
Computer Networks 53 (2009) 153–167
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
A performance evaluation of scalable live video streaming
with nano data centers

Jiayue He a, Augustin Chaintreau b,*, Christophe Diot b

a Princeton University, 35 Olden Street, Princeton, NJ, 08544, United States
b Thomson, 46 Quai A Le Gallo, 92648 Boulogne, France

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 25 October 2008

Keywords:
Nano data centers
Live video streaming
Peer-to-peer technology
TCP tandem
Scalability
1389-1286/$ - see front matter � 2008 Elsevier B.V
doi:10.1016/j.comnet.2008.10.014

* Corresponding author.
E-mail address: augustin.chaintreau@thomson.n

1 See www.pplive.com and www.ppstream.com.
To improve the efficiency and the quality of a service, a network operator may consider
deploying a peer-to-peer architecture among controlled peers, also called here nano data
centers, which contrast with the churn and resource heterogeneity of peers in uncontrolled
environments. In this paper, we consider a prevalent peer-to-peer application: live video
streaming. We demonstrate how nano data centers can take advantage of the self-scaling
property of a peer-to-peer architecture, while significantly improving the quality of a live
video streaming service, allowing smaller delays and fast channel switching. We introduce
the branching architecture for nano datacenters (BAND), where a user can ‘‘pull” content
from a channel of interest, or content could be ‘‘pushed” to it for relaying to other inter-
ested users. We prove that there exists an optimal trade-off point between minimizing
the number of push, or the number of relaying nodes, and maintaining a robust topology
as the number of channels and users get large, which allows scalability. We analyze the
performance of content dissemination as users switch between channels, creating migra-
tion of nodes in the tree, while flow control insures continuity of data transmission. We
prove that this p2p architecture guarantees a throughput independently of the size of
the group. Analysis and evaluation of the model demonstrate that pushing content to a
small number of relay nodes can have significant performance gains in throughput,
start-up time, playback lags and channel switching delays.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The feasibility of live streaming over peer-to-peer (p2p)
networks have been demonstrated in recent years with
commercial applications such as PPLive and PPStream1,
attracting millions of users. However, recent measurements
study of PPLive shows that a mesh-pull p2p streaming archi-
tecture depends on a small number of well connected partic-
ipating nodes (c.f. superpeers, supernodes, amplifiers) and
incurs important start-up delay, playback lags and time for
channel transitions [1]. Supporting streaming service with
comparable quality and latency as traditional television
. All rights reserved.

et (A. Chaintreau).
broadcast remains an open problem, with the exception of
a few national television channels distributed by ISPs using
IP-multicast and dedicated bandwidth. The performance
attainable via p2p architecture for live streaming of many
channels with varying popularity remains unclear.

In this paper, we show that the above issue can be ad-
dressed in the context of a controlled p2p environment: a
large set of nano data centers (devices similar to home gate-
ways and set-top boxes) that are deployed by ISPs as part
of their connection services [2–6]. Nano data centers have
several features. They are assumed to be always on regard-
less of the content the user is actually watching (as for
home gateway today). As one option, a node may ‘‘push”
content when necessary to another nano data center
belonging to a user that is not currently viewing it. As ISPs
have control over their own network design, one can

mailto:augustin.chaintreau@thomson.net
http://www.pplive.com
http://www.ppstream.com
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

154 J. He et al. / Computer Networks 53 (2009) 153–167
expect the bandwidth available per node to be approxi-
mately homogeneous, and sufficient for delivery of a few
high-quality video streams. In this controlled environment,
the only system dynamics are introduced by channel
switching of the users and short-term congestion from
background traffic. Our goal is to adapt the p2p content
delivery to the requests of users across all channels, while
minimizing the load for each nano data center.

This paper presents BAND: a distributed solution to
quickly reconfigure the p2p delivery trees, allowing users
to browse between channels as they watch them. We focus
here on a single delivery tree per channel, since we do not
expect to deal with the high user churn characteristic of
uncontrolled environments. Nevertheless, the technique
extends naturally to the case where a channel uses multi-
ple delivery trees. In BAND, first a delivery tree is built
among all nodes, regardless of the interest of users in the
specific channel. Then, users requesting the channels will
populate a subtree that is going to be used for actual con-
tent delivery. The key insight is to select a certain number
of nodes where content is ‘‘pushed”, and who will partici-
pate in the delivery although they are not ‘‘pulling” content
from the channel.

Our contributions are two-fold:

� Design: We analyze the trade-off between the overhead
of the push strategy and the scalability of the system, by
introducing a branching node approach. A node is a k-
branching node if, among the subtrees rooted in all of
its children, at least k contain a node requesting the
channel. We prove that choosing k = 2 is optimal as it
minimizes the amount of content push while keeping
the system scalable. With this strategy, the load scales
with the popularity of the channel; the savings are par-
ticularly useful in the typical situation where there are
many unpopular TV channels and a few popular ones
[1].

� Performance evaluation: Since our solution reconfigures
the delivery tree quickly, one important issue is the
impact of tree reconfiguration on the ability for nodes
to consistently receive data. We prove that a simple buf-
fering scheme, which uses TCP congestion control
together with a local back-pressure algorithm, can
ensure data continuity under node migration. Using a
model of last-passage percolation, we study the perfor-
mance of this scheme for a large group of nodes, allow-
ing for channel switching and traffic dynamics. We
prove scalability of this scheme: for any buffer size,
throughput is lower bounded independently of group
size. Then through simulation, we show that the ratio
between the throughput of a large group and that of a
single dedicated unicast connection is typically lower
bounded by 65%. In addition, we find that the delay
grows logarithmically with the number of users request-
ing a channel.

To the best of our knowledge, this paper is the first to
characterize how node migration in the delivery tree af-
fects continuity of data delivery and performance of
peer-to-peer live streaming. These results significantly ex-
tend a recent methodology based on properties of directed
graphs, that was only previously applied to static trees
[7,8]. Our results prove that pushing content to a small
number of well selected nodes, as made possible in con-
trolled p2p environment, can have significant performance
gains to ensure high throughput, as well as small start-up
times and playback lags.

The rest of the paper is organized as follows. We place
our contributions in context of the extensive literature on
p2p in Section 2. We introduce the key architectural com-
ponents in Section 3 and analyze the trade-off between
overhead and scalability in Section 4. Section 5 describes
our flow control scheme. In Section 6, a last-passage perco-
lation model of the system is introduced, analyzed and
simulated. We conclude and point to future work in Sec-
tion 7.

2. Related work

Scalable live streaming delivery to large groups has
been a long standing research challenge for the last fif-
teen years. Peer-to-peer (p2p) architectures have
emerged as the leading candidate for two reasons: they
do not require deploying multicast communication proto-
col inside routers, and their capacities grow with the
number of participating users [9]. Indeed the p2p para-
digm has been already widely adopted for asynchronous
file sharing; the most successful architecture to date re-
lies on exchanges of chunks of data between peers,
orchestrated by an incentive mechanism usually called
‘‘swarming” [10]. It is called mesh-pull as data may be
delivered using different paths following users’ requests.
This architecture proved more robust than trees for file
sharing because it maintains connectivity under high
users churn and heterogeneous network conditions, while
preventing free-loaders.

