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Abstract—We study the dissemination of dynamic content, such
as news or traffic information, over a mobile social network.
In this application, mobile users subscribe to a dynamic-content
distribution service, offered by their service provider. To improve
coverage and increase capacity, we assume that users share any
content updates they receive with other users they meet.

We make two contributions. First, we determine how the
service provider can allocate its bandwidth optimally to make the
content at users as “fresh” as possible. More precisely, we define a
global fairness objective (namely, maximizing the aggregate user
utility) and prove that the corresponding optimization problem
can be solved by gradient descent. Second, we specify a condition
under which the system is highly scalable: even if the total
bandwidth dedicated by the service provider remains fixed, the
expected content age at each user grows slowly (as log(n)) with
the number of users n. To the best of our knowledge, our
work is the first to address these two aspects (optimality and
scalability) of the distribution of dynamic content over a mobile
social network.

I. INTRODUCTION

In opportunistic networks, contacts between mobile users
can be exploited to exchange data, extending thus the net-
work’s coverage and increasing its capacity. How often and
when such contacts occur is dictated by the social interactions
and relationships between users. For this reason, recent work
[1]–[6] has focused on how knowledge of the social network
formed by the mobile users can be used to improve the
performance of a variety of applications.

In this paper, we investigate how the social network can
assist in the distribution of dynamic content. In this applica-
tion, users subscribing to a wireless service receive updates
on frequently changing content, such as a news-feed, a blog,
the price of a stock, traffic congestion information, etc. Sub-
scribers of this service share their updates in an opportunistic
fashion: Whenever two of them meet, the one whose content is
most recent pushes it to the one whose content is older (thereby
increasing the number of users that receive fresh information).

One question arising in the above setting is how should the
service provider allocate its downlink capacity to ensure that
the content at users is as “fresh” as possible. For example,
should it allocate its available bandwidth uniformly among
subscribers? Alternatively, should it provide more frequent
updates to the “most social” subscribers, i.e., the ones that
meet other subscribers most often, in the hope that they would
spread the content faster? In general, the answer depends on

the provider’s downlink bandwidth as well as on how recent
the content at users is required to be. Most importantly, it
also depends on the users’ social behavior, since the latter
determines how they meet. For this reason, answering the
above question requires us to understand how the social
network formed by mobile users affects the performance of
our application.

A second question of importance is how such a system
scales as the number of users grows. If more subscribers are
added to the system, will the age of content at users increase,
thus degrading the service, and, if so, by how much? Again,
this depends on the topology of the social network formed by
the users. Ideally, one wishes to find a general condition under
which the age increases slowly as the network grows.

Our main contribution is providing comprehensive answers
to the above two questions. To the best of our knowledge,
our work is the first to address these two aspects (optimality
and scalability) of the distribution of dynamic content over a
mobile social network.

First, we show how the service provider can determine
the optimal allocation of its bandwidth. More precisely, the
service provider can compute a downlink rate allocation that
satisfies a global fairness objective —namely, maximizing
the aggregate utility over all users. We prove that the corre-
sponding optimization problem is convex and therefore can be
solved efficiently by gradient descent. Moreover, we give both
a centralized and a distributed algorithm for computing the
gradient; these can be used by the service provider to compute
the optimal allocation, as we illustrate with an empirical study.

Second, we prove that the system described above is scal-
able, under the condition that the social network formed by
the subscribers has a bounded edge expansion. In particular,
even if the service provider distributes updated content with a
fixed total rate, the content ages as seen by users grow slowly
(as log(n)) as the number of users n increases. Our second
result therefore identifies edge expansion as a key property of
the social network that affects scalability. Most importantly,
it also implies that the service provider can exploit the social
network to offer the service with limited resources, without
sustaining a considerable degradation of the service due to
system growth.

Our empirical study uses two real-life mobility traces, span-
ning over different time scales (a few hours and several days,
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respectively). We compute the optimal downlink allocation
and compare it to several simple heuristics, illustrating its
dependence on system parameters. An interesting outcome of
our study is that the intuition that “most social” users should
receive more frequent updates can in fact be wrong: under
certain conditions, it is actually optimal to allocate none of the
available bandwidth to the most social users in the system.

II. RELATED WORK

Allocating the service provider’s bandwidth among its sub-
scribers has similarities to “spread of influence maximiza-
tion” problems over traditional social networks. For example,
Kempe et al. [7] looked at which consumers a product should
be marketed to in order to ensure its widespread adoption. The
authors show that the objective function exhibits a property
called submodularity, and that greedy algorithms find solutions
within a constant approximation factor to the optimal. Simi-
larly, Leskovec et al. [8] looked at which blogs one should
read to quickly detect the outbreak of an important story.
Our application and our model are considerably different.
Moreover, in our system, the convexity property implies that
computing the optimal (rather than an approximate) solution
is feasible, as we prove, even in a distributed manner.

In the context of DTNs, algorithms taking advantage of
the social behaviour of mobile users have been proposed for
publish/subscribe systems [1], [2], routing [3]–[5] and query
propagation [4], [6]. These algorithms exploit concepts from
social networks, including node centrality [1], [3], [5], friend-
ship relationships [1], [4], bazaars [6], contact usefulness [2].
However, formally assessing the effect of the social network
on the performance of these algorithms remains largely an
open question. Though our focus is on a different application,
our work rigorously relates social network properties to the
system’s scalability and to algorithms for finding the optimal
allocation. As such, it strengthens the foundations of research
in the area of mobile social networks.

