the requested website in its public cache,
the request is satisfied immediately. If not, the request is
stored. It is subsequently satisfied when the user meets some
other user that stores the requested website, or when the
user accesses the infrastructure.

Under the above scenario, users care simply about retriev-
ing a website and are not concerned with how stale it might
be. This is a simplification; in reality, off-line content cached
by users could become outdated. However, if the rate with
which website content changes is small compared to µi andP
j λi,j , the content found by users is less likely to be out-

dated, and the above behavior is realistic.
The purpose of the public cache of each user is to store

pre-fetched content, in order to serve future requests. Its
contents will be the outcome of the optimization performed
by our distributed mechanism. As a result, when a user’s
request is satisfied, the website retrieved is not placed in the
public cache; it is stored by the user in a private storage
space and viewed separately.

3.2 Caching Policies and Psephos

In general, the contents of a user’s cache are determined by
Psephos—described in Section 3.2.2—with the global goal
of minimizing delays. Nonetheless, the mechanism does give
users partial control of what is pre-fetched in their cache.
This control has the following form: users can choose to
always store certain sites they like in their cache, while also
block others from ever being stored in it. The sites they
choose to store permanently occupy part of the cache, so
Psephos can use only the remaining capacity to store any
additional websites. Moreover, it cannot select to store any
site that is explicitly blocked by a user.

Below, we give a more precise description of the notion
of permanent and blacklisted websites. We then present
Psephos, the distributed mechanism that selects the cache
content at each user.

3.2.1 Permanent and Blacklisted Websites
Users in class Ci have a set of preferred websites, which we

call permanent, that are always stored in their cache. We
denote this set by PRi ⊆ W, where

0 ≤ |PRi| ≤ ci. (3)

Our distributed mechanism is not allowed to remove any
permanent site from the cache of a user in Ci.

In addition, users in Ci have a set of websites BLi ⊆ W,
which we call blacklisted, that may never be stored in their
cache; this could be the case if, e.g., the users deem such
content to be offensive or inappropriate. Our distributed
mechanism is not allowed to place any blacklisted site in
the cache of a user in Ci. We assume that PRi ∩ BLi = ∅
(permanent websites are not blacklisted) and

ci ≤ |W| − |BLi| ≤ |W|. (4)

The first inequality states that after removing the blacklisted
sites, there are at least ci websites available. We can assume
that this is true without loss of generality: if not, then the

capacity of the caches in class i can be considered equal to
W − |BLi|, as any excess capacity remains unused.

Note that the sets PRi and BLi need not be correlated in
any way with the demand di,w: for example, we allow users
to request websites that they have blacklisted.

3.2.2 The Psephos Mechanism
There are two operations that are performed on a user’s

cache. First, a cache can be refreshed : more recent versions
of the websites stored in it can be retrieved. Second, the
cache can be reshuffled : certain websites may be removed
and replaced by others. The opportunities for both opera-
tions arise when a user accesses the infrastructure as well as
when she encounters other users; in particular, if a user m
meets a user m′ storing a more recent version of a certain
website w, the user m can refresh w. Moreover, the bound-
edness of ci, µi and

P
j λi,j in N imply that both operations

are scalable, as they will incur no more than constant band-
width consumption at the user. Nonetheless, to simplify our
analysis, we will assume that refreshing may occur at any
possible opportunity, while reshuffling may occur only when
a user encounters the infrastructure.

We therefore turn our attention to reshuffling; the latter
occurs as determined by Psephos. Inparticular, whenever
a user accesses the infrastructure, Psephos has the oppor-
tunity to reshuffle at most

c′i = ci − |PRi|, (5)

websites—as the rest are permanent. We will refer to c′i as
the actual capacity of a user in Ci. Moreover, the mechanism
can allocate the capacity c′i to websites belonging to the
following set:

Fi =W \ (PRi ∪ BLi) (6)

i.e., the set of websites that are neither permanent or black-
listed. We will refer to such websites as unrestricted, in
the sense that they are not restricted by prior user require-
ments. Note that (3)–(6) imply that |Fi| ≥ c′i, though, in
the case where |Fi| = c′i, the decision of our distributed
caching mechanism is trivial —all websites in Fi are placed
in the cache.

Under these constraints, reshuffling cache contents un-
der Psephos takes place as follows. First, a user does not
reshuffle at all encounters with the infrastructure (though it
always refreshes its content). Instead, a reshuffling occurs
with probability

α = α(N) > 0,

which we allow to be a function of the system size. Moreover,
each user m ∈ Ci maintains |Fi| real-valued processes

vm,w(t), w ∈ Fi,

associated with each unrestricted website. We refer to vm,w(t)
as the vote of website w at user m at time t, and to

~vm(t) = [vm,w(t)]w∈Fi

as the vote vector of user m.
These vote processes indicate how “important” a website

is, and are used to select m’s caching policy as follows.
Whenever m accesses the infrastructure and decides it will
reshuffle its cache, it sorts the vector ~vm(t) in a decreasing
order, and then caches the websites with the c′i highest votes.

Obviously, the process determining the vote vector ~vm is
crucial: we describe it in detail in Section 3.4. For now,
we only note that these votes are updated in a distributed
manner through local decisions made by the mobile user.
In particular, user m adjusts ~vm whenever she meets other
users or when she generates a request for a website.

For all w ∈ W, let

ym,w =

(
1, if m stores w,

0, o.w.
(7)

be a 0-1 variable indicating if user m ∈ Ci stores website w.
We will refer to the vector ~ym = [ym,w]w∈W as the caching
policy of mobile user m. Note that, by definition of perma-
nent and blacklisted websites, for every m ∈ Ci,

ym,w = 1, ∀w ∈ PRi, and ym,w = 0, ∀w ∈ BLi.

We note that randomizing reshuffles is required in our anal-
ysis to maintain Poisson encounters with the infrastructure.
In reality, all we need is that the reshuffling process is in-
frequent; hence, in practice, reshuffling once in every α−1

encounters with the infrastructure would suffice.

3.3 Maximizing the Social Welfare
Psephos (and the vote vectors ~vm in particular) are de-

signed in such a way so that the caching policies selected
maximize the system’s social welfare [12]. We describe this
objective in detail below. For all w ∈ W, denote by

xi,w =
X
m∈Ci

ym,w/|Ci|

the fraction of users in class Ci storing website w —i.e., xi,w
is w’s replication ratio in class Ci. We will refer to the vector
~xi = [xi,w]w∈W as the replication vector of class Ci.

Let Yi,w ≥ 0 be the time until a request for website w
generated by a user chosen uniformly at random from class
Ci is satisfied. Note that, if the user stores w, then a request
for w is satisfied immediately, i.e., Yi,w = 0. If it does not,
Ym,w is a exponentially distributed random variable with
mean 1/ρi,w, where

ρi,w = µi +
X
j

λi,jxj,w. (8)

To see this, observe that the process with which m ∈ Ci
comes into contact with other users having website w is Pois-
son with rateX

j

X
m∈Cj

λi,j
|Cj |
· ym,w =

X
j

λi,j ·
X
m∈Cj

ym,w
|Cj |

.