Following this success, mesh-pull peer-to-peer archi-
tectures have recently been applied to live streaming
[11,12], where there are now widely adopted. However,
despite promising early adoption by millions of users,
these latest p2p live streaming schemes appear less ma-
ture as observed in various measurement studies [1,13–
15,12]. First, in contrast with file sharing, they do not
implement incentive mechanisms; recent studies have
shown that they rely on a relatively small number of
‘‘amplifier” nodes [1,13,15]. These well connected nodes
are critical to the system and support the majority of the
system workload as observed as well in [16]. Our solution,
in contrast, does not rely on nodes with high capacity and
applies well to a homogeneous setting. Second, the con-
nections among peers of a mesh-pull architecture, estab-
lished for a short-term via exchanges of chunks,
becomes significantly more complex to orchestrate when
deadlines of content delivery are involved [12,14]. In prac-
tice, this problem can be overcome but it implies neces-
sarily two things: possible overloading of certain links
and nodes which reduces the quality of the video stream,
and a significant start-up delay and playback lags needed
to watch the live content [12,17]. Consequently, the ser-
vice is essentially focusing on a single channel and a sig-
nificant time is needed to switch between different
channels.

2 See www.fon.com.

J. He et al. / Computer Networks 53 (2009) 153–167 155
It is now subject to debate in the p2p research commu-
nity how to significantly improve p2p live streaming to
reach the quality required for regular TV service, while
offering fast switching between multiple channels. Some
argue that the better option is to improve mesh-pull (e.g.
building incentives [18], a better scheduling strategy
[19,20], or using additional server bandwidth wisely
[15,17]). Others claim that p2p architectures where con-
tent is pushed through one or several delivery trees can
be revisited to address the above concern. Some results
show that the limitations of these schemes with regard
to churn and heterogeneity could be circumvented
[21,22]. Meanwhile, several works propose to combine
push techniques with current mesh-pull schemes and
show it brings significant improvement of delay and qual-
ity [12,23,24].

Our work addresses the complex issues surrounding
p2p live streaming through a new approach. First, we fol-
low the observation that a p2p live streaming service
may be deployed among nodes of a controlled ISP network,
similar to home gateways, as opposed to volatile hosts in
the Internet. Indeed it has already been observed that ISP
and p2p may cooperate for improved performance [25].
Several recent works proposed a similar approach to im-
prove p2p architecture, for video-on-demand [3,2,4,6], or
live streaming [5]. Second, since users’ churn and hetero-
geneity between hosts are significantly reduced in the con-
trolled environment, architectures based on delivery trees
can be an attractive alternative to mesh-pull. Still, in the
presence of a large number of channels with varying pop-
ularity and users switching between them, the delivery
trees should adapt to users demands so as to avoid conges-
tion in hosts. Third, to keep a p2p architecture like that one
transparent to the network and collaborating with others
flows, traffic should adapt using the regular TCP protocol.
To avoid overflow and/or loss of quality in the content,
flow between p2p nodes should be controlled and adapt
as well when the tree is reconfigured. These issues, which
are specific to p2p live streaming services with multiple
channels, cannot be fully addressed following classical
techniques and analysis of p2p architecture based on trees,
because of tree reconfiguration occurring as users switch
between channels. Nevertheless, this paper prove that
the above issues can all be addressed by a distributed solu-
tion. This distributed technique does not require any cen-
tral coordination, super-node, or tracker. We prove that it
is scalable: it offers a throughput independently of the size
of the network, for any buffer size. In other words, under
the condition of a controlled environment to avoid churn,
it reproduces at much smaller cost the quality of a tradi-
tional television broadcast service.

Alternative solutions to provide live streaming services
in a controlled environment rely on either servers
[17,15,26] or networks implementing IP-multicast on sta-
tic trees with bandwidth reservation. These offer good
quality, but are typically limited in terms of available
channels. This paper establish that a controlled p2p envi-
ronment is a meaningful paradigm for scalable multi-
channel live streaming: the operator is responsible for
maintaining the participating peers, but peers are never-
theless cooperating independently of the network or any
centralized unit. It offers the ability for an ISP or a company
to provide live streaming service with diverse content,
without the overhead of a mesh-pull mechanism or ad-
vanced coding techniques such as [27], and without the
need to scale up its server capacity with the users. Users
may decide to adopt such a system via their ISP, as opposed
to an uncontrolled mesh-pull system, to receive higher
quality content and reduced start-up delay and jitter. ISPs
may have incentive to propose such collaborative p2p
services as it can improve the locality of their peer-to-peer
traffic to minimize content sent over cross-ISPs links
(see e.g. [5]).

3. P2P-enabled nano data centers

In this section, we first outline the features of nano data
centers that guided the design decisions for the BAND
architecture. We then give a brief overview of BAND.

3.1. Nano data center features

Nano data centers is an emergent example of a con-
trolled environment and it has several characteristic
features.

� System dynamics: In the Internet, users of a live stream-
ing service are assumed to be ‘‘on” only when watching
a particular content stream, therefore they arrive and
depart frequently and unpredictably. Nano data centers
are assumed to be on regardless of whether the user is
watching content. There may be minor off times due
to equipment failure, but such cases are extremely rare.
We assume users do not turn off their set-top boxes
manually, because they rely on it for other services
(e.g., VoIP phone). In this controlled environment, the
only system dynamics are introduced by channel
switching and short-term congestion from background
traffic.

� Cooperation model: Traditionally, users are assumed to
use the ‘‘pull” model, i.e., they will only relay content
that they are currently watching. In nano data centers,
there is the option to ‘‘push” to a nano data center con-
tent that is not currently viewed by that user, if it serves
the purpose of the service. We wish to push content as
little as possible, as each of these operations adds load
for this user which is not directly related with its
request. Later, we prove that pushing content cannot
be avoided in such systems but that the amount of con-
tents that needs to be pushed remains small. In order for
users to choose a cooperative service, as opposed to a
non-cooperative one, a service provider can propose a
discount to access the service. As an example, some
french ISPs propose free wireless upgrade to any user
that joins the FON network.2

� Network resources: Unlike the Internet, nano data centers
tend to be quite homogeneous in their capabilities. As
ISPs have control over their own network design, there
should be sufficient bandwidth provisioned in the sys-

http://www.fon.com

156 J. He et al. / Computer Networks 53 (2009) 153–167
tem for delivery of a few high-quality video streams.
Note that high-quality video streams use more band-
width, hence we cannot assume that some nodes (c.f.
superpeers) relay a large number of streams.

The key features of the nano data centers significantly
shape the choices made when designing an architecture
to stream live video in this controlled environment, which
we describe in the next subsection.

3.2. Architecture overview

Branching architecture over nano data centers (BAND)
consists of the following components: initial tree con-
struction, tree reconfiguration as users switch between
content streams, and flow control to handle temporary
network congestion (from background traffic) and conti-
nuity of data delivery. The first component is described
in the rest of this section. The second component creates
an ‘‘active” tree on top of the initial tree, using content
push, it is described below and in more details in Section
4. The third component combines TCP, together with
finite buffers implemented in each peer, and a local
back-pressure rule to ensure content delivery under
temporarily network congestion and node migration. It
is described in Section 6.

BAND constructs multiple overlay multicast trees, one
per channel; every user belongs to all the trees, but is only
‘‘pulling” content from one tree at any given time. In gen-
eral, even mesh-pull based approaches implicitly construct
delivery trees, but at a much finer granularity: per slice, per
block or per packet [28]. Fine-grained delivery trees are
necessary to maintain connectivity in the face of high user
churn, but at the cost of continuous tree reconstruction.
Since nano data centers have low user churn, constructing
trees per channel is both sufficient for connectivity and
much more efficient than finer granularity options. The ini-
tial tree construction mechanism can be any one of a num-
ber of scalable tree construction mechanism, already well
studied, e.g., [29–31,22,12]. The overlay hop-lengths in
the tree should reflect real network properties such as de-
lay or IP routing hops. BAND avoids wasting sending band-
width of the leave nodes by having each tree rooted in a
different node, so leaves nodes in one tree are internal
nodes in another tree (see for instance [21]).