Measurement studies of human mobility [5], [9]–[11] have
mostly focused on inter-contact time statistics and their effect
on opportunistic forwarding. Our work illustrates how such
human mobility can be used to disseminate content optimally
in Section VI-B.

The importance of edge expansion in epidemic dissemi-
nation is well known, and has recently been studied in the
context of search in unstructured peer-to-peer networks [12],
the lifetime of infections by computer viruses [13], and the
distributed aggregation of measurements [14]. Our scalability
analysis is similar in spirit, as content updates are diffused
over the users’ social network. However, the dynamics of the
diffusion are much different than in the above works; thus, our
work highlights one more application in which edge expansion
is of critical importance.

III. SYSTEM DESCRIPTION

A. Update Distribution Process

Consider a system of n mobile users that are served by
a single service provider (e.g., a cell-phone operator). We

denote by V = {1, 2, . . . , n} the set of all users. The service
provider injects new content updates to the system according
to a Poisson process with rate µ, which is bounded by the
provider’s downlink capacity. The total injection rate µ is
allocated among different users as follows: each new update is
pushed to one user chosen from V with a certain probability.
As a result, user i receives updates according to a Poisson
process with injection rate xi ≥ 0, i ∈ V , such that

∑
xi = µ.

We denote by ~x the vector of injection rates, which we call
the rate allocation.

Users share their content with other users they contact (i.e.
that are within their transmission range) in the following way.
First, the content stored at a user is time-stamped with the
time at which it was originally downloaded from the service
provider. Let ti(t) be the time-stamp of user i’s content at time
t. The following scheme is then used to share the content:

CONTENT SHARING: A user i will copy user j’s
content when they meet, if the content stored at j is
more recent than the content stored at i, i.e., ti < tj .

Note that, after two users i and j have met, the time-stamp at
both becomes max(ti, tj).

We are interested in the age Yi of the content stored at each
user i, defined as:

Yi(t) = t− ti(t), i ∈ V.

In particular, given a user i we wish to study the distribution
of the age Yi when the system is in steady state or, informally,
after the system has operated for a sufficiently long time.
Formally, we evaluate Yi(T ) at some time T > 0, given that
the system has been running in the interval (−∞, T ]. Note
that Yi depends both on the rate allocation vector ~x as well
as on how contacts between users take place.

B. Contact Process and Contact Graph

We assume that contacts are symmetric, i.e., user j ∈ V
contacts user i ∈ V whenever i contacts j, and they last
for a time that is negligible compared to the time between
two consecutive contacts. Moreover, we assume that the joint
contact process, describing contacts among all pairs of users
(i, j), is independent of the content injection process and
is stationary ergodic. A simple case for which this holds is
when the contact processes between distinct pairs (i, j) are
independent renewal processes. However, we do not require
these to be independent in our model. For example, i meeting
j might increase the chance that i will also meet some j′ 6= j
within a brief period of time.

In the case where the contact processes are independent
renewal processes, we can define the mean contact rate qij
between users i and j, where qij ≥ 0. The contact graph of
the system is a complete, weighted and undirected graph G,
whose vertex set is V and each edge (i, j) has weight qij .

Given a subset of users A ⊆ V , let Ac = V \A. The edge
expansion [15], [16] of G is then defined as

hG = min
A⊂V

∑
i∈A,j∈Ac qij

min (|A|, |Ac|)
.



3

As we will see in Section IV-B, this property of the contact
graph plays an important role in the system’s scalability.

C. User Utilities and Optimization Objectives

We would like to choose the rate allocation vector ~x so that
a global objective is attained. In general, we assume that a
user i is happier when its content is more recent. There are
several ways to quantify this notion, one being through a non-
increasing utility ui : R+→ R that is a function of the age
Yi. There is no reason to restrict ourselves to positive utility
functions —negative utilities can express dissatisfaction or loss
of profit.

How much content of a certain age is worth to a user
depends on user preferences as well as the nature of the
content provided. Some examples of non-increasing utilities
are illustrated in Fig. 1. In utilities ua and ub, an age threshold
value τ exists after which the content is worthless; this could
be the case if, e.g., it is news about sales offers that expire after
some time. In utility uc, even very old content has a vanishing
but non-zero value to the user. Finally, the negative utility ud
expresses “dissatisfaction” or “loss” growing linearly with the
age.

Denote by E~x[·] the expectation of a random variable, given
that the rate allocation vector is ~x. A natural goal for the
service provider is to maximize the aggregated utility among
all users, i.e., the social welfare:

SOCIAL WELFARE MAXIMIZATION

Maximize f(~x) =
n∑
i=1

E~x[ui(Yi)],

subject to:
n∑
i=1

xi ≤ µ and xi ≥ 0, 1 ≤ i ≤ n

where ui : R+ → R, 1 ≤ i ≤ n, are non-increasing,
and E~x[ui(Yi)] the expected utility at user i in steady
state under the rate allocation vector ~x.

We note that other global optimization objectives might also be
of interest. One example is a weighted version of the above
problem, where each expected utility at user i is multiplied
by weight wi ≥ 0. By setting wi = 0, a server can target
only a subset of the users. Another alternative is a “max-
min” fair allocation, obtained by replacing the summation
in the objective function f by a minimization. Our results
(namely, Theorem 1) extend to both of the above cases; the
corresponding optimization problems can again be solved with
the methods we outline in this paper, as discussed in the end
of Section V-A. For concreteness however, our focus will be
on social welfare.