We assume that users in Ci have utilities Ui,w : R+ → R
that are functions of the time required to find website w.
These utilities capture the “impatience” [12] of a user, i.e.,
how sensitive it is to getting a given website quickly. We
make the following assumption about the utilities Ui,w:

Assumption 1. For all i and w, Ui,w are non-increasing,
differentiable, and |Ui,w(t)| = o

`
ect
´
, for all c > 0.

The assumption that Ui,w are non-increasing is natural (see
also [8, 12]): the longer a user has to wait, the lower the
utility it should obtain from finding the content. Note that
we do not restrict ourselves to positive functions; e.g., the
function Ui,w(t)=−t is of interest, as maximizing it amounts
to minimizing the delay experienced by users.

The boundedness assumption is of a rather mild nature.
It holds for all positive non-increasing utilities, and for neg-
ative utilities it suffices that |Ui,w(t)| grows slower than ex-
ponentially with t.

Finally, the differentiability assumption can be relaxed to
account even for discontinuous functions. We discuss such a
relaxation in Section 6.2.

The goal of our mechanism will be to choose the caching
policy at each user so that the average utility per user (or,
the social welfare) is maximized.

In particular, for X ∈ RL×|W| the matrix whose i-th row
is the replication vector ~xi, we wish to solve the following
optimization problem:

Maximize F (X) =
X
i,w

ridi,wE[Ui,w(Yi,w)] (9a)

subject to:
X
w∈Fi

xi,w ≤ c′i, for all i, (9b)

0 ≤ xi,w ≤ 1, for all i, w, (9c)

xi,w = 1, for all i, w ∈ PRi, (9d)

xi,w = 0, for all i, w ∈ BLi. (9e)

where ri = |Ci|
N

, di,w the rate of request of website w in
class Ci, and c′i the actual capacity of a cache in class i.
Note that our mechanism affects the replication ratios X
indirectly: its decisions determine the caching policies ~ym
at individual users.

We denote by

D = {X ∈ RL×|W| satisfying (9b) to (9e)} (10)

the feasible domain of (9). Note that, in reality, our mech-
anism cannot achieve any possible replication ratio. The
achievable replication vectors in a class of riN are “quan-
tized”, in the sense that the coordinates of ~xi need to be
integer multiples of 1/riN . Because of this, it is possible
that our mechanism cannot reach the optimal (real-valued)
solution in D; instead, it may exhibit an error of a factor
O
`

1
N

´
. However, as N increases, the above error becomes

negligible (see also the discussion at the end of Section 4.1).

3.4 The Vote Processes in Psephos

As discussed in Section 3.2.2, the vote vector ~vm(t) plays
a crucial role in selecting the caching policy at user m. In
this section, we describe in detail how these vote processes
are maintained and updated.

The vote at a user m is essentially an exponentially
weighted moving average (EWMA), constructed by “re-
ports” it generates as well as “reports” it receives from other
users it encounters. Such “reports” aim to indicate the effect
that storing w at m has on the utility of the users that gen-
erate them. Below, we formally define how these reports are
computed and exchanged among the users; some intuition
into why these particular quantities are reported is presented
in the next section.

To begin with, for every site w, m keeps track of the num-
ber of time slots between its last two consecutive encounters
with another node that stores w or the infrastructure. We
denote this quantity at time t by Tm,w(t) > 0. Mobile user
m also maintains a buffer of all pending requests; let nm,w(t)
be the number of pending requests for w that m has at time
t. Note that for every w stored in m’s cache nm,w(t) = 0.

The processes Tm,w(t) and nm,w(t) need only be main-
tained for websites for which m is interested in (i.e., di,w >
0). In practice, a user may keep track of these values only if
has issued a request for w at some point in the past.

Whenever m meets another user, it reports to it the fol-
lowing quantity for every website w:

repm,w(t) = −Tm,w(t) · U ′i,w (Tm,w(t)) · nm,w(t), (11)

where U ′i,w the derivative of utility Ui,w. This quantity
serves as a “report”, capturing the effect that website w has
on the utility of m.

It is important to note that if user m meets a user m′

that stores w, m first reports repm,w(t) and then updates
these values accordingly (by, e.g., updating the value of Tm,w
and setting nm,w to zero). Moreover, in practice, repm,w(t)
need only be reported for all w for which there are pending
requests, i.e., nm,w(t) > 0. For all other w, repm,w is zero
and need not be reported.

For m ∈ Ci, the average vote vm,w(t) (where w ∈ Fi) is
updated in the following way: between requests or encoun-
ters with other users, vm,w(t) decays exponentially with a
rate β = β(N) > 0, a positive gain factor which we allow
to depend on N . Whenever m receives a report, vm,w is
incremented by the value in this report, weighted by β(N).
Moreover, whenever m generates a request, vm,w(t) is incre-
mented by β(N)(Ui,w(0)−Ui,w(Tm,w(t))).

More formally, for small δ > 0, let gm,w(t, t + δ) be such
that

vm,w(t+δ) = (1−β(N)δ)vm,w(t)+β(N)gm,w(t, t+δ). (12)

Then, with probability 1−O
`
δ2
´
,

gm,w(t, t+δ)=

8>>><>>>:
repm′,w(t), ifm,m′meet in (t,t+δ]

Ui,w(0)−Ui,w(Tm,w(t)), if m

requests w in (t, t+δ]

0, o.w.

(13)

Because of the exponential decay between increments vm,w(t),
is called an EWMA. The gain factor β(N) allows us to make
the system more or less sensitive to newer “reports”, thereby
controlling the variability of vm,w(t).

We note that, in practise, a user may maintain a vote
process only for websites in Fi for which either di,w 6= 0 or
dj,w 6= 0 for some j s.t. λi,j 6= 0. In other words, either m
itself or a user it meets has requested site w ∈ Fi at some
time in the past. For all other sites, the vote vm,w(t) can be
assumed to be equal to zero and need not be maintained.

Note that the vote vector ~v is computed based only on lo-
cal information: no knowledge of the rates λi,j ,µi,di,w or any
distinction among users from different classes is required.

3.5 Psephos as Gradient Descent
Some intuition behind Psephos can be obtained by study-

ing the “reports” exchanged by users. These reports are de-
signed so that (13), the quantity that the EWMA averages
over, is in fact an estimator of the gradient of F . In partic-
ular, for m ∈ Ci,

E[gm,w(t, t+δ)] ∼ δ · 1

ri

∂F

∂xi,w
(14)

—see also Lemma 3 for a more formal statement.
Hence, the averaging performed by the EWMA vm,w(t)

should yield, if sufficient time passes, a good estimate of

Table 1: Summary of Notation
N Number of mobile users.
L Number of user classes.
W Set of websites .
Ci i-th class, i = 1, . . . , L.
ri Relative size of class Ci.
ci Total capacity of a cache in class Ci.
c′i Actual capacity of a cache in class Ci.
PRi Permanent websites in class Ci.
BLi Blacklisted websites in class Ci.
Fi Unrestricted websites in class Ci.
~ym Caching policy of user m .
~xi Replication vector of class Ci.
X Matrix of replication vectors ~xi.
λi,j Contact rate of m ∈ Ci with users in Cj .
µi Contact rate of m ∈ Ci with the infrastructure.
di,w Request rate of w by a given user m ∈ Ci.
Ui,w(t) Utility at class i when finding website w within

time t.
Yi,w Delay of discovery of website w from a user in

Ci.
ρi,w Contact rate of a user in Ci with users storing

w.
F (X) The social welfare.
D The feasible domain of (9).