On top of each tree, an ‘‘active” tree containing all the
nodes which are ‘‘pulling” content is then constructed,
the tree can also contain nodes which act as relays be-
tween the root node and ‘‘pulling” nodes. In a traditional
overlay multicast tree, if a node on the path between
source and destination is not pulling data, it still acts as a
relay that forwards the data. In other words, the content
is pushed automatically to this node. Asking nodes to relay
small amounts of data is quite reasonable, and suitable for
low data rate applications such as message boards. For a
streaming application, however, where we expect high
data rates, asking a node to forward data when they are
not pulling becomes a much bigger strain on network
and node resources [32]. In the next section, we study
how to reduce this amount of push content and how it im-
pacts the topology of the p2p network.
4. Reconfiguration of trees with minimum overhead

As users decide with time to watch different channels,
the peers pulling a data stream change. We show in this
section how BAND handles such events with limited over-
head. As already described, we assume that all peers be-
long to one rooted tree whether they actually pull the
data from this channel or not. A peer that pulls data from
this channel is referred as a pulling peer, or pulling node.
All pulling peers may participate in the delivery tree, and,
in addition, we may choose to push the content to some
other peers as well. We wish to determine efficiently a sub-
tree to deliver the content to all pulling nodes while using
the smallest number of other nodes.

4.1. Branching nodes

For any k P 1, we say that a node u is a k-branching
node if, among all the subtrees that are rooted in immedi-
ate children of u, at least k contains pulling nodes. Any k-
branching node is a (k � 1)-branching node and so on.
The largest value of k such that this property holds for u
is called the branching factor of u, it is obviously less than
its out-degree in the original tree. Note that the 1-branch-
ing nodes are exactly all the ancestors of pulling nodes.
One may immediately check that a node is a k-branching
node if and only if k of its immediate children are the
ancestor of a pulling node (i.e. k of its children are 1-
branching nodes). Following this observation it is easy for
nodes to compute their branching factor, starting from
the leaves of the tree up to the root.

For any value of k, and any subset of pulling nodes we
define the delivery tree Tk as follows: it contains all the
pulling nodes and the k-branching nodes, and each node
in Tk is directly connected with its closest ancestor in
the tree that is also in Tk. An example of how to construct
such a delivery tree when k = 2 is shown in Fig. 1 (to
make the presentation easier to read, a node with branch-
ing factor 0 is called ‘‘inactive”, a node with branching
factor 1 is called ‘‘semi-active”, while all 2-branching
nodes and all pulling nodes are all called ‘‘active”
nodes).

We may summarize these procedures as follows: each
node keeps a state: ‘‘inactive”, ‘‘semi-active” or ‘‘active”,
maintained using the messages received from its children
in the tree. In Figs. 2 and 3, white nodes are inactive, black
nodes are active, and half-black nodes are semi-active.
Only the active nodes participate in the dissemination tree.
As seen in Fig. 2, when a node s starts to pull a data stream,
it finds its closest ancestor t that is not inactive, and con-
nects to it. If t is semi-active, then it also has to become ac-
tive and join the dissemination tree, along with s. The
detailed connection scenarios are described in pseudocode
in Fig. 1a and correspond to the three scenarios in Fig. 2. As
seen in Fig. 3, when a node s stops pulling data, it is able to
remove itself from the delivery tree unless two of its chil-
dren are semi-active/active. When s decides to stops pull-
ing, it is possible that the node it was receiving from also
leaves the tree if it only has two active/semi-active chil-
dren. The detailed connection scenarios are described in
Fig. 1b and correspond to the scenarios in Fig. 3.

Fig. 1. Pseudocode describing processes to start and stop pulling (k = 2).

Fig. 2. Three possible scenarios when a node s starts pulling (k = 2).

Fig. 3. Three possible scenarios when a node s stops pulling (k = 2).

J. He et al. / Computer Networks 53 (2009) 153–167 157
The procedures we have presented to start and stop
pulling information have low overhead. The storage over-
head for a node is constant; it contains the state of the
node (inactive,semi-active,active), the node it is receiving
from, the nodes it is sending to (bounded by the out-de-
gree), and its unique child when it is semi-active. The over-
head of message passing is linear in the depth of the tree or
O(logN) for N nodes in the tree. This is because in the worst
case, a node will need to visit every ancestor (including the
root). Hence, we can expect to complete each of these pro-
cedures very quickly.
4.2. Analysis of topological properties

The delivery tree Tk, for different values of k, is such that
only pulling nodes and k-branching nodes are included in
the tree. In BAND we choose to set k = 2, and the results
of this section along with the evaluation in Section 6.4.3
justifies why this is the best possible choice.

First, note that choosing different values of k allows
describing a spectrum of intermediate solutions between
two extreme strategies: When k is equal to 1, then a node
relays data if and only if it is ancestor of a pulling node.

158 J. He et al. / Computer Networks 53 (2009) 153–167
Therefore, all nodes on a path between the source and a
pulling node are participating. This strategy is generally
the default option for multicast overlay, we call it ‘‘tradi-
tional overlay multicast”. As k increases, the number of
nodes that are forced to push content reduces. In particu-
lar, once k is increased above the max out-degree of the
tree, only pulling nodes participate in data delivery, as
the branching factor of a node is always less than its out-
degree in the original tree. We call this strategy ‘‘selfish”
because it requires no content pushing.

Increasing k always reduces the amount of nodes in the
delivery tree. It may appear at first that setting k arbitrarily
large is optimal. The following result proves that this is not
scalable: when the system grows, the out-degree of some
nodes may become arbitrarily large. This phenomenon oc-
curs as soon as k > 2 and is prominent for non-popular
groups containing only a few pulling nodes. In contrast,
choosing a value of k 6 2 guarantees a bounded out-degree
for arbitrary large trees and arbitrary groups.

Proposition 1. We assume that the underlying tree has
homogeneous out-degree D and depth H. We consider a subset
of pulling nodes and its associated delivery tree Tk, con-
structed using the k-branching rule.

� If k > D and each node may pull independently with prob-
ability p 6 1� 1

D, then the expected out-degree in Tk of
any node diverges as the system grows.

� If k > 2, for any node u with depth i, there exist subsets of
pulling nodes such that the out-degree of u in Tk is greater
than (k � 1)H�i.

� If k 6 2, then the out-degree of any node in Tk is less than D.

Proof. Let us consider a node u with depth i, and denote by
di the average number of immediate children of u in Tk,
provided that u is in Tk. Since k > D only pulling nodes
are included in Tk, hence di satisfies:

dH ¼ 0 and di ¼ Dðp � 1þ ð1� pÞ � diþ1Þ:

Hence, we have di = Dp(1 + . . . + (D(1 � p))H�i�1) which be-
comes arbitrarily large as H grows when 1 � p P 1/D.

To prove the second assertion, consider a partial tree
rooted in u, with degree k � 1 at each level. This partial tree
has height H � i � 1. Assume that the pulling nodes are
exactly all the leaves nodes of this partial tree, and any
immediate child of u does not belong to the partial tree.
Then no interior node of this partial tree is a k-branching
node except u. The leaves of this partial tree are then all
connected to u which proves the result.

If k = 1, a node is connected in the subtree with exactly
all its immediate children that are ancestor of a pulling
node, such that there are at most D of them. We now
assume that k = 2. For two nodes chosen in a tree, there
exists in this tree a 2-branching node that is ancestor of
both nodes. One can use this fact recursively to show that
for any collection of nodes there exists a 2-branching node
that is an ancestor of all nodes in the collection.