IV. MAIN RESULTS

A. Optimal Rate Allocation

Our first main result concerns the solution of the social
welfare maximization problem. Given a system of mobile
users implementing the CONTENT SHARING protocol, we
wish to find how the service provider should choose the rate
allocation ~x, in order to maximize social welfare. We prove

1

1
ua(Y ) = 1Y <τ

Y (sec) Y (sec)ττ

uc(Y ) = 1
Y+1

Y (sec)

ud(Y ) = −Y

Y (sec)

1 ub(Y ) =
`
1 − Y

τ

´
· 1Y <τ

(d)(c)

(a) (b)

Fig. 1. Examples of utility functions. In cases (a) and (b), if the age exceeds
a threshold the content has no value to the user, whereas in case (c) even
very old content has some positive value. In case (d), the older the content
the higher the loss incurred at the user.

the following theorem, whose generality is surprising: An
optimal allocation can be found under all non-increasing utility
functions and for general stationary ergodic contact processes.
In particular, it is not necessary that contacts between users
are independent.

Theorem 1. If the user utilities ui : R+ → R, 1 ≤ i ≤ n,
are non-increasing functions, and the joint contact process
is stationary ergodic, SOCIAL WELFARE MAXIMIZATION is
a convex optimization problem. In particular, the objective
function f(~x) =

∑n
i=1 E~x[ui(Yi)] is concave.

Theorem 1 implies that any local maximum of the objective
function is a global maximum, and that the maximization
can be performed by gradient descent [17], as we describe
in Section VI.

In general, to solve the optimization problem with gradient
descent, the server needs to know both the user utilities ui
and the steady state c.d.f.’s of the ages Yi. The latter might
be hard to compute in a closed form for a given system, even
if the contact processes are independent renewal processes;
in Section VI-B, we discuss how they can be estimated in a
centralized way by the service provider by gathering simple
statistics on the contact processes between users.

However, it is not necessary to follow a centralized ap-
proach: In Section VI-C, we present an algorithm with which
users can estimate the gradient of the objective function
in a fully decentralized manner. Neither user utilities nor
traces of user contact processes need to be reported to the
service provider using this approach; the users compute and
report only their estimates of the gradient, and the service
provider can use this information to adjust the injection rates
accordingly.

B. Scalability

Our second main result addresses the issue of how the
CONTENT SHARING protocol scales as the number of mobile
users in the system increases. To obtain this result, we assume
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that the contact processes between users are independent
Poisson processes.

Theorem 2. Assume that the contact processes between pairs
of users (i, j) are independent Poisson processes. If ~x =

[
µ
n

]
(i.e., the service provider chooses uniform rate allocation), the
expected age seen by any user i ∈ V in steady state satisfies

E~x[Yi] ≤
2
µ

(
2e−1/2 + log(n)

)
+ h−1

G log n . (1)

where hG the edge expansion of the contact graph of the
system.

The theorem suggests that sharing content can significantly
benefit the system. It is easy to see that, if the users do not
share their content, the expected age E[Yi] at any user i grows
as n/µ, i.e., linearly in n. Theorem 2 states that the ages
can grow much slower (as log(n)) when content is shared, if
the edge expansion hG of the contact graph is bounded away
from zero. Graphs exhibiting a bounded expansion, also called
expander graphs, are abundant [16], [18]; in particular, any
graph with a sufficiently rich random structure is an expander.

Finally, Theorem 1 can be used to give a lower bound on
the social welfare provided that user utilities are convex (as,
e.g., utilities ub, uc, ud of Fig. 1).

Corollary 1. If the user utilities ui, i ∈ V , are convex, then
the aggregate expected utility under the optimal rate allocation
is at least

∑n
i=1 ui

(
2
µ

(
2e−1/2 + log(n)

)
+ h−1

G log n
)

.

V. ANALYSIS

In this section, we give the proofs of Theorems 1 and 2.
We first give a simple characterization of the content age in
terms of a simple message propagation scheme.

We will say that a message originating at user i ∈ V at
some time T is flooded over the system if it is propagated as
follows: every user having a copy of the message forwards it
to every other user it contacts.

For a given time T , we define the process BTi (t) ⊂ V at
user i as follows: A user j is in BTi (t) if a message placed at a
user j at time T − t can reach user i through flooding by time
T . In other words, if j forwards the message to every user it
contacts, and every other user that receives it also relays it to
all other users it meets, the message will reach i before T .

Alternatively, BTi (t) can be defined through a flooding that
starts from user i and is propagated over the “backwards”
contact process: Suppose that, at time T , we “reverse the
arrow of time” and look at the process describing the contacts
between users “going backwards”. If a message originating at i
is flooded over this backwards process, then BTi (t) is precisely
the set of users that will have the message after time t. For
this reason, we call BTi (t) the backwards growth process at i.

We define sTij as

sTij = inf
t≥0
{t | j ∈ BTi (t)}.

Looking at the contact process with the arrow of time reversed,
sTij is the time it takes until a message originating at i reaches

j (over the backwards process). For this reason, we call sTij
the backwards latency from i to j. Note that, by definition,
BTi (t) = {j, s.t. sTij ≤ t} and that, if there is no t > 0 such
that j ∈ BTi (t), then sTij =∞.