α(N) Gain of cache policy selection mechanism.
β(N) Gain of vote averaging mechanism.
~vm Vote vector of user m.

∂F
∂xi,w

. Suppose now that for some m ∈ Ci the website w has

the highest vote, but it is not stored by m. Then, (14)
indicates that ∂F

∂xi,w
is the highest among all derivatives

[∂F
∂xi,w′

]w′∈Fi . The latter suggests however that increasing

the replication ratio of w within the class Ci will yield the
highest possible increase on the social welfare F (compared
to increasing the ratio of some other website). Adding w
to it m’s cache accomplishes precisely this: it increases the
replication ratio of w in its class, albeit infinitesimally.

Hence, our approach of selecting the sites with the high-
est votes is a form of gradient descent: its outcome changes
replication ratios according to the largest components of gra-
dient ∇F . Alternatively, provided that the vote processes
correctly estimate this gradient, our distributed mechanism
does “the right thing”, by slightly increasing the social wel-
fare with each website placed in the cache.

4. MAIN RESULTS
Our main result is to show that the caching policies com-

puted by Psephos lead to replication ratios per class that
are optimal, i.e., maximize the system’s social welfare. We
first show this formally under a time-scale separation as-
sumption: we require that the cache policy selection pre-
formed by Psephos occurs at a slower pace than the evolu-
tion of the vote processes ~vm.

4.1 Convergence to Optimal Caching Policies
Our first main result is that, if the cache policy selection

occurs at a much slower pace than the rate with which the
vote processes evolve, our system is guaranteed to converge
to an optimal caching policy. More formally,

Theorem 1. Let {X(t)}t≥0 be the replication ratios at
time t resulting from the caching polices selected by Psephos,
as described in Section 3.2.2. Moreover, assume that

lim
N→∞

Nα(N)

β(N)
= 0, (15)

Then, the steady state distribution of {X(t)}t≥0 is such that

lim
t→∞

P
`
|F (X(t))− sup

X∈D
F (X)| > ε(N)

´
≤ ε(N),

where limN→∞ ε(N) = 0. In other words,

lim
N→∞

lim
t→∞

F (X(t)) = sup
X∈D

F (X), in probability.

To gain some intuition behind the above theorem, re-
call that α(N) is the probability with which our mechanism
reshuffles a user’s cache upon accessing the infrastructure.
Moreover, recall that β(N) is the rate with which the ex-
ponentially weighted moving average scheme in Section 3.4
adapts the current vote vector ~vm.

Eq. (15) states that α(N) is much smaller than β(N)—
by a factor of N , at least. This implies that there is a clear
separation between the timescale at which the vote processes
~vm(t) change and at the timescale at which caching policies
are changed. In particular, the latter process is much slower
than the former.

Intuitively, this time separation implies that, between two
consecutive updates of the caching policy of a user m ∈ Ci,
the vote process ~vm has already converged close enough to
the quantity that it is suppose to estimate —namely, to
1
ri

h
∂F
∂xi,w

i
w∈Fi

(see also Lemma 6). The above convergence

allows us to characterize the behavior of the system in terms
of a system in which votes are almost exact in estimating the
above quantity.

The quantity ε(N) can be used to characterize how close
X(t) is to an optimizer of F . In particular, it is shown in
Section 5.5 that it is of the following order:

ε(N) =

vuutO

 s
Nα(N)

β(N)

!
+O

„
1

N

«
. (16)

The first term of the above formula is due to the “error” in-
duced by the estimate of ∇F through the votes ~vm. The sec-
ond term is due to the “quantization” effect we mentioned in
Section 3.3. Roughly, the X at which our system converges
may have an O(1

N
) error compared to the optimal (real-

valued) solution in D. Nonetheless, as N tends to infinity,
this error term vanishes.

4.2 A Single Timescale Fluid Model
Maintaining a “fast” caching policy selection process is

appealing from a practical perspective: we would like our
mechanism to converge to the optimal policies as quickly as
possible. However, our reliance on two timescales to prove
Theorem 1 restricts us from “speeding up” our mechanism,
e.g., by maintaining a high value of α(N), or by allowing
the cache to be reshuffled upon contact with other users.

It is therefore interesting to understand whether a timescale
separation is truly necessary. Our second main result indi-
cates that it is not. To show this, we consider the dynamics
of a deterministic system in which votes and cache policies
evolve jointly. Surprisingly, in spite of the lack of a separa-
tion between the timescales of evolution of this system, the

system converges where it is supposed to: the cache policies
converge to a maximizer of F in D, and the votes converge
to the gradient ∇F .

We first give a formal statement of our result, and then
discuss how it applies within the context of our system. Con-
sider a convex bounded set C ⊂Rd+. Then, for F :C→R a
function which is strictly concave, non-decreasing and differ-
entiable, we consider the following dynamics for the vectors
~x ∈ C and ~v ∈ Rd+

d

dt
~x = α (G(~v)− ~x) , (17a)

d

dt
~v = β (∇F (~x)− ~v) , (17b)

where α, β are positive constants, function G is defined as

G(~v) = arg max
~x∈C
〈~x,~v〉, (18)

where 〈~x,~v〉 the inner product of ~x and ~v (in case of multiple
maximisers, anyone can be chosen) and ∇F (~x) denotes the
gradient of F at ~x. Then, the following theorem holds:

Theorem 2. Assume that C contains two vectors ~z, ~z′

such that zi < z′i for all i = 1, . . . , d. Under the above as-
sumptions, the dynamical system (17) converges to (~x∗, ~v∗)
where ~x∗ achieves the maximum of F over C, and ~v∗ =
∇F (~x∗).

To see how the above applies to our system, assume for
simplicity that Fi = W (i.e., there are no permanent or
blacklisted sites), and let d = L×W and C = D. Note that
the latter is indeed a convex set. As we will see (c.f. Lemma 1),
our objective function F is indeed concave (though not nec-
essarily strictly), non-decreasing and differentiable.

Then, the system (17) evolves in a similar way to our
dynamical system under the following simplifications. First,
all users in a class are assumed to have exactly the same vote
vector, although this vector need not be “correct”, in the
sense that it may not necessarily be equal to the gradient
∇F . Second, the rate with which cache policies are changed
by our mechanism is the same in each class: it can be verified
(see Section 5.4) that this occurs if µi/ri does not depend on
i. Finally, the evolution of both votes and cache policies has
been replaced with a “fluid limit”, in which N is assumed to
be infinite and the random changes in the system have been
replaced with their expectations.

Under these simplifications, the votes in each class are
represented by vector ~v, which, as all users in the same class
have the same votes, can be written as the concatenation of
the vectors ~v = [~v1;~v2; . . . ;~vL], where ~vi the vote vector of
class Ci. Note that (17b) indeed evolves as a “fluid limit”
of the votes in the system, where the random reports in the
EWMA have been replaced with their expectation.

Similarly, (17a) captures the dynamic evolution of the
replication ratios over all classes. To see this, observe that,
given the constraints C, the inner product 〈~x,~v〉 is maxi-
mized in terms of ~x ∈ C when ~x takes the value 1 at the
ci top elements of each sub-vector ~vi of ~v, and the value 0
everywhere else. This is indeed implemented at by our cache
policy selection mechanism at each user. In the fluid limit,
each such change brings an infinitesimal change in the repli-
cation ratio of a class, and (17a) captures system dynamics.