Let us consider a node u and the D subtrees rooted in all
of its immediate children. We may apply the fact above to
each subtree and obtain that there exists a 2-branching
node that is ancestor of all pulling nodes in this subtree,
except if this subtree contains at most 1 pulling node. The
tree Tk for k = 2 contains all the 2-branching nodes.
Therefore, at most one node from each of the D subtrees
is connected with u in Tk, which proves the result. h

The previous result shows that, as our system should
handle large depth and maintain bounded degree,
choices are limited to k = 1 or k = 2, as any other degree
may diverge for sparse group. Note that k = 2 seems al-
ways optimal as it involves less nodes in the delivery
tree Tk. However it is not obvious a priori whether that
brings a significant improvement. The following result
demonstrates that it is significant: the number of nodes
active when k = 2 is directly proportional to the number
of pulling nodes, whereas it may be arbitrary large when
k = 1. As an example, we prove in a random model where
we assume that nodes pull independently with a small
probability, system load is divided by the degree of the
tree.

Proposition 2. Under the same assumption as Proposition 1,
let us denote the number of pulling nodes by n

� If k = 1, for a fixed n the size of Tk may diverge as H grows.
� If k = 2, then the size of Tk is at most 2 � n.

Let us now assume that every node decides to pull with prob-
ability p independently of others. Then for small p we have as
H grows E½jT 2 j�

E½jT1 j�
� 1=D.

Proof. When k = 1 every ancestor of a pulling node should
be included in T1, a tree with large depth may then contain
only n pulling nodes but any arbitrary number of nodes in
T1.

The proof for k = 2 may be shown by induction. The
results holds trivially if n = 0 since the tree T2 does not
contain any node. When a new node starts pulling, it adds
at most one other node in T2 after reconfiguration, as
shown in the scenarios illustrated in Fig. 2.

The proof of the last assertion may be found in
Appendix A. We calculate the expected number of active
nodes for both the BAND and traditional overlay multicast
architecture. Then L’Hôpital’s Rule is applied as p ? 0. h

The topological properties of delivery trees based on the
k-branching rule prove that the value k = 2 represents the
best tradeoff. It is the sole choice for k which combines
two properties holding for system of any size: a bound
on the degree and on the number of nodes used to deliver
content. Interestingly, the savings seem to be most impor-
tant for the case of unpopular channels.

5. Flow control coping with node migration

From the previous section, we have seen that the
branching rule allows efficient delivery of data to the sub-
set of pulling nodes. The delivery tree constructed using
the branching nodes creates connections between nodes
that are not necessarily neighbors in the underlying tree.
As a consequence, this process of node migration may im-
pact delivery of content. In this section, we describe the

storage
buffer

buffer
input

buffer
input

buffer
output

buffer
output

buffer
output

Fig. 4. Buffers required by BAND in a single node.

J. He et al. / Computer Networks 53 (2009) 153–167 159
mechanisms implemented via local buffers in peers to en-
sure continuity of data transmission and adapts the rate.

5.1. Back-pressure mechanism and buffers

There are several ways to deliver packets when link
loads change over time in the system. We choose a simple
solution: combine existing TCP with a blocking back-pres-
sure mechanism in the output buffer. We first review the
mechanisms and associated buffers for a static tree.

In a multicast tree, all active nodes need to provision buf-
fers for the incoming and outgoing TCP connections. At a
single node, there is one input buffer for the incoming TCP
connection that corresponds to the receiver window size
of the said connection. There are also several output buffers,
one corresponding to each downstream TCP connection. In
addition, a backup buffer stores copies of packets removed
from the input buffer to the output buffers. These backup
buffers can be used when TCP connections are re-estab-
lished for the children nodes after their parent node fails.

If the buffers are included as part of the TCP connection,
there can be three different types of packet losses. Loss that
occurs on the path of the TCP connection is handled by the
TCP acknowledgment and retransmit mechanisms. Loss
due to input buffer overflow will not occur due to flow con-
trol of the receiver window in TCP. A blocking back-pres-
sure mechanism can avoid losses due to output buffer
overflow [7]. It ensures that a packet is removed from
the input buffer only when it can be copied to all output
buffers. So if a single output buffer is full, the copying pro-
cess will be blocked and will only resume once there is at
least one space in all output buffers. Such a system does
not create deadlock, as will be proved in the next section.

5.2. Impact of nodal dynamics on buffers

Three types of nodal dynamics related to changes in
pull may occur in a multicast tree:

� Creating a new connection from an active node to an
inactive node, as in Fig. 2a.

� Removing a connection to a node that becomes inactive,
as in Fig. 3a.

� Migrating the content delivery from receiving from one
node to receiving from another node, as in Fig. 2b and c,
Fig. 3b and c.

The buffer structure in Fig. 4 can take care of all the no-
dal dynamics with a storage buffer at each active node.
Since a node may receive data from two different TCP con-
nections simultaneously for a short period of time, there
are two input buffers, although each packet will only be
sent on one connection. Back-pressure is then imple-
mented in two ways: packets are only allowed to leave
an input buffer if the space for this packet is available in
the storage buffer of this node, and packets are only al-
lowed to leave the storage buffer when sufficient memory
is available for active output buffers.

In general, a single incoming TCP connection is suffi-
cient to handle reconfiguration. Two TCP connections are
required simultaneously when changing r ? s to r ? t, t
is an ancestor of s, see Figs. 3b and c. Let the last packet
sent from s be m and the last packet sent by t be m + Wm,
where Wm denotes the window size for packet m. r must
get the packets up to m + Wm from s to avoid delaying
the other nodes receiving from t, so two simultaneous
TCP connections are required. For a brief period, r will re-
ceive from both s (up to packet m + Wm) and t starting with
packet m + Wm + 1. s just removes itself from the connec-
tion after it receives the ACK for packet m + Wm. The other
children of t will not experience any delay unless there is
back-pressure from the storage buffer of r.

We will now consider the changes required in output
buffers due to branching nodes. In [7], all output buffers
were dimensioned to be the same size for each TCP con-
nection for a static tree. This is a reasonable model when
all connections span one overlay hop in the multicast tree.
With BAND, the overlay hop-length of the TCP connection
vary amongst nodes receiving from a sending node. To
compensate for this, BAND dimensions output buffers to
be proportional to the number of overlay hops between
the sending and receiving nodes. Note that we assume
the overlay hop-length in a multicast tree is closely corre-
lated to the RTT and this can be easily adapted to reflect
RTT instead of overlay hop-length.

6. Performance analysis

In this section, we focus on the performance scalability
of BAND in the face of link load dynamics and content
switching. First, we introduce a mathematical model of
queuing and packet flow, we prove the throughput of this
model is lower bounded independent of system size and
content switching using an argument of last-passage per-
colation. Finally, we present some evaluation of large con-
trolled peer-to-peer networks, based on the models we
introduced.

6.1. Queuing model of BAND

In this subsection and the next, we build an analytical
model to capture packet flows through queues in the system.
In our model, we focus on capturing the additive increase,
multiplicative decrease of the TCP window evolution. We
leave the technical details associated with the retransmis-
sion of packets due to packet loss to Appendix A.2. We do
not capture timeouts since we expect most losses will be de-
tected by triple-ACKs rather than timeouts for online video

160 J. He et al. / Computer Networks 53 (2009) 153–167
streaming (which have long-lived flows). In [7], the authors
find through evaluation that these details do not impact the
analytical scalability result for static trees. We do not cap-
ture user joins and leaves because they happen at a much
longer timescale compared to link load dynamics and con-
tent switching. We also assume there is no contention
among the packet flows leaving the same node.

In this subsection, we focus on introducing systematic
labels for all possible queues in the system. This involves
labeling all nodes and all possible TCP connections be-
tween any pair of nodes. In addition, we introduce routers
to model the nodes in the underlying network as individual
queues. We also tune the state parameter introduced in
Section 4.1 to precisely define when a connection will ex-
ist. This will form the basis for modeling packet flow in
the next subsection.