Recall that Yi(T ) is the age of user i’s content at time T .
We can succinctly express Yi(T ) in terms of the latencies sTij :

Lemma 1. Let Zi(T ) be the elapsed time since user i
downloaded content directly from the service provider. Then,
for all T ≥ 0 and all i ∈ V ,

Yi(T ) = min
j∈V
{sTij + Zj(T − sTij)}. (2)

Proof: We have that

Yi(T ) = min
j∈V
{sTij+Yj

(
T − sTij

)
} ≤ min

j∈V
{sTij+Zj

(
T − sTij

)
}

as Yj(s) ≤ Zj(s) for all s > 0. On the other hand, there must
be a user, say j′, such that the content at user i at time T was
originally downloaded by j′ and reached i through CONTENT
SHARING, so that

Yi(T ) = sTij′ + Zj
(
T − sTij′

)
≥ min

j∈V
{sTij + Zj

(
T − sTij

)
}.

A. Proof of Theorem 1

Lemma 1 relates the age at user i at time T to the back-
wards latencies sTij . The following Lemma, whose proof is in
Appendix A, uses this relationship to express the distribution
of the age of a user in terms of the latencies in steady state.
We denote by P~x(·) the probability of an event given that the
rate allocation vector is ~x.

Lemma 2. Let Yi be user i’s the steady-state content age and
sij , j ∈ V , the steady-state backwards latencies from i. Then

P~x(Yi > t) = P~x(Yi ≥ t) = E
[
e−

Pn
j=1 xj ·(t−sij)+

]
(3)

where the expectation is over the latencies sij , j ∈ V , in
steady state and (·)+ ≡ max(·, 0).

An immediate implication of this lemma is that, for every
user i, the c.d.f. of Yi is a concave function of ~x.

Corollary 2. For all i = 1, . . . , n, and for any fixed t > 0,
P~x(Yi ≤ t) is concave in ~x.

To see this, observe that the function e−
Pn

j=1 xj(t−sij)+ is
convex in ~x, as the composition of a convex and a linear
function. Moreover, if every element in a family of functions
g(~x, u), u ∈ Ω, is convex in ~x and ν is a positive measure in
Ω, the integral

∫
Ω
g(~x, u)dν is also convex [17]. Hence, the

expectation of the above functions over sij , j ∈ V , is also
convex, and the corollary follows from Lemma 2.

As E~x[1Yi≤τ ] = P~x(Yi ≤ τ), the above corollary effectively
says that if the utility is a step function (like ua in Fig. 1(a))
its expectation in steady state is concave. It is straightforward
to extend this result to general non-increasing utilities.

Lemma 3. If u : R+ → R be a non-increasing function, then
for every i ∈ V , E~x[u(Yi)] is concave.
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The proof can be found in Appendix B.
Theorem 1 therefore follows from the fact that the sum of

concave functions is concave. A consequence of Lemma 3
is that Theorem 1 extends to any function of the expected
utilities E~x[ui(Yi)] that preserves concavity. For this reason,
Theorem 1 holds, e.g., for weighted sums of the expected
utilities as well as for “max-min fair” allocations, as noted
in Section III-C.

B. Proof of Theorem 2

Assume that the contact processes between pairs (i, j),
i, j ∈ V are independent Poisson processes. Suppose that
at time T a message is placed at user i and flooded over
the forwards process. We define the forwards growth process
ATi (t) as the set of users reached by the message by time
T + t. The reversibility and stationarity of the Poisson process
imply that, in steady state, the backwards growth process is
indistinguishable from the forwards growth process.

Lemma 4. In steady state, {ATi (t); t ≥ 0} is identically
distributed as {BTi (t); t ≥ 0}.

The steady state behavior of the backwards growth process
BTi (t) can thus be understood by simply looking at the
behavior of the forwards growth process. The latter relates to
the edge expansion hG of our system’s contact graph through
the following lemma, whose proof is in Appendix C.

Lemma 5. P(|ATi (t)| ≥ k) ≥ (1−e−hGt)k−1 when k ≤ n/2,
for every i ∈ V .

Lemma 5, along with Lemma 1, allows us to obtain the
following upper bound on the steady-state expected age at i.
Intuitively, this bound is derived by observing that, for any
t > 0, the age at some time T will be no more than t plus the
minimum age among all users in the set BTi (t).

Lemma 6. Suppose that xj = µ
n , for all j ∈ V . Then, in

steady state, for any t > 0, and any i ∈ V ,

E[Yi] ≤ t+
n

µ

[⌊n
2

⌋−1 (
1− e−hGt

)bn
2 c−1

+
hGte

−hGt

1− e−hGt

]
.

The proof can be found in Appendix D. Using Lemma 6,
we can bound E[Yi] by appropriately choosing t. Theorem 2
follows as a corollary by setting t = h−1

G log n. The proof of
Corollary 1 is an application of Jensen’s inequality.