In spite of the simplifications involved, the convergence of
(17) is far from obvious. In particular, as there is no time
separation between the parameters α and β, the evolution

of (17a) is not guaranteed to be supplied with a correct es-
timate of the gradient ∇F through the vote vector ~v. From
a technical standpoint, the proof requires a Lyapunov func-
tion that exploits a relationship between the function G and
conjugate duality (see Section 5.6).

Nonetheless, Theorem 2 states that this system indeed has
the desirable behavior: on one hand, ~v eventually converges
to the gradient of F , and ~x converges to its (unique, due to
strict convexity) maximizer. The above result, in spite of the
simplifications involved, suggests that a timescale separation
between the two processes is not strictly necessary.

5. ANALYSIS

5.1 Convexity and Differentiability
We begin our analysis by showing that maximizing social

welfare is a convex optimization problem [4, 13]. This was
proved in a slightly different form in [12] (see Theorems 1
and 2 therein); we repeat the proof below for the sake of
completeness.

Lemma 1. The optimization problem (9) is convex. In
particular, the objective function F is concave in X ∈ D.

Proof. Our proof follows the same arguments as [12].
Note that E[Ui,w(Yi,w)] can be written as

xi,wUi,w(0) + (1− xi,w)

Z ∞
t=0

Ui,w(t)ρi,we
−ρi,wtdt

where ρi,w = µi +
P
j λi,jxj,w. By Assumption 1, Ui,w(t) =

Ui,w(0) +
R t
0
U ′i,w(s)ds, for all t ≥ 0. This yields

E[Ui,w(Yi,w)] = Ui,w(0)+(1−xi,w)

Z ∞
0

U ′i,w(s)e−ρi,wsds (19)

Since Ui,w is non-increasing, U ′i,w(s) is non-positive. There-
fore, (1−xi,w) and−

R∞
0
U ′i,w(s)e−ρi,wsds are non-increasing,

non-negative convex functions of ~xi; it can be verified that
the product of such functions is convex [12]. Hence, E[Ui(Yi,w)]
is concave as the sum of a concave and a constant function,
and so is F as the positive sum of concave functions.

Having established the concavity of F , we turn our atten-
tion to its gradient ∇F . The following further establishes
the smoothness of ∇F , which follows from Assumption 1.

Lemma 2. The objective function F is twice continuously
differentiable in D and

∂F

∂xi,w
= ridi,wE[Ui,w(0)− Ui,w(Ŷi,w)]

−
X
j

rj
dj,w
ρj,w

(1−xj,w)λj,iE[Ŷj,wU
′
j(Ŷj,w)] (20)

where Ŷi,w is the time it takes to find the website conditioned
on the event that Yi,w 6= 0.

Proof. From (19) we have that

∂F

∂xi,w
= −ridi,w

Z ∞
0

U ′i,w(s)e−ρi,wsds

−
X
j

rjdj,w(1−xj,w)

Z ∞
0

U ′j,w(s)e−ρj,wssλj,ids. (21)

Moreover,Z ∞
0

U ′i,w(s)e−ρi,wsds
(19)
=

Z ∞
0

Z t

0

U ′i,w(s)ρi,we
−ρi,wtdsdt

=

Z ∞
0

[Ui,w(t)− Ui,w(0)]ρi,we
−ρi,wtdt

whileZ ∞
0

sU ′j,w(s)e−ρj,wsds =
1

ρj,w

Z ∞
0

sU ′j,w(s)ρi,we
−ρj,wsds

Eq. (20) therefore follows. Note that, by (21), ∂F/∂xi,w is
decreasing in ρj,w for all j. Hence, by the monotone con-
vergence theorem it is continuous in ρj,w ∈ [µj , 1], and is
therefore also continuous in X. Note the following fact:

If |f(t)|=o(ect) ∀c>0, then so is |f ′(t)| and |tf(t)|. (22)

Hence, the quantity˛̨̨̨
∂F

∂xi,w

˛̨̨̨
(21)

≤ ridi,w

Z ∞
0

(−U ′i,w(s))e−µisds

+
X
j

rjdj,wλj,w

Z ∞
0

(−sU ′j,w(s))e−µjsds,

is bounded by Assumption 1 and (22). Differentiating (21)
by xi′,w gives a closed form for the Hessian of F , which can
similarly be shown to be continuous and bounded; the finite-
ness of

R∞
0
|U ′j,w(s)|s2e−µjsds, for all j and w, required for

this result, is indeed implied by Assumption 1 and (22).

Note that an immediate implication of Lemma 2 is that
∇F is Lipschitz continuous, as F is twice continuously dif-
ferentiable over the bounded domain D.

5.2 A Threshold Function and Mass Preser-
vation

In this section, we give a more formal description of the
cache policy selection process in terms of the vectors ~vm.

Let m ∈ Ci and assume that the vector ~vm is sorted in
decreasing order. Let τi(~v) be the average of the c′i-th and
c′i + 1-th entry in the sorted vector ~vm (if the latter does
not exist, then |Fi| = c′i, and the mechanism stores every
unrestricted website). It is clear that, since the top c′i items
are placed in the cache, any website w ∈ Fi s.t. vm,w > τi(~v)
is placed in m’s cache while every website w ∈ Fi s.t. vm,w <
τi(~vm) is removed. Hence, τi(~vm) is a threshold indicating
whether a website enters the cache or not.

Note that websites such that vm,w = τi(~v) exist if and
only if the c′i-th and c′i + 1-th entry in the sorted vector ~vm
are equal. If such websites exist, we assume that ties among
them are broken arbitrarily—any such site can be placed
in the cache of user m, so that at all times equal c′i sites
belonging to Fi are in the cache.

The above can be expressed as follows. The cache of a
user m ∈ Ci is updated according to the following process.

ym,w(t+ δ) = ym,w(t) + hm,w(t, t+ δ), w ∈ Fi (23)

where

hm,w(t, t+ δ) =

8><>:
0, if m does not reshuffle

its cache in (t, t+ δ]

∆m,w(~vm, ~ym), o.w.

(24)

and ∆m,w(~vm, ~ym) is given by

∆m,w(~vm, ~ym)=1vm,w>τi(~vm)∧ym,w=0−1vm,w<τi(~vm)∧ym,w=1

+ 1vm,w=τi(~vm)zm,w(~vm, ~ym). (25)

The quantity zm,w(~vm, ~ym) may be either 0,1 or -1, depend-
ing on how m decides to break ties among websites with the
same vote. However, because the total number of websites
in its cache does not change, the number of websites entering
the cache has to equal the number of websites exiting the
cache. As a result, the following “mass preservation” rule
must hold for all m:X

w∈Fi

∆m,w(~vm, ~ym) = 0. (26)

Eq. (26) places a constraint on the quantities zm,w(~vm, ~ym):
they may be arbitrary insofar as the total “mass” of websites
moved around is preserved, and every user in class Ci stores
exactly c′i websites from Fi.

5.3 System Drift within Small Intervals
The functions gm,w and hm,w, given by (13) and (24),

respectively, characterize the change of the votes and the
caching strategies within a small time interval (t, t + δ]. In
what follows, we characterize their expectations and their
variances, in terms of δ.