Our notation is similar to [7]. Each node in the tree is la-
beled as (k, l), the first index k represent its distance to the
root node, the second index l numbers the end-systems at
the same level. An ancestor i overlay hops above in the
multicast tree can be labeled as (k � i,mi(k, l)). Let each
packet be labeled by 1,2, . . . ,m, The fan-out at each
node is bounded by a constant D and let the receiving
nodes be labeled (k + i, l0, i) where l0 2 di(k, l). A TCP connec-
tion from an ancestor i overlay hops above in the multicast
tree to an end system (k, l) is labeled (k, l, i). The routers and
buffers in the tree can be labeled as follows:

� Routers of connection (k, l, i) are labeled as index
h = 1,2, . . . ,H(k,l,i). The buffer for router h of connection
(k, l, i) can be denoted by (k, l, i,h).

� The root node is denoted by (0,0). The storage buffer of
the root is denoted by (0,0,home).

� The buffers of node (k, l) are labeled as follows: let
(k, l, i,beg) denote the output buffer of node
(k � i,mi (k, l)) and the start of connection (k, l, i);
(k, l, i,end) denotes the input buffer of node (k, l) and
the end of connection (k, l, i); (k, l,home) denotes the stor-
age buffer of node (k, l). Let the sizes input, output and
storage buffers be Bðk;lÞ

IN
, Bðk;l;iÞ

OUT
and Bðk;lÞ

HOME
respectively for

connection (k, l, i).

Let s(k, l,m) denote the state (as defined in Section 4.1)
of node (k, l), for packet m. A node may either be inactive
(s = 0), semi-active (s = 1) or active (s = 2). Note that the
node with index (k, l) only receives a data packet m when
s(k, l,m) = 2. We assume s(0,0,m) = 2 for all m.

Definition 1. The connection (k, l, i) is said active for packet
m if and only if we have s(k, l,m) = 2 and i = min{jjs(k � j,
mj(k, l),m) = 2}.

Two cases are possible for each packet m, a node may be
receiving packets s(k, l,m) P 2 or not receiving packets
s(k, l,m) < 2. For the nodes that are receiving packets, each
router in the system is modeled as a single server queue
containing only packets from the reference connection.
The service times for these packets in this queue are ran-
dom variables describing the impact of cross traffic. Let
the service for packet m through router h in connection
(k, l, i) be denoted by rðk;l;i;hÞm . For a node not receiving pack-
ets, the service time is null.
6.2. Last-passage percolation on a graph

In this section, we model packet flows through queues
as last-passage percolation on a randomly weighted graph.
It may be seen as an extension to max-plus algebra,
although this result is self-contained and does not require
any familiarity with max-plus algebra. More details about
the background of this model may be found in [8].

The model works as follows: there is a graph where
each vertex represents a task that needs to be completed
and each edge represents preceding constraints between
tasks. We generally assume that a task starts as soon as
all its preceding tasks have been completed. Here, a task
corresponds to the service of a customer in a queue (either
a data packet or an acknowledgement going through one of
the buffers defined above). Therefore, a task is indexed by
the index of the queue and the packet number denoted by
m.

We consider the graph ðV;EÞ defined with the follow-
ing set of vertices:

V¼ fðk; l;home;mÞ j k P 0g[fðk; l; i;beg;mÞ; ðk; l; i;end;mÞ
j k P 1g;
[fðk; l; i;h;mÞ; ðk; l; i;h;mÞ0 j k P 1;16 h6Hk;l;ig:

where, 0 6 l 6 2k � 1;1 6 i 6 k;m 2 Z. Each vertex repre-
sents a queue at a router or buffer. The weight of each ver-
tex represents the processing time of packet m in a router
or buffer. For intermediate routers, (k, l, i,h,m) has weight
rðk;l;i;hÞm and it represents the queue when it is part of an ac-
tive connection. When the connection is inactive, packets
flow through vertex (k, l, i,h,m)0 with a weight of 0.

The edge of this graph are given by E ¼ E0 [E1 [E2[
E3 [E4 [E5:

� E0: edges representing the movement of packet m along
routers, each router must wait for it to be processed at
the previous router.

� E1: edges representing the movement of packets
through a specific router, each packet cannot be process
before the previous packet is processed.
E0 ¼ fðk; l; i;beg;mÞ ! ðk� i;miðk; lÞ;home;mÞ;
ðk; l;home;mÞ ! ðk; l; i;end;mÞ; ðk; l; i;end;mÞ
! ðk; l; i;Hðk;l;iÞ;mÞ;
ðk; l; i;1;mÞ ! ðk; l; i;beg;mÞ j k P 1g
[fðk; l; i;h;mÞ ! ðk; l; i;h� 1;mÞ0 j k P 1;2 6 h 6 Hðk;l;iÞg
[fðk; l; i;h;mÞ0 ! ðk; l; i;h;mÞ j if ðk; l; iÞ

is active for packet m;
k P 1;1 6 h 6 Hðk;l;iÞg;

E1 ¼ fðk; l;home;mÞ ! ðk; l;home;m� 1Þ j k P 0g
[fðk; l; i;end;mÞ ! ðk; l; i;end;m� 1Þ;
ðk; l; i;beg;mÞ ! ðk; l; i;beg;m� 1Þ j k P 1g
[fðk; l; i;h;mÞ0 ! ðk; l; i;h;m� 1Þ0;
ðk; l; i;h;mÞ ! ðk; l; i;h;m� 1Þ0 j k P 1;1 6 h 6 Hðk;l;iÞg;

where 0 6 l 6 Dk � 1;1 6 i 6 k;m 2 Z.

Fig. 6. Possible edges for end system (k, l). We omit the subscripts of H for
legibility.

J. He et al. / Computer Networks 53 (2009) 153–167 161
In Fig. 5 we show the different types of horizontal and
vertical edges connected to a router. Note in particular that
a path may visit the working vertex (k, l, i,h,m) only if con-
nection (k, l, i) is active for that packet. Otherwise, it can
only visit the vertex (k, l, i,h,m)0, indicated in white, which
has a null weight.

� E2: edges representing congestion window control, a
packet is only released from the output buffer of the
sending node if an ACK for a previous packet has been
received.

� E3: edges representing receiver window control, a
packet is only released from the output buffer of the
sending node if there is enough space in the input buffer
of the receiving node.

� E4 and E5: edges representing blocking back-pressure
mechanism: a packet is only released from the input
buffer of sending node if there is enough space in the
storage buffer (E4) and a packet is only released from
the storage buffer if there is space in all active output
buffers of the sending node (E5).
E2 ¼ fðk; l; i;beg;mÞ ! ðk; l; i;Hk;l;i;m�W ðk;l;iÞ
m Þ0g;

E3 ¼ fðk; l; i;beg;mÞ ! ðk; l;home;m� Bðk;lÞ
IN
Þg;

E4 ¼ fðk; l; i;end;mÞ ! ðk; l;home;m� Bðk;lÞ
HOME
Þg;

where k P 1;0 6 l 6 Dk � 1;1 6 i 6 k;m 2 Z.

E5 ¼ fðk; l;home;mÞ ! ðkþ i; l0; i;Hkþi;l0 ;i;m� Bðkþi;l0 ;iÞ
OUT

Þ0;
j if ðkþ i; l0; iÞ is active for packet m;

l0 2 diðk; lÞ; i P 1g;

where k P 0;0 6 l 6 Dk � 1;m 2 Z.
In Fig. 6, we show examples from each edge set for an

end system (k, l) which contains input buffers, storage buf-
fer and output buffers. To keep the figure simple, we only
show one input buffer and one output buffer. We also omit
some of the possible horizontal and vertical edges for sim-
plicity. Note that the edge representing a blocking back-
pressure mechanism only exists when connection (k, l, i)
is active.