VI. CENTRALIZED AND DISTRIBUTED OPTIMIZATION

In this section, we discuss how the service provider can
compute the optimal rate allocation. To do so, it needs to
implement gradient descent [17], which requires computing
the gradient vector ∇f =

[
∂f
∂xi

]
i∈V

of the objective function
f(~x) =

∑
E~x[ui(Yi)]. As noted in Section IV-A, knowledge

of the users’ utilities as well as the c.d.f’s of the ages Yi in
steady state is required to compute the gradient. In general,
it is not always possible to obtain the latter in a closed form,
even for simple contact processes. For this reason, we settle
for estimating ∇f through an unbiased estimator, which we
denote with ∇̂f .

In the following, we first outline how the service provider
can compute the optimal rate allocation given an unbiased
estimator ∇̂f . We then show two ways to derive such an
estimator. The first is centralized: the service provider needs
to know the user utilities and collect contact statistics to apply
it. The second is distributed: the gradient is computed directly
by the users and reported to the service provider.

A. Implementing Gradient Descent with a Gradient Estimator

Given an unbiased estimator ∇̂f of∇f , the service provider
can use the following projected gradient descent algorithm to
compute the optimal rate allocation vector:

~xk+1 = Π
(
~xk + γk∇̂f (~xk)

)
, (4)

where γk is some positive gain parameter such that∑∞
k=0 γk = ∞, limk→∞ γk = 0 and Π is the projection on

the set {~x ∈ Rn+ :
∑
i xi ≤ µ}.

The study of such algorithms constitutes the field of stochas-
tic approximation, and there are known technical conditions on
the sequences of gradient estimates ∇̂f(~xk) and gain parame-
ters γk which guarantee convergence of ~xk to a maximiser of
the objective function f . One example is the following lemma:

Lemma 7 (Benaim, [19]). Suppose that for some q ≥ 2
supxk

E[||∇f(xk) − ∇̂f(xk)||q] < ∞ and
∑
k γ

1+q/2
k < ∞.

Then the sequence (4) converges to a maximizer of f a.s.

In the following, we will use the above lemma to guarantee
the convergence of our algorithms to an optimal allocation vec-
tor ~x under certain conditions. These conditions are sufficient
but not necessary; both our centralized and our distributed
algorithms may converge even if these conditions do not hold,
as we illustrate in Section VII.

B. A Centralized Implementation

We first assume the service provider knows the utility
functions ui and collects traces of user contacts. For example,
the mobile devices may log contacts and upload their logs to
their service provider; alternatively, the positions and colloca-
tions of users can be monitored (e.g., by triangulation). Both
assumptions are removed in the next section.

As noted above, the service provider needs to know the
c.d.f. of the ages Yi in steady state to compute the gradient.
Lemma 2 suggests a way to estimate these distributions from
samples of the backwards latencies sTij , i, j ∈ V . To begin
with, by eq. (3), for i, j ∈ V ,

∂P~x(Yi < t)
∂xj

= E
[
(t− sij)+e

−
Pn

j=1 xj(t−sij)+
]

(5)

If the service provider has traces of user contacts, for each
i ∈ V , it can generate samples of sTij , j ∈ V , at different times
T , by flooding messages from i over the backwards contact
process (e.g., by “running” the contact traces backwards). In
steady state (i.e., for large T ), the empirical mean of the
r.h.s. of (5) is an unbiased estimator of ∂P~x(Yi<t)

∂xj
.
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The gradient can then be estimated as follows:

∂̂f

∂xj
(~x) =

∫ ∞
0

n∑
i=1

̂∂P~x(Yi < u−1
i (t))

∂xj
dt

where ̂∂P~x(Yi<t)
∂xj

are the estimators of ∂P~x(Yi<t)
∂xj

, i, j ∈ V .
As the service provider collects more traces of user contacts

and generates more samples of backwards latencies, it can
adapt its allocation vector using (4). The following lemma
states that convergence to an optimal solution can be guaran-
teed if the user utilities are bounded and integrable (as, e.g.,
ua and ub of Fig. 1). The proof can be found in our technical
report [20].

Lemma 8. Assume that the user utilities ) are bounded and
integrable (i.e.,

∫∞
0
|ui(t)|dt <∞). Then, the assumptions of

Lemma 7 hold for q = 2 and γk = 1/k.

C. A Distributed Implementation

The approach described in Section VI-B relies on the service
provider collecting information on both the user contacts and
the utility functions ui, where i ∈ V . While there are scenarios
in which this can be done, it is clearly appealing to avoid
this requirement. We now describe an alternative way of
optimizing the rates xi, which suppresses the need to learn
the above quantities.

The main step consists of obtaining an unbiased estimate of
the derivative

∂

∂xi
E~x [uj(Yj(t))] (6)

of the expected utility of some user j, with respect to the
injection rate xi at a user i. To this end, we rely on the
following result of [21]. Let {Zt}t≥0 be a stationary process
driven by a Poisson process N with intensity y > 0. To stress
its dependency on process N , we write Zt(N). Then, under
suitable integrability assumptions,

∂

∂y
Ey [Zt(N)] = Ey

[∫ ∞
0

[Zt(N + δ0)− Zt(N)]dt
]
. (7)

In the above expression, Ey denotes the expectation when the
intensity of N is y, and N+δ0 denotes the process consisting
of the events in process N , plus an additional event occuring
at time 0.

In other words, an unbiased estimate of the derivative in the
left-hand side is given by the integral∫ ∞

0

[Zt(N + δ0)− Zt(N)]dt.

In our context, the process Zt is the instant system utility,∑
j uj(Yj(t)). Thus, the above expression can be interpreted

as the overall additional utility brought to user j by an extra
content injection at user i at time 0.