Our first result is that, in expectation, gm,w(t, t+ δ)/δ is
equal to the partial derivative ∂F

∂xi,w
, scaled by a factor 1/ri.

This is a fundamental part of our proof, as it implies that the
EWMA process defining the votes “averages out” a random
process whose expectation is, in fact, a scaled version of the
gradient ∇F .

Lemma 3. For m ∈ Ci, and w ∈ Fi

gm,w(t, t+ δ) = δ

»
1

ri

∂F

∂xi,w
+Mm,w

–
+O

`
δ2
´

where E[Mm,w] = 0 and E[|Mm,w|2] <∞.

Proof. Observe that, for any m ∈ Ci, and any w s.t.
di,w > 0, Tm,w(t) is exponentially distributed with mean
1/ρi,w; in other words, it follows the same distribution as

Ŷi,w. By Little’s theorem, for any m ∈ Ci s.t. ym,w =

0, E[nm,w(t)] =
di,w
ρi,w

. Moreover, nm,w(t) is independent of

Tm,w(t). This is because Tm,w(t) is updated at the last
encounter with a user that stores w, at which any pend-
ing requests for w are served and nm,w becomes zero; such
events constitute renewal epochs of the process {nm,w(t)}.
As nm,w(t) reflects the requests accumulated since that last
encounter, it is independent of Tm,w(t).

These observations give us that, for any m ∈ Ci,

E[gm,w(t, t+ δ)] = O
`
δ2
´

+ δdi,wE[Ui,w(0)− Ui,w(Ŷi,w))]

+ δ
X
j

X
m′∈Cj

λi,j
rjN

1ym′,w=0
dj,w
ρj,w

E[−Ŷm′,wU ′j,w(Ŷm′,w)]

(2)
= O

`
δ2
´

+ δdi,wE[Ui,w(0)− Ui,w(Ŷi,w))]

+ δ
1

ri

X
j

rjλj,i(1− xi,w)
dj,w
ρj,w

E[−Ŷm′,wU ′j,w(Ŷm′,w)]

= δ
1

ri

∂F

∂xi,w
+O

`
δ2
´
.

The number of pending requests for w and m ∈ Ci, i.e.,
nm,w(t), evolves as a queue with Poisson arrivals with rate
di,w and a single server with an exponential service time
with parameter ρi,w and with batch departures. In such a
queueing system, the steady state distribution of the size
is geometric with parameter ρi,w(ρi,w + di,w)−1. Hence, in

steady state E[(nm,w)2] =
2d2i,w−di,wρi,w

ρ2i,w
. The second mo-

ment of gm,w can thus be written as

E[gm,w(t, t+ δ)] ≤ O
`
δ2
´

+ δdi,wE
ˆ
|Ui,w(0)−Ui,w(Ŷi,w))|2

˜
+ δO

 X
j

1

ρ2
j,w

Z ∞
0

(sU ′j,w(s))2ρi,we
−ρi,wsds

!
Recall that ρi,w ≥ µi > 0. Moreover, note that if |f(t)| =
o
`
e−ct

´
for all c > 0, then so is |f(t)|2. Hence, Assump-

tion 1, implies that E[(Ui,w(0) − Ui,w(Tm,w(t)))2] is finite.
On the other hand, the summands in the quantity summed
over j is of the order of 1

ρj,w

R∞
0

(sU ′j,w(s))2e−µisds. The

quantity
R∞
0

(sU ′j,w(s))2e−µisds is bounded by Assumption 1
and (22), and 1/ρj,w is bounded by 1/µj . The lemma there-
fore follows.

We now turn our attention to hm,w, which characterizes the
infinitesimal change of the caching policy at m.

Lemma 4. For m ∈ Ci,

hm,w(t, t+δ) = δ
µiα(N)

ri

∆m,w(~vm, ~ym)+M ′m,w

ff
+O(δ2)

where M ′m,w a r.v. with E[M ′m,w] = 0 and E[|M ′i,w|2] < 1,
and ∆m,w(~vm, ~ym) as in (25).

Proof. It is easy to see from (24) and the definition of
the contact process among users and the infrastructure that

E[hm,w(t, t+ δ)] = O
`
δ2
´

+ 0 · (1− µiα(N)

ri
δ) +

µiα(N)

ri
δ·ˆ

1vm,w>τi(~vm)∧ym,w=0 − 1vm,w<τi(~vm)∧ym,w=1

+ 1vm,w=τi(~vm)zm,w(~vm, ~ym)
˜

The boundedness of the variance follows easily from the fact
that, conditioned on at most one contact with the infras-
tructure taking place, |hm,w(t, t+ δ)| ≤ 1.

5.4 System Evolution In Terms of Timescale
Separation

Lemmas 3 and 4 imply that the evolution of ~vm and ~xi can
be described by the following stochastic difference equations:8>>><>>>:
vm,w(t+δ) = (1−βδ)vm,w(t)+βδ

h
1
ri

∂F (X)
∂xi,w

+Mi,w+O(δ)
i

xi,w(t+δ) = xi,w(t)+ µiα
ri
δ·

1
riN

P
m∈Ci ∆m,w(~vm, ~ym)+M ′i,w+O (δ)

ff
where E[Mi,w] = E[M ′i,w] = 0 and their second moments are
bounded for all m, i and w.

Hence, the evolution of ~vm, m ∈ Ci, occurs at a timescale
of the order of β, while the evolution of ~xi occurs at a
timescale of the order of µiα

ri
. The following lemma states

that if the above timescales are separated, then, for large
t, the vote processes follow closely the partial derivatives
∂F/∂xi,w:

Lemma 5. For all i, for all m ∈ Ci, and for all w ∈ Fi,

lim sup
t→∞

E[|vm,w(t)− 1

ri

∂F (X(t))

∂xi,w
|2] = O

„
µiα(N)

riβ(N)

«
Proof. Fix δ(N) > 0 to be an arbitrary function s.t.

lim
N→∞

δ(N) max(1, β(N)) = 0. (27)

For k ∈ N, take vkm,w = vm,w(δ(N)·k) and Xk = X(δ(N)·k).

Then, the evolution of {vkm,w,Xk}k∈N can be described as:8><>:
vk+1
m,w = vkm,w+β(N)δ(N)

h
1
ri

∂F (X)
∂xi,w

−vkm,w+O (δ(N))+Mi,w

i
xk+1
j,w = xkj,w, for j s.t. w /∈ Fj
xk+1
j,w = xkj,w+β(N)δ(N)

ˆ
ε(N)+M ′j,w(N)

˜
, for j s.t. w ∈ Fj

where ε(N) = O
“
µiα(N)
riβ(N)

”
and M ′i,w(N) = µiα(N)

riβ(N)
M ′i,w. Let

λ(X) = 1
ri

∂F (X)
∂xi,w

be the stationary point of the ODE v̇m,w =

1
ri

∂F (X)
∂xi,w

− vm,w. Note that, by Lemma 2, λ(X) is Lipschitz.

From Chapter 2, page 112 of Borkhar [3],

lim sup
k→∞

E[|vkm,w−λ(Xk)|2] = O (β(N)δ(N))+O

„
µiα(N)

riβ(N)

«
.

The lemma follows as δ can be any function s.t. (27) holds.