When all buffers are initially empty for m = 0, we see
that the time at which a task (k, l,h,m) is completed follows
the last-passage percolation time, defined as follows:

xðk;l;i;hÞm ¼maxfWeightðpÞg; ð1Þ

where p is a path in ðV;EÞ;p : ðk; l; i;hÞ,ð0;0;home;0Þ.
This represents the packet flow from the queue at the stor-
Fig. 5. Sample of horizontal edges (E0) and vertical edges (E1) for router
(k, l, i,h), the dotted arrows indicate an edge which only exists if
connection (k, l, i) is active.
age buffer of the root node to any queue in the system
according to the mechanisms used in BAND.

6.3. Scalability analysis

In order to study the performance scalability of
BAND, we are interested in seeing how the system be-
haves as the number of queues goes to infinity. We
are limited to analytical techniques as simulators cannot
evaluate such a large configuration. In a system of infi-
nite queues, to show that the throughput is lower
bounded is not an easy task. We focus on the following
simplified model:

� The multicast tree has bounded degree D.
� There is an upper bound on the number of routers

between any two nodes: Hk,l,i 6 H. The DHT structure
will ensure the overlay hop length is related to the over-
lay hop-length of the underlying topology.

� Output buffers are dimensioned to be of size Bðk;l;iÞ
OUT

P B�i
for connection (k, l, i) as explained in Section 5.2.

� The packet loss process is independent and identically
distributed in all connections, with probability p. While
this assumption is not necessary for the scalability
result, we chose it for simplicity.

� Aggregated service time represents the time a packet
waits to be served in the queue once the previous packet
from the same connection has been served. It includes
the impact of packets from other flows. Aggregated ser-
vice times are independent and identically distributed in
all routers, according to process r that is light-tailed
(implies finite mean and variance).

� The start/stop pull occurs according to a known process
that is fixed independently of the service time (i.e. the
set of pulling nodes for each packet m follows a process
independent of the rest).

Let the random variable xðk;l;homeÞm be the maximum
weight of a path drawn from (k, l,home,m) to (0,0,home,0)
in the graph ðV;EÞ.

Theorem 1. Consider an overlay multicast tree with infinite
height. Under the assumption that r is light-tailed, then:
uniformly in (k, l).

lim
m!inf

inf
m

xðk;l;homeÞm

P constðH;DÞ > 0a:s: ð2Þ

162 J. He et al. / Computer Networks 53 (2009) 153–167
Proof. (Outline of the Proof). The essential ingredient of
the proof is to embed the evolution of all the connections
that may be used by the tree in a single graph. For each
packet, the start/stop pull process reconfigures locally a
finite number of edges of this graph, which remains locally
finite. We introduce a function /(v) that is an upper bound
on the number of vertices visited in a path from the root to
v. We then apply Markov’s inequality to find a bound for
the weight of each vertex, as made possible by the light-
tailed assumption. Finally, we apply the Borel–Cantelli to
prove that almost surely xðk;l;homeÞm remains under a linear
bound on m. See Appendix A.1 for the detailed proof. h
Table 1
Out-degree of active nodes for BAND and the traditional overlay multicast.

0 (%) 1 (%) 2 (%)

Traditional overlay multicast 22.5 54.9 22.5
BAND 47.2 5.5 47.2
6.4. Performance evaluation

In this section, we evaluate BAND with a custom max-
plus simulator built by representing the model for packet
flow (Sections 6.1 and 6.2) in matrix form, see [7,33] for
the mechanics. The simulator is then implemented
in C. The purpose of our simulations is two-fold: we
would like to verify the analytical results presented ear-
lier and study additional properties such as delay. In or-
der to focus on scalability, we must test BAND on large
systems, therefore do not use ns-2 or PlanetLab [34]. Sim-
ilar to analysis, we focus on modeling the start/stop pull
process, the service time process and the evolution of
TCP windows.

6.4.1. Experimental set-up
To start with, we assume there is a single multicast tree

with a fan-out of 2, though the trends shown are indepen-
dent of the outdegree chosen. We vary the depth of the tree
from 1 to 14, so the total number of nodes (pulling or not) in
the system lies between 1 and 214 � 2 = 16,382. In this tree,
nodes may pull independently of each other, following a
Markov process. We assume, between the transfer of any
two consecutive packets, a non-pulling node may start pull-
ing with a probability pup and a pulling node may stop pull-
ing with a probability pdown. All nodes start in the steady
state, i.e. a random set of nodes is already pulling at the
beginning of the experiment. We consider two cases:

� Sparse: with pup = 0.000005 and pdown = 0.001, we main-
tain the average number of pulling nodes at 4.7%.

� Dense: with pup = pdown = 0.001, we maintain the average
number of pulling nodes at 50%.

The sparse case represents the case where a small per-
centage of nodes in a tree are pulling given content. This is
typical when tree construction happens much more slowly
than content switching. The dense case represents when
tree construction happens on a similar timescale as con-
tent switching.

We assume that the congestion window implemented
on each connection follows a Markov process similar to
the one of TCP new Reno: each connection maintains a
window size. A coin is tossed between two successive
packets, and with probability 1 � p, the window size is in-
creased according to:

Wmþ1 ¼minðWmax;Wm þ 1=ð2 �WmÞÞ:
Similar to [7], we only increase the window size by 1/2 to
compensate for the delayed acknowledgment mechanism
implemented in TCP. With a probability p, a congestion
event will reduce the window size according to:

Wmþ1 ¼ maxð1; bWm=2cÞ;

and setssthresh = Wm+1. The maximum window size is set
to 40 packets and p is set to 0.001 for our experiments. We
choose buffer sizes to accommodate the maximum window
size. Buffers in an active node are sized as follows: BIN = 40
packets, BHOME = 60 and BOUT = i* 40 packets, where i is the
number of overlay hops separating the sources and the
destination.

Each connection in the multicast is composed of a se-
quence of 10 routers. The first router is shared by all out-
going flows of the same node. We model the queuing delay
for a packet at each router as a random process. We con-
sider two distinct cases: light-tailed case where service
time follows an exponential distribution; and heavy-tailed
case where service time follows a Pareto distribution with
coefficient 2.1. We chose an average service time of 10 ms,
though the trends shown are independent of the chosen
value. In other words, we assume that flows are served
on a link with a total capacity of 100 Pkts/s (i.e. 150 kBps
(1.2 Mbps)). All out-going flows from the same node go
through the same first router, hence this capacity is di-
vided among them (i.e., their aggregated service time is
multiplied by their number).

6.4.2. Evaluation of overhead scalability
In this section, we compare the out-degree distribution

and the ratio between active node and pulling nodes for
three schemes: BAND (k = 2), traditional overlay multicast
(k = 1) and selfish (k > D). We focus on the sparse case
where the three schemes differ the most since in the dense
case, the three schemes behave similarly. As predicted by
Proposition 1, the outdegree for the selfish architecture
grows with the size of the tree. For example, in a group
of 600 pulling nodes, on average 10 have degree of more
than 80. In the next section, we will show the selfish archi-
tecture does not scale.

We summarize the out-degree distribution of BAND and
traditional overlay multicast in Table 1 for a tree of depth 10,
the trend is similar for all tree sizes. In traditional overlay
multicast, about 55% of active nodes have degree 1. Among
those nodes, the ones that are not pulling are exactly those
which are removed in BAND. Indeed we observed that only
a small portion of them were pulling nodes, as BAND only in-
cludes 5.5% percent of nodes with degree 1.

In Fig. 7, we plot the ratio between the number of active
nodes and the number of pulling nodes for BAND and tra-
ditional overlay multicast. The error bars indicate the 10th
and 90th percentile for the outdegree distribution of all ac-

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 10 100 1000

Av
er

ag
e

nu
m

be
r o

f a
ct

iv
e

no
de

s
pe

r p
ul

lin
g

no
de

s

Average number of pulling nodes

Trad. Overlay Multicast
BAND

Fig. 7. Ratio between the number of active nodes and the number of
pulling nodes.