Let us see how this estimate can be computed in the present
context. To estimate the derivative of E~x[uj(Yj)] with respect
to xi, we proceed as follows. At some arbitrary time instant,
say at 0, user i generates a dummy event, pretending to have
received fresh information from the service provider. From

����
����
����
����
����
����

����
����
����
����
����
����

Yj (actual)

timetstart t1

ag
e

Ỹj (dummy)

τ

tendt2

Fig. 2. The original and dummy processes at user j. If the utility at j is
ua(Y ) = 1Y <τ , then ∆x,i(j) = t2 − t1. If the utility is ud(Y ) = −Y ,
then ∆x,i(j) is equal to the shaded region.

there on, it maintains both its true age process Yi(t) and a
dummy age process Ỹi(t), which has been artificially set to
zero at time 0, but otherwise evolves as process Yi(t).

When two users k, ` meet, if k currently maintains a dummy
age process, it then communicates to ` both its true and its
dummy age; from there on, ` also runs both a true and a
dummy age process, Y` and Ỹ`. Note that, for any user j,
the two processes Yj and Ỹj will eventually coincide (this
is clearly enforced when the service provider injects new
content at j). Provided that user j kept track of both its actual
and its dummy age process (from the time tstart when it
first received a dummy age till the time tend when the two
processes coincide), it can then locally compute the quantity

∆~x,i(j) :=
∫ tend

tstart

[
uj(Ỹj(t))− uj(Yj(t))

]
dt

=
∫∞

0

[
uj(Ỹj(t))− uj(Yj(t))

]
dt.

By the result (7) of [21], the quantity ∆~x,i(j) is an unbiased
estimate of (6). This quantity, being the overall increase in
utility to user j due to the addition of the dummy update
at user i, is related to the notion of a sample path shadow
price introduced in Kelly and Gibbens [22]. Indeed, they define
this quantity as the pathwise cost increase due to a particular
packet. Thus, the estimate ∆~x,i(j) above can be seen as the
sample path shadow utility at user j of the dummy update at
user i. Note that the creation of one dummy process by user
i allows all users j to evaluate the corresponding estimate.

Fig. 2 illustrates how this estimate is effectively computed
if the utility at j is ua = 1Y <τ or ud = −Y , of Fig. 1. For ua,
the integral is simply the length of the period during which
Ỹj is below τ while Yj is above τ , consisting of at most one
non-empty interval (t2 − t1 in Fig. 2). For ud, this integral is
the area of one or more parallelograms (shaded in Fig. 2).

It remains to communicate such estimates to the service
provider. For instance, this could happen whenever the service
provider injects new content. Given some current choice ~x of
rates, the service provider can compute an unbiased estimate
∇̂f(~x) of the gradient of the objective function f by taking
its i-th coordinate to be

∂̂f

∂xi
(~x) =

∑
j

∆~x,i(j).

We can again show the convergence of the sequence (4)
provided that the utilities are again bounded and integrable.
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(d) µ = 6.5536 sec−1

Fig. 3. Four optimal allocations for the utility function ua(Y ) = 1Y <200

(Infocom06). Users are indexed according to their contact rates, in decreasing
order. Although for small µ all updates are injected at the user with the highest
contact rate, in (c) no updates are injected to the highest contact rate users.

In this case, we also place an additional requirement on the
time it takes to send a message from user i to j. The proof is
again omitted and can be found in [20].

Lemma 9. Assume that the user utilities are bounded and
integrable. Moreover, assume that E[|`Tij |2] < ∞ for all T
and for all i, j ∈ V , where `Tij the time it takes to send a
message from user i to j through flooding over the forwards
process. Then, the assumptions of Lemma 7 hold for q = 2
and γk = 1/k.

VII. EMPIRICAL STUDY

We implemented the centralized algorithm of Section VI-B
and used it to compute the optimal rate allocation for two real-
world data sets of human mobility traces. The Infocom06 data
set [23] contains opportunistic Bluetooth contacts between 98
iMotes, 78 of which distributed to Infocom 06 participants
and 20 of which were static. We focused on a 10 hour period
during the first day of conference. The MIT data set, collected
by the Reality-Mining project [11], comprises 95 participants
carrying GSM enabled cell-phones over a period of 9 months.
We consider, as in [23], that two phones are in contact when
they share the same GSM base station. We exclude 12 users
from our analysis, as they were isolated. Due to memory size
limitations, we limited our analysis of the MIT data set to an
80 day period.

We assume that every user has the same utility
ui(Yi)=u(Yi), where u is one of the functions ua and uc shown
in Fig. 1. For ua, we chose the threshold value τ = 200sec.
Although utilities uc are not integrable (and, thus, Lemma
8 does not apply), our algorithm converged for both utilities
in both datasets. The allocation found outperformed all other
allocations we obtained heuristically, as discussed below.