Consider now the processes {X(k)}k∈N, {vm,w(k)}k∈N de-
fined at the k-th epoch of a contact with the infrastructure
and let

ε(k) = sup
m,w
|vm,w(k)− 1

ri

∂F (X(k))

∂xi,w
|. (28)

Lemma 6.

lim sup
k→∞

E[|ε(k)|2] = O

„
µiNα(N)

riβ(N)

«
. (29)

Proof. By Lemma 5,

lim sup
k→∞

E[|ε(k)|2]=lim sup
k→∞

E[sup
m,w
|vm,w(k)− 1

ri

∂F (X(k))

∂xi,w
|2]

≤ lim sup
k→∞

X
m,w

E[|vm,w(k)− 1

ri

∂F (X(k))

∂xi,w
|2]=O

„
µiNα(N)

riβ(N)

«
.

The following lemma states that the evolution of F (X(k))
is well approximated by the evolution of a system in which
(a) all users in the same class Ci have the same vote vector

and (b) this vector equals [1
ri

∂F (X(k))
∂xi,w

]w∈Fi . The error be-

tween this and the true evolution of F (X(k)) can be bounded
in terms of ε(k)—which, by Lemma 6, is small when α(N)
and β(N) are well separated.

Lemma 7. Let ui,w ≡ 1
ri

∂F (X(k))
∂xi,w

, for all w ∈ Fi. Then

F (X(k + 1))− F (X(k)) =

=
1

N

ˆX
i

∆i(~ui, ~xi) +M +O (ε(k)) +O

„
1

N

«˜
where E[M] = 0, E[|M |2] ≤ ∞ and

∆i(~ui, ~xi) = µ̃i

 X
w∈Fi:ui,w>τi(~ui)

(ui,w−τi(~ui))(1−xi,w)

+
X

w∈Fi:ui,w<τi(~ui)

(ui,w−τi(~ui))xi,w
ff

(30)

with µ̃i = µi/
P
j µj.

Proof. Conditioned on an encounter with the infrastruc-
ture taking place, this occurs at a given m ∈ Ci with proba-
bility µ̃i

riN
. Hence, X(k) can be described as

xi,w(k+1)=xi,w(k)+
1

riN

X
m∈Ci

µ̃i
riN

∆m,w(~vm, ~ym)+M ′′i,w

ff
for i, w s.t. w ∈ Fi, and xi,w(k + 1) = xi,w(k), for i, w,
s.t. w /∈ Fi. Note that since at each epoch xi,w changes by
at most 1

riN
, ‖X(k+1)−X(k)‖∞ = O

`
1
N

´
. From the mean

value theorem

F (X(k+1))−F (X(k))=
X
i,w

∂F (Ξ)

∂xi,w
(xi,w(k+1)−xi,w(k))

where Ξ = (1 − δ)X(k + 1) + δX(k), for some 0 ≤ δ ≤
1. By Lemma 2, ∂F

∂xi,w
is Lipschitz continuous, so we have

that | ∂F (Ξ)
∂xi,w

− ∂F (X(k))
∂xi,w

| ≤ K‖Ξ−X(k)‖∞ ≤ K‖X(k+ 1)−
X(k)‖∞ = O

`
1
N

´
Hence, for ~ui ≡ [1

ri

∂F (X(k))
∂xi,w

]w∈Fi ,

F (X(k + 1))− F (X(k)) =

=
X
i,w

„
∂F (X(k))

∂xi,w
+O

„
1

N

««
(xi,w(k + 1)− xi,w(k))

=
X

i,w∈Fi

ui,w
N

X
m∈Ci

µ̃i
riN

∆m,w(~vm, ~ym)+M ′′i,w

ff
+O

„
1

N2

«

=
1

N

X
i,w∈Fi

µ̃iui,w
X
m∈Ci

∆m,w(~vm, ~ym)

riN
+
M

N
+O

„
1

N2

«
(31)

where E[M] = 0 and E[|M |2] < ∞. On the other hand, for
any i,X
w∈Fi

µ̃iui,w

 X
m∈Ci

∆m,w(~vm, ~ym)

riN

ff
=

(25)
=

µ̃i
riN

X
m∈Ci

 X
w∈Fi:vm,w>τi(~vm)

∧ym,w=0

ui,w −
X

w∈Fi:vm,w<τi(~vm)
∧ym,w=1

ui,w

+
X

w∈Fi:vm,w=τi(~vm)

ui,wzm,w(~vm, ~ym)

ff
Note that τi is Lipschitz continuous. In particular

|τi(~vm)− τi(~ui)| ≤ ‖~vm − ~ui‖∞
(28)

≤ ε(k). (32)

Hence, for every m ∈ Ci and every w ∈ Fi s.t. vm,w =
τi(~vm), we have that

|ui,w − τi(~ui)| ≤ |ui,w − vm,w|+ |τi(~vm)− τi(~ui)| ≤ 2ε(k).

This, along with (26), implies thatX
w∈Fi

µ̃iui,w

 X
m∈Ci

∆m,w(~vm, ~ym)

riN

ff
=

=
µ̃i
riN

X
m∈Ci

 X
w∈Fi:vm,w>τi(~vm)

∧ym,w=0

(ui,w−τi(~ui))

+
X

w∈Fi:vm,w<τi(~vm)
∧ym,w=1

(τi(~ui)−ui,w)

ff
+O (2µ̃iWε(k))

= µ̃i

 X
w∈Fi:

ui,w>τi(~ui)

(ui,w−τi(~ui)(1−xi,w) +
X
w∈Fi:

ui,w<τi(~ui)

(ui,w−τi(~ui)xi,w
ff

+ E1 + E2 +O (2µ̃iWε(k)) (33)

where

E1 =
µ̃i
riN

X
m∈Ci

X
w∈Fi

[1vm,w>τi(~vm)
∧ym,w=0

−1ui,w>τi(~ui)
∧ym,w=0

](ui,w−τi(~ui))

E2 =
µ̃i
riN

X
m∈Ci

X
w∈Fi

[1vi,w<τi(~vi)
∧ym,w=1

−1ui,w<τi(~ui)
∧ym,w=1

](τi(~ui)−ui,w)

By (28) and (32), for every w ∈ Fi s.t. ui,w > τi(~ui) +
2ε(k), vm,w > τi(~vm), while for every w ∈ Fi s.t. ui,w <
τi(~ui)−2ε(k), vi,m < τi(~vm). This implies that the indicator
functions in E1 and E2 (expressed in terms of ~vm and ~ui)
may only differ for w ∈ Fi such that |ui,w − τi(~ui)| ≤ 2ε(k).
As such

|E1| ≤
µ̃i
riN

X
m∈Ci

X
w∈Fi:

|ui,w−τi(~ui)|≤2ε(k)

|ui,w − τi(~ui)| ≤ 2µ̃iWε(k)

and the same can be stated about E2. The lemma therefore
follows from (31) and (33).

Lemma 7 implies that the mean drift of F (X(k)) is deter-
mined by the quantityX

i

∆i(~ui, ~xi) ≥ 0,

which is always non-negative. This indicates that, in expec-
tation, F (X(k)) will increase. By considering the Karush
Kuhn Tucker (KKT) conditions of the optimization prob-
lem (9), one can show that the above mean drift is zero if
and only if X is a maximizer of F . In fact, a stronger state-
ment is true: if, for some ~X(k), the mean drift

P
i ∆i~ui, ~xi

is small, then F (~X(k)) is guaranteed to be close to the max-
imum value of F in D:

Lemma 8. Consider a X∗ ∈ D and denote by

~u∗i ≡
»
r−1
i

∂F (X∗)

∂xi,w

–
w∈Fi

.