J. He et al. / Computer Networks 53 (2009) 153–167 163
tive nodes in the tree. As shown by Proposition 2, BAND
never requires more than two active nodes per pulling
node. On the other hand, traditional overlay multicast
can require close to four active nodes per pulling node,
roughly twice more than we can expect from Proposition
2. BAND should save 1–1/2 (since D = 2 for this case) of
the nodes from being active and this is indeed the case.
Similar trends are observed for larger degree trees.

6.4.3. Evaluation of performance scalability
Studying performance scalability for a single tree, we

observe empirically a lower bound on the group through-
put (as seen in Theorem 1), which is quickly reached by
BAND in a system of moderate scale. In addition, we show
that the delay grows logarithmically with the average
number of pulling nodes.

We plot throughput and delay of three schemes versus
the average number of pulling nodes in Figs. 8 and 9. Initially,
all buffers are empty, therefore, we need to warm up the sys-
tem before recording to measure the steady-state. We con-
sider the system to be warmed up when delays no longer
increase with each packet sent. For our experiments, a total
of 500,000 packets were sent, and we only calculate
throughput and delay for the last 250,000 packets.

For the throughput experiments, we consider a satu-
rated source. For packets in a given range, we define the
throughput as the number of packets in that range divided
by the time difference between receiving the last packet
and the first packet averaged over all pulling nodes. We
calculate a moving average of the throughput with a win-
dow size of 50,000 packets, for each point on the curve, we
show the confidence intervals at 10th and 90th percentile.
In Fig. 8a and b, we observe that for light-tailed service
time distribution, the throughput quickly stabilized to stay
above 65% of a single connection dedicated connection for
BAND and traditional overlay multicast, but does not scale
for the selfish architecture. In particular, the throughput
obtained for 600 pulling nodes up to an average of 8000
are almost identical, confirming the existence of a positive
throughput independent of the size as proved by Theorem
1. Fig. 8a illustrates that BAND performs better than tradi-
tional overlay multicast when there is significant timescale
separation between tree construction and content switch-
ing. Otherwise, BAND performs no worse than traditional
overlay multicast, as in Fig. 8b.

Next, we test what happens when the assumption of
light-tailed service time distribution is removed from The-
orem 1. For the heavy-tail service time distribution shown
in Fig. 8c, a lower bound does not appear to exist, unlike
the light-tailed case. Still, the rate of decrease is slow and
the throughput remains above 50% of a single dedicated
connection for average pulling group with size 500.

This indicates that service time distribution matters and
that networks with heavy-tailed service time distributions
are less scalable. The actual service time distribution will
depend on many factors in a network, which is why it is
important to compare the performance of a scheme under
different conditions. Since packets are bounded by MTU in
size, and a minimum bandwidth is given for each TCP con-
nection at all times, it is reasonable to assume that the tail
of a service time decreases quickly after some value (as for
a light-tailed distribution).

While we have no analytical results for delay, it is a cru-
cial performance metric in online streaming. For these
experiments, we consider a root node sending periodically
at a rate of 50 packets per second and a tree of depth 7.
Since the selfish architecture cannot sustain an acceptable
throughput for large trees, we omit characterizing its delay
properties. We calculate the delay for each packet as the
difference between the time when it is created and the
time when it is received by all pulling nodes. For each point
on the curve, we show the confidence intervals at the 10th
and 90th percentile. From Fig. 9a, we observe that the aver-
age delays grows logarithmically with the number of pull-
ing nodes (or linearly with the depth of the tree). We plot
the cumulative distribution of the delay values in Fig. 9b.
We observe for BAND, 99% of the packets are arriving with-
in 2.5 s, and 99.9% of the packets arrive within 3s, so by
having a playout buffer of 3 s, then you will only lose
0.1% of your packets. In both Fig. 9a and b, we observe that
the BAND outperforms traditional overlay multicast. This is
not surprising since fewer relay nodes in the overlay trans-
lates into lower delay.

6.4.4. Impact of multiple groups
In our next set of experiments, we consider multiple

groups that use the same population of nodes. Each con-
tent stream is independent and therefore the trees are also
independent from each other. Each node can participate in
multiple groups, either as pulling nodes or relays. To model
the impact of multiple groups at the same node, we define
the load of a node as the number of simultaneous TCP con-
nections which are departing from it. We assume that the
aggregated service times of the router closest to the node
on each of these TCP connections follows an exponential
distribution with mean depending linearly to the load of
the node. To show the trends versus number of groups,
we show only the results for a tree of height 9, though
the trends hold for other tree sizes.

In Fig. 10a, we plot average throughput achieved versus
the number of groups. We see that selfish is simply not scal-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100th
ro

ug
hp

ut
 (i

n
pe

rc
en

ta
ge

 o
f t

he
 re

fe
re

nc
e

72
 P

kt
/s

)

Average number of pulling nodes

BAND
Trad. Overlay Multicast

Selfish

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000th
ro

ug
hp

ut
 (i

n
pe

rc
en

ta
ge

 o
f t

he
 re

fe
re

nc
e

72
 P

kt
/s

)

Average number of pulling nodes

BAND
Trad. Overlay Multicast

Selfish

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100th
ro

ug
hp

ut
 (i

n
pe

rc
en

ta
ge

 o
f t

he
 re

fe
re

nc
e

69
 P

kt
/s

)

Average number of pulling nodes

BAND
Trad. Overlay Multicast

Selfish

Fig. 8. Throughput of three schemes versus average number of pulling nodes.

 0

 1

 2

 3

 4

 5

 6

 1 10 100

de
la

y
(s

)

Average number of pulling nodes

Trad. Overlay Multicast
BAND

 0.0001

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5 6 7 8

P[
D

el
ay

 >
 D

]

Delay D (s)

Trad. Overlay Multicast
BAND

Fig. 9. Delay properties of BAND and traditional overlay multicast for light-tailed services times and sparse distribution.

 0

 10

 20

 30

 40

 50

 60

 70

 1 10 100

th
ro

ug
hp

ut
 (i

n
Pk

t/s
)

of simultaneous groups

BAND
Trad. Overlay Multicast

Selfish

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000

P[
lo

ad
 >

 N
]

N: number of simultaneous connections

Trad. Overlay Multicast
BAND
Selfish

Fig. 10. (a) Throughput for multiple simultaneous groups, and (b) cumulative distribution function for the number of connections at each node, for 100
groups.

164 J. He et al. / Computer Networks 53 (2009) 153–167
able. For the same throughput requirement, BAND can sup-
port more groups than traditional overlay multicast. If the
desired throughput is 400kb per second and each packet is
1500 bytes (MTU for Ethernet), then we need to send at a rate
of 33 packets per second. BAND may then support 25 groups,
compared with 15 for traditional multicast.

Fig. 10b shows how many connections are maintained
by a node when there are 100 groups. Selfish has the most

J. He et al. / Computer Networks 53 (2009) 153–167 165
number of nodes with 30 or more connections, which pre-
cisely contributes to its inability to scale. Traditional mul-
ticast, on the other hand, has a large number of total
connections (found by looking at the area under the curve)
and therefore wastes network resources. BAND strikes the
correct balance by reducing the number of total connec-
tions, without having a large number of nodes with 30 or
more connections.

Our simulations show that BAND requires less overhead
and has better (or at least equal) performance compared to
traditional overlay multicast and clearly outperforms selfish
networks where the out-degree can grow without bound.