Fig. 3 presents the optimal rate allocation under ua in the
Infocom06 data set, for different values of µ. For small µ,
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Fig. 4. Ratio of social welfare of heuristic rate allocations to the optimal
in the Infocom06 data set. Skewed is optimal for small µ, while for large µ
uniform becomes optimal.
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Fig. 5. Ratio of social welfare of heuristic rate allocations to the optimal
in the MIT data set. Skewed is not optimal for low µ, as the “most central”
user is not also the “most social”.

the optimal allocation tends to be skewed towards users with
high contact rates, as shown in Figures 3 (a) and (b). For
both utility functions, the optimal allocation concentrates on a
single user whenever µ is less than 6.4×10−3sec−1 (i.e., one
update every 2.6 minutes). We also observed this on the MIT
data set when µ is less than 4× 10−4 sec−1 (i.e., one update
every 41 minutes). Intuitively, the injection rate is concentrated
on the most “central” user, i.e., the one from which content is
disseminated to all users the fastest. In the Infocom06 data set,
the most central user is also the “most social” user, i.e. the one
with the highest contact rate. This is not the case however for
the MIT data set; the most central user had the third highest
contact rate.

For higher values of µ, more users are allocated positive
rates. We observe an interesting phenomenon for utility ua
when µ is between 0.2 and 0.8 sec−1. In this region, the
injected rate at the users with the top 8 contact rates is zero (as
in Fig. 3(c)), contradicting the intuition that very “social” users
should receive higher injection rates. In fact, while for low
values of µ the “most social” user accumulates all the injected
rate, thus acting as a global hub of all incoming information,
in this region of µ it receives all its updates from its neighbors.
Similar observations were made for utility ub, and for the MIT
data set around µ = 0.2sec−1.

Last, when µ is very large, the optimal rate allocation
becomes uniform among all users. Intuitively, the improvement
provided by content sharing becomes negligible, as any user
receives updates from its neighbors at a rate much smaller
than its injection rate. Thus, the system behaves as if users
were isolated (no sharing); the concavity of the expected utility
E~x[u(Yi)], implies that, in this case, the optimal allocation is
indeed the uniform.

In Figures 4 and 5, we plot the ratio between the social
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TABLE I
EXPECTED FRACTION OF USERS WITH AGE BELOW 200SEC IN

INFOCOM06.

µ (sec−1) no-sharing skewed prop. uniform optimal
0.0128 2.5% 34% 24% 30% 34%
0.0256 5.1% 42% 42% 37% 42%
0.1024 19% 46% 56% 60% 60%

welfare achieved under several simple heuristics and the opti-
mal. The heuristics considered are (a) the uniform allocation,
(b) a skewed allocation, in which all the injection rate is
concentrated at the “most social” user and (c) an allocation in
which each user receives an injection rate that is proportional
to its aggregate contact rate. For the Infocom06 data set, we
also show the fraction of users with content age below the
threshold for ua in Table I.

The comparison of the heuristic allocations confirms the
above observations. The skewed allocation performs well for
small values of µ, but not always optimally as it may not
select the most central user (see Figure 5). Uniform is always
optimal for large values of µ. Proportional is sometimes the
best among the three for intermediate values of µ. Moreover,
from Table I, we see that the improvement under content
sharing is significant: when µ = 0.0128 (an update is injected
every 78 sec), the expected number of users below the age
threshold grows from 2.5% to about a third of the network as
content sharing is used and service provider targets the most
central user. In contrast, when an update is injected every 10
sec, 60% of the users on average receive the content on time
(instead of 19% without sharing), and this is achieved when
rates are allocated uniformly.

Our results highlight a transition depending on µ for the
optimal rate allocation from skewed to uniform. These two
simple heuristics perform well, but the social network plays
an important role in selecting the most central users, as well
as when µ takes intermediate values.

VIII. CONCLUSIONS

Our results show that content updates can be distributed
over a mobile social network in a scalable way. Moreover,
the social network can be successfully exploited to obtain an
optimal allocation of the service provider’s aggregate injection
rate.

We see several other applications that could be explored
with our model. For instance, content updates may actually
be generated by the users, as opposed to being injected by a
service provider; such an application is very appealing from
a social networking perspective. Our distributed method for
computing the gradient implies that such a system may support
a pricing scheme. This is because it essentially outlines how
to compute a user’s sensitivity to the injection rates of other
users, in a distributed manner.
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APPENDIX

A. Proof of Lemma 2

From Lemma 1, we have that

P~x(Yi(T ) > t) = P~x( min
j∈BT

i (t)
{sTij + Zj(T − sTij)} > t),

as, by definition, sTij > t for any j /∈ BTi (t). Hence,

P~x(Yi(T ) > t) = P~x
( ⋂
j∈BT

i (t)

(
Zj(T − sTij) > t− sTij

) )
.
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Assume that the process is in steady state, i.e., the contact and
injection processes started at −∞. Recall that, as the aggregate
injection process is a Poisson process with rate µ, the injection
processes at each user j are Poisson processes with rates
xj . It is a fundamental property of the Poisson process that
these processes are independent (see, e.g. [24]). As they are
also independent of the contact process, the random variables
Zj(T − sTij), j ∈ V , are independent and exponentially
distributed with parameters xj , by the memoryless property
of the exponential distribution. Therefore,

P~x(Yi(T )>t) = E
[ ∏
j∈BT

i (t)

e−xi(t−sT
ij)
]

= E
[
e
−

P
j∈BT

i
(t)xi(t−sT

ij)
]

and the lemma follows as j ∈ BTi (t) iff sTij ≤ t. The above
derivation can also be repeated for P~x(Yi ≥ t) and the equality
is due to the continuity of the exponential density.