If
P
i ∆i(~u

∗
i , ~x
∗
i) ≤ ε, for some ε > 0, then

|F (X∗)− sup
X∈D

F (X)| ≤ εmax
i

ri
µ̃i
.

Proof. The Lagrangian of (9) is

L(X, ~ξ,Ψ,Φ) = F (X) +
X
i

ξi(c
′
i −

X
w∈Fi

xi,w)

+
X

i,w∈Fi

ψi,w(1− xi,w) +
X

i,w∈Fi

φi,wxi,w (34)

Therefore, the KKT conditions of (9) areX
w∈Fi

xi,w ≤ c′i, ξi(
X
w∈Fi

xi,w − c′i) = 0, ξi ≥ 0, ∀i, and

8><>:
0 ≤ xi,w ≤ 1, ψi,w ≥ 0, ψi,w(xi,w − 1) = 0,

φi,w ≥ 0, φi,wxi,w = 0
∂F
∂xi,w

− ξi − ψi,w + φi,w = 0,

∀i, w ∈ Fi.

Let f(~ξ,Ψ,Φ) = supX∈D L(X, ~ξ,Ψ,Φ) and define

ξ∗i = riτi(~u
∗
i), ∀i

ψ∗i,w = ri(u
∗
i,w−τi(~u∗i)), φ∗i,w = 0, ∀w ∈ Fi s.t u∗i,w > τi(~u

∗
i)

ψ∗i,w = 0, φ∗i,w = ri(τi(~u
∗
i)−u∗i,w), ∀w ∈ Fi s.t u∗i,w < τi(~u

∗
i)

ψ∗i,w = 0, φ∗i,w = 0, ∀w ∈ Fi s.t u∗i,w = τi(~u
∗
i)

Then,

f(~ξ∗,Ψ∗,Φ∗) = L(X∗, ~ξ∗,Ψ∗,Φ∗). (35)

To see this, observe that,

∂L(X∗, ~ξ∗,Ψ∗,Φ∗)

∂xi,w
=
∂F (X∗)

∂xi,w
− ξ∗i − ψ∗i,w + φ∗i,w = 0

by the definition of ~ξ∗,Ψ∗,Φ∗ and ~u∗i . Moreover, since F
is concave in X ∈ D, so is L. The above imply that the

supremum of L(X, ~ξ∗,Ψ∗,Φ∗) in D is attained at X∗, which
yields (35). The max-min principle implies that

sup
X∈D

inf
~ξ≥0,

Ψ≥0,Φ≥0

L(X, ~ξ,Ψ,Φ) ≤ inf
~ξ≥0,

Ψ≥0,Φ≥0

sup
X∈D

L(X, ~ξ,Ψ,Φ)

In fact, because F is concave the above inequality is an
equality. In any case however,

sup
X∈D

inf
~ξ≥0,

Ψ≥0,Φ≥0

L(X, ~ξ,Ψ,Φ) = sup
X∈D

F (X)

as all coefficients of ~ξ,Ψ, and Φ in (34) are positive, and

inf
~ξ≥0,

Ψ≥0,Φ≥0

sup
X∈D

L(X, ~ξ,Ψ,Φ) ≤ f(~ξ,Ψ,Φ)

for all non-negative ~ξ,Ψ, and Φ. We therefore have that

sup
X∈D

F (X) ≤ f(~ξ∗,Ψ∗,Φ∗)
(35)
= L(X∗, ~ξ∗,Ψ∗,Φ∗)

= F (X∗) +
X
i

ξ∗i (ci −
X
w

x∗i,w) +
X
i,w

ψ∗i,w(1− x∗i,w)

+
X
i,w

φ∗i,wx
∗
i,w

= F (X∗) + 0 +
X
i

ri
h X
w:u∗i,w>τi(~u

∗
i)

`
u∗i,w−τi(~u∗i)

´
(1−x∗i,w)

+
X

w:u∗i,w<τi(~u
∗
i)

`
τi(~u

∗
i)−u∗i,w

´
x∗i,w

i (30)

≤ F (X∗) + εmax
i

ri
µ̃i

and the lemma follows.

5.5 Proof of Theorem 1
We are now ready to prove Theorem 1. From Lemma 7,

E[F (X(k + 1))]− E[F (X(k))] =

=
1

N

ˆ
E[
X
i

∆i(~ui(k), ~xi(k))] +O (E[ε(k)]) +O

„
1

N

«˜
In steady state, we have that limk→∞ E[F (X(k + 1))] =
limk=∞ E[F (X(k))]. As a result,

lim sup
k→∞

E[
X
i

∆i(~ui, ~xi)] = lim sup
k→∞

O (E[|ε(k)|]) +O

„
1

N

«
(28)
= O

 s
Nα(N)

β(N)

!
+O

„
1

N

«

Observe that, from Lemma 8, for any ε > 0,

P

„
|F (X)− sup

X∈D
F (X)|>ε

«
≤P

 X
i

∆i(~ui, ~xi)>εmin
µ̃i
ri

!
.

By Markov’s inequality, the above implies that the steady
state distribution of ~xi is such that for any ε > 0,

lim sup
t→∞

P

„
|F (X(t))− sup

X∈D
F (X)| > ε

«

=
1

ε

O

 s
Nα(N)

β(N)

!
+O

„
1

N

«!
.

and the theorem therefore follows by taking ε as in (16).

5.6 Proof of Theorem 2
The theorem will be established by exhibiting a Lyapunov

function for the dynamics under consideration. To this end,
we introduce some auxiliary functions: we define J(~v) as

J(~v) := max
~x∈C
〈~x,~v〉. (36)

It then follows from Theorem 23.5, p. 218 in Rockafellar [13]
that

G(~v) = ∇J(~v). (37)

We also introduce the function F ∗(~v), defined as

F ∗(~v) := inf
~x∈C
〈~x,~v〉 − F (~x). (38)

We then define the candidate Lyapunov function L(~x,~v) as

L(~x,~v) := J(~v)− F ∗(~v)− β

α
(F (~x) + F ∗(~v)− 〈~x,~v〉) . (39)

Upon taking time derivatives, in view of (17a),(17b) and
(37), one obtains after term cancellation that

d

dt
L(~x,~v) = β

„
β

α
+ 1

«
〈~x−∇F ∗(~v),∇F (~x)− ~v〉.

Setting ~y = ∇F ∗(~v), it readily follows from the theory of
convex function duality [13] that ~v = ∇F (~y). Thus the
time derivative of L(~x,~v) is proportional to 〈~x−~y,∇F (~x)−
∇F (~y)〉. Now strict concavity of F entails that this scalar
product is non-positive, and equals zero if and only if ~x = ~y,
or equivalently ~v = ∇F (~x).