B. Proof of Lemma 3

Suppose first that u ≥ 0. We then have that:

E~x[u(Yi)] =
∫ ∞

0

P~x(u(Yi) > z)dz =
∫ ∞

0

P~x(Yi ∈ u−1(Iz))dz

where u−1 the inverse mapping of h and Iz = (z,∞). Since
u is non-increasing, u−1(Iz) is either ∅,R+, an interval of the
form [0, y) or an interval of the form [0, y]. In all four cases,
P~x(Yi ∈ u−1

i (Iz)) is concave. Hence E~x[ui(Yi)] is concave
as the integral of a family of parametrized concave functions
over a positive measure. The above argument can be extended
to real, non-increasing functions u : R+→R by noting that,

E~x[u(Yi)] =
∫ ∞

0

P~x(u(Yi) > z)dz −
∫ 0

−∞
P~x(u(Yi) ≤ z)dz.

C. Proof of Lemma 5

Suppose that a message is placed in i at time T and is
propagated through flooding. For some j ≥ 0, let Kj =
inf{t s.t. |ATi (t)| ≥ j}, be the first time for which at least
j users have the message. Then, for 1 < j ≤ n,

P(|ATi (t)| < k) = P(Kj > t) ≤ P(
j−1∑
k=1

Bk > t), t ≥ 0 (8)

where Bk, 1 ≤ k < j are independent, exponentially
distributed random variables with parameters βk given by
βk = khG, for 1 ≤ k ≤ n/2, and βk = (n − k)hG for
n/2 < k < n, and hG is the edge expansion of the contact
graph G. We prove this statement by induction on j.

Proof of (8) : Let Tj = Kj+1 − Kj , for 1 ≤ j < n,
be the time between two consecutive increases of |ATi (t)|.
Then, by definition Kj =

∑j−1
k=1 Tk, 1 < j ≤ n. For j = 2

the statement holds by the definition of hG. Suppose that the
statement is true for j = k, where 1 < k ≤ n. Then

P(Kk+1 ≥ t) = P(
k∑
j=1

Tj > t) = P(Tk +Kk ≥ t)

=
∫ ∞

0

P(Tk ≥ t− s | Kk = s)fKk
(s)ds (9)

Conditioned on ATi (Kk), Tk does not depend on Kk, so where

P(Tk ≥ t− s | Kk = s) =
∑

A∈V,|A|=k

P(Tk ≥ t− s |ATi (Kk)=A)

· P(ATi (Kk) = A | Kk = s)

On the other hand, conditioned on ATi (Kk) = A ⊂ V (where,
by definition of Kk, |A| = k), Tk is the time until a user
within A contacts a user in Ac = V \A. This is exponentially
distributed with rate vol(∂A) =

∑
i∈A,j∈Ac qij , hence

P(Tk > t | ATi (Kk) = A) = e− vol(∂A)t.

We have vol(∂A) = vol(∂Ac), as qij = qji for all i, j ∈ V .
Furthermore, by the definition of hG we have

vol(∂A) ≥ hG min(|A|, |Ac|)) ≥ hG min(k, n− k).

We thus get that P(Tk > t | Ai(Kk) = A) ≤ e−βkt where βk
as in (8) . As βk only depends on k, not on A, we get that
P(Tk ≥ t − s | Kk = s) ≤ e−βk(t−s) for s ≤ t. Using the
above bound in (9) and applying Fubini’s Theorem yields the
statement.

By induction over k we can show that P(
∑k−1
j=1 Bj > t) =

1− (1−e−hGt)k−1, for 1 ≤ k ≤ n/2, and the lemma follows.

D. Proof of Lemma 6.
BTi (t) ⊆ V and therefore, by Lemma 1,

Yi(T ) ≤ min
j∈BT

i (t)
{sTij +Zj(T − sTij)} ≤ t+ min

j∈BT
i (t)

Zj(T − t)

where the last inequality is true because sTij ≤ t for j ∈ BTi (t)
and s 7→ s+Zj(T −s) is an increasing function. We therefore
have that, for every t > 0,

E[Yi(T )] ≤ t+ E[ min
j∈BT

i (t)
Zj(T − t)]. (10)

Condition on BTi (t) = B ⊆ V . The r.v. minj∈B Zj(T − t) is
the elapsed time at T − t since a user j in B last downloaded
content from the service provider. Since each user downloads
new content independently according to a Poisson process with
rate µ/n, we have that

P( min
j∈BT

i (t)
Zj(T − t) > τ | BTi (t) = B) = e−µ|B|τ/n,

hence E[ min
j∈BT

i (t)
Zj(T − t)] = E[n/(µ|BTi (t)|)]. (11)

In steady state, by Lemma 4, BTi (t) is distributed as ATi (t).
From Lemma 5, the cardinality of the latter is stochastically
bounded from below by a truncated geometric random vari-
able, which implies that E[|BTi (t)|−1] is upperbounded by⌊n

2

⌋−1

(1− e−hGt)b
n
2 c−1+

bn
2 c−1∑
k=1

(1− e−hGt)k−1e−hGt

k

≤
⌊n

2

⌋−1

(1− e−hGt)b
n
2 c−1 +

hGte
−hGt

1− e−hGt

as
∑n
k=1

xk

k ≤
∑∞
k=1

xk

k = − log(1 − x) for 0 < x < 1.
The lemma follows by replacing E[|BTi (t)|−1] with the above
bound in (11) and using (10) to bound E[Yi].