Thus L(~x,~v) is strictly decreasing unless ~v = ∇F (~x). We
further argue that it is strictly decreasing also whenever
~x 6= G(~v). To see this, consider a pair of points (~x,~v) such
that ~v = ∇F (~x), but ~x 6= G(~v). Then after some small
time ε > 0, ‖~v(ε)− ~v‖ is of order o(ε) since the time deriva-
tive (d/dt)(~v) is of order o(1), while ‖~x(ε) − ~x‖ is of order
Ω(ε) since the time derivative (d/dt)~x is non zero. Thus the
condition ~v(ε) = ∇F (~x(ε)) is violated for all small enough
positive ε, as the gradient of a strictly concave function is
one-to-one. Hence by the previous analysis, the time deriva-
tive of L(~x,~v) is negative for all small enough positive ε.

We now show that L is a proper Lyapunov function,i.e.,
it goes to +∞ as its arguments increase unboundedly. To
this end, we first remark that the bracketed term 〈~x,~v〉 −
F (~x)−F ∗(~v) in the definition of L is non-negative. Indeed,
it follows from the definition of F ∗ that F ∗(~v) ≤ 〈~x,~v〉 −
F (~x) for all ~x ∈ C. We then consider the remaining term,
J(~v)−F ∗(~v). Recalling the definitions of J and F ∗, and the

assumption that both ~z, ~z′ belong to the convex set C, with
~z′ > ~z, it is readily seen that

J(~v)− F ∗(~v) ≥ 〈~v, ~z′〉+ F (~z)− 〈~v, ~z〉 = 〈~v, ~z′ − ~z〉+ F (~z)

and hence must diverge to infinity as ~v does so (recall that vi
are non-negative, which follows from the monotonicity of F).
The proof will then be concluded by arguing that the condi-
tions ~x = G(~v) and ~v = ∇F (~x) uniquely characterize the op-
timal pair (~x∗, ~v∗). To this end, let ~x 6= ~x∗, and ~v = ∇F (~x).
Noting that the function t ∈ [0, 1] → F (t~x∗ + (1 − t)~x)
is strictly concave and maximal at t = 1, its derivative
at t = 0+ must be positive; since this derivative reads
〈~v, ~x∗ − ~x〉, it readily follows that ~x 6= G(~v) since 〈~v, ~x∗〉
is strictly larger than 〈~x,~v〉. The result follows.

6. EXTENSIONS

6.1 A Slotted-Time Model
Our analysis can be directly extended to a slotted-time

model. The quantity λi,j would then indicate the probabil-
ity of an encounter between users in classes Ci and Cj at a
given timeslot. Similarly, µi would indicate the probability
of accessing the infrastructure at a given timeslot.

Is this case, the delay until a request from w originating
from a user in Ci is satisfied will be geometrically distributed
with parameter ρi,w, given again by (8). Our results can
be applied to utilities Ui,w : N → R expressed in terms of
time slots required to retrieve a website, that satisfy the
monotonicity and boundedness conditions in Assumption 1
(differentiability is no longer necessary). Our results hold,
mutatis mutandis, if one replaces U ′i,w(t) with the quantity
Ui,w(t+ 1)−Ui,w(t). In particular, our mechanism remains
essentially the same, the only difference being that user m
reports the following quantity instead of the one in (11).

−Tm,w(t) · [Ui,w (Tm,w(t) + 1)− Ui,w (Tm,w(t))] · nm,w(t).

6.2 Non Differentiable Utilities
The assumption that Ui,w are differentiable could be re-

placed by the assumption that they are càd làg (i.e., right
continuous with left limits). In such a case, the monotonic-

ity of Ui,w implies that it be written as Ui,w(t) = −
R t
0
dνi,w

where νi,w a positive measure on R+. It can then be shown
that the problem (9) remains convex. Moreover, the quan-
tities reported a users m ∈ Ci would change as follows:
repm,w(t) = −d̂i,w(t) ·Gi,w(Tm,w(t)) where Tm,w(t) is com-

puted as before, G is the function Gi,w(t) =
R t
0
sdνi,w(s)

and d̂i,w(t) is an estimator of the request rate of user m.
The latter can be obtained, e.g., as the inverse of the mean
time between consecutive requests for website w. This is less
satisfactory that the mechanism employed for differentiable
functions, as it requires recovering the request rates of users.

7. CONCLUSIONS
We proposed Psephos, a distributed mechanism for com-

puting optimal caching policies in a mobile netwrk. Con-
trary to earlier work, Psephos is designed to operate in
a heterogeneous environment. Caching decisions under
Psephos are simple: only items receiving the highest“votes”
are stored.

We formally demonstrate that Psephos maximizes social
welfare under two main assumptions: the existence of user

classes and the time separation between the cache reshuf-
fling and vote processes. Theorem 2 indicates that time
separation may not be necessary. Moreover, although our
proofs relied on the existence of user classes, Psephos does
not make class-dependent caching decisions; in fact, we did
not assume a priori and explicit knowledge of classes. In
light of the above, the characterization of Psephos’s per-
formance, even numerically or empirically, in the absence of
these assumptions is an interesting open problem.

Finally, though our analysis allowed for the personaliza-
tion of caching strategies through blacklisted and permanent
websites, it did not evaluate the effect that user selection of
such websites has on the system. Understanding the impact
of selfishness, through such selections, on both the social
welfare as well as the utilities of individual users, is also an
interesting open problem.

8. REFERENCES
[1] Altman, E., Nain, P., and Bermond, J. C.

Distributed storage managements of evolving files in
delay tolerant ad hoc networks. In IEEE INFOCOM
(2009).

[2] Altman, E., Pellegrini, F. D., Miorandi, D., and
Neglia, G. Decentralized stochastic control of delay
tolerant networks. In IEEE INFOCOM (2009).

[3] Borkar, V. S. Stochastic Approximation: A
Dynamical Systems Viewpoint. Cambridge University
Press, 2008.

[4] Boyd, S., and Vandenberghe, L. Convex
Optimization. Cambridge University Press, 2004.

[5] Chaintreau, A., Boudec, J.-Y. L., and
Ristanovic, N. The age of gossip: Spatial mean-field
regime. In ACM SIGMETRICS (2009).

[6] Costa, P., Mascolo, C., Musolesi, M., and
Picco, G. Socially-aware routing for
publish-subscribe in delay-tolerant mobile ad hoc
networks. IEEE Jsac 26, 5 (2008), 748–760.

[7] Guo, S., and Keshav, S. Fair and efficient scheduling
in data ferrying networks. In ACM CoNEXT (2007).

[8] Ioannidis, S., Chaintreau, A., and Massoulié, L.
Optimal and scalable distribution of content updates
over a mobile social network. In IEEE INFOCOM
(2009).

[9] Isaacman, S., and Martonosi, M. Potential for
collaborative caching and prefetching in
largely-disconneced villages. In Wireless Networks and
Systems for Developing Regions Workshop (2008).

[10] Lenders, V., May, M., , and Karlsson, G.
Wireless ad hoc podcasting. In IEEE SECON (2007).

[11] Papadopouli, M., and Schulzrinne, H. Effects of
power conservation, wireless coverage and cooperation
on data dissemination among mobile devices. In ACM
MobiHoc (2001).

[12] Reich, J., and Chaintreau, A. The age of
impatience: Optimal replication schemes for
opportunistic networks. In ACM CoNext (2009).

[13] Rockafellar, R. T. Convex Analysis. Princeton
Univesity Press, 1996.

[14] Yoneki, E., Hui, P., Chan, S., and Crowcroft, J.
A socio-aware overlay for pub/sub communication in
DTN. In ACM MSWiM (2007).