7. Conclusion

This paper studies the feasibility of providing peer-to-
peer live streaming application with quality and delay
comparable to a traditional television broadcast using
nano data centers. As a service provided by ISPs, nano data
centers form a controlled environment that mitigates peer
churn and heterogeneity. The main challenge we address
then is how to allow users to switch quickly between thou-
sands of channels, possibly more. Our work proves that in
this environment, a small amount of content push, when
properly chosen, brings great benefit when compared with
a pure pull system. We show that such a system scales
with the popularity of the channel, allowing a large num-
ber of unpopular channels to be offered. The pull-push
scheme we present may operate among peers in a simple
distributed way that does not require supernodes or track-
er, or large buffers maintained in peers. It handles continu-
ity of data delivery with flow control, and we prove
analytically that its throughput is guaranteed indepen-
dently of group size. Compared with alternative solutions
managed by an ISP (IP-multicast and CDNs), our solution
delivers live streaming service of a larger number of chan-
nels, with significant cost savings. Our results indicate that
p2p schemes can and should take advantage of a controlled
environment to improve their efficiency, while keeping the
ease of deployment and scalability of p2p architectures.

We see several directions to follow up on these results.
First, we could not include a full fledged validation of the
system with a standard discrete event simulator, or based
on experimental test beds. The assumptions we made in
the model have been tested previously (see [7] and refer-
ences therein), so we expect to see the same performance
trend. Nevertheless, further empirical analysis would allow
testing the efficiency of our scheme in comparison with a
mesh-pull approach, which is hard to judge analytically.
Second, our analysis can be extended to prove the logarith-
mic increase of the delay we observe numerically, or to
study the load per user as a function of the channels pop-
ularity. Last, heterogeneity of nodes may be handled by
using multiple delivery trees [21,22], and possibly different
values of k among them. Some of our results might then be
relevant for ISP networks with different types of nodes, or
even non-controlled environments. This approach seems
natural as a few recent works reach the same conclusion
that a small amount of content push may be desirable to
improve mesh-pull schemes [24,23]. Similarly, some works
demonstrated the efficiency of having peers cooperating
among different overlays [19]. At the present time, proving
delay and throughput scalability in the uncontrolled envi-
ronment remains an open challenge.

Acknowledgements

We would like to thank Christoph Neumann and Lau-
rent Massoulié from Thomson for discussions on this pa-
per. We would also like to thank Jennifer Rexford of
Princeton University, Jim Kurose, Don Towsley of U. Mass
and Jon Crowcroft from U. Cambridge for their input.

Appendix A. Proof of Proposition 2

Let pi denote the probability that a node in level i is
semi-active and let qi = 1 � pi. For a node at level i + 1 to
be semi-active, it need only to contain one or more pulling
nodes in its sub-tree of height H � i � 1. Therefore:

piþ1 ¼ 1� ð1� pÞ
DH�i�1

D�1 and qiþ1 ¼ q
DH�i�1

D�1 :

Let mB(i) (respectively, mS(i)) be the expected number of
active nodes in level i using BAND (respectively, traditional
multicast).

mBðiÞ ¼ Diðpþ ð1� pÞ½1� qD
iþ1 � Dpiþ1 � ðqiþ1Þ

D�1�Þ;
mSðiÞ ¼ Diðpþ ð1� pÞð1� qD

iþ1ÞÞ;
mSðiÞ �mBðiÞ ¼ Diþ1piþ1ðqiþ1Þ

D�1ð1� pÞ:

Let mB,ms be the total expected number of active nodes for
these both schemes.

mS �mB

mS
¼

P
i¼0;...;H�1

Diþ1piþ1qD�1
iþ1 ð1� pÞ

P
i¼0;...;H�1

Dið1� ð1� pÞqD
iþ1Þ

;

¼

P
i¼0;...;H�1

Diþ1ðqDH�i � q
DðH�iþ1Þ�1

D�1 Þ

P
i¼0;...;H�1

Di 1� q
DðH�iþ1Þ�1

D�1

� � :

Taking the limit as q ? 1 and then applying L’Hôpital’s Rule:

lim
q!1

mS �mB

mS
¼

PH�1

i¼0
Diþ1 DðH�iþ1Þ�1

D�1 � DH�i
� �

PH�1

i¼0
Di DðH�iþ1Þ�1

D�1

� � ;

¼ 1� HDHþ1 � DH

HDHþ2 � DHþ1 � DH þ 1
P 1� 1

D
:

A.1. Proof of Theorem 1

Proof. We define the function / : V! Z with values as
follows:

aðk� 1Þ þ b �mþ 1 for v ¼ ðk; l; i;beg;mÞ;
aðk� 1Þ þ b �mþ 2h for v ¼ ðk; l; i; h;mÞ;
aðk� 1Þ þ b �mþ 2hþ 1 for v ¼ ðk; l; i; h;mÞ0;
aðk� 1Þ þ b �mþ 2H þ 2 for v ¼ ðk; l; i;end;mÞ;
a � kþ b �m for v ¼ ðk; l;home;mÞ;

8>>>>>><
>>>>>>:

where a = 2H + 3, and b ¼max a; daBe
� �

.

166 J. He et al. / Computer Networks 53 (2009) 153–167
For any edge u ? v in E, we have /(v) < /(u). As a
consequence, a path included in the definition of xk;l;home

m

contains at most a � k + b �m vertices. h

Let us first prove the following lemma:

Lemma 1

For any edge u ? v in E, we have /(v) < /(u).

The result is clear for any edge in E0 and E1. When u ? v is
in E2, /(u) � /(v) may be written as follows:

a � kþ b �mþ 1� a � kþ bðm�Wk;l;i
m Þ þ 2Hk;l;i þ 1

� �
;

¼ b �Wk;l;i
m � 2Hk;l;i;

P 1; as b P 2H þ 3 and Wk;l;i
m P 1:

A similar proof can be made for any edge chosen in E3 and
E4. Last, when the edge is in E5, we have, for an i P 1.

/ðuÞ � /ðvÞ ¼ �a � iþ b � Bðk;l;iÞ
OUT
þ 2;

P 2; as Bðk;l;iÞ
OUT

P i � B and b P
a
B

l m
:

This ends the proof of Lemma 1. As a consequence, any path
p going from (k, l,home,m) to (0,0,home,0) contains at most
a � k + b �m vertices. Following the light tail assumption on
the distribution of service time, there exists t > 0 such that
E½et�r� ¼ A <1. Hence, by Markov’s inequality

P½WeightðpÞP xm� 6 E½et�WeightðpÞ�= expðt � x �mÞ;
6 Aakþbm

= expðt � x �mÞ:

We then make the following observation: in the definition
of E0, one can remove the edges (k, l,home,m) ? (k, -
l,end,m) when (k, l, i) is not active for m, as it does not im-
pact the last-passage percolation time in this vertex.
Indeed the only vertices that are reachable from
(k, l,end,m) and (k, l,H(k,l,i),m) are all reachable from
(k,l,home,m � 1). With this modification, the number of
edges leaving vertex (k, l,home,m) is less than D + 2 (as
each corresponds to a unique connection that is active
for packet m and incident to node (k, l)). The number of
such connections is bounded by D + 1 thanks to Proposi-
tion 1 (D connection downstream and one upstream). This
is also obviously verified for other vertices of the graph.

The result is challenging because xðk;l;homeÞm is the max-
imum weight of a path drawn on a graph that randomly
changes with the pulling process and the window.

Let us assume first that the start/stop pull process is
deterministically fixed, as well as the evolution of the
window in each connection. The graph ðV; EÞ is then a
deterministic graph with a outdegree bounded by D + 2. In
this case, we can consider the deterministic set of all paths
leading from (k, l,home,m) to (0,0,home,0). Given that we
know these paths have a length of at most a � k + b �m, there
are at most (D + 2)a�k+b�m paths in this collection. We can then
deduce, from the above inequality,

P½xðk;l;homeÞm P xm j ðV;EÞfixed� 6 ðDþ 3Þakþbm Aakþbm

etxm
:

Note that the left hand side depends on the static graph,
but that the bound on the right-hand side is a deterministic
constant. Because the weights of the vertices are all inde-
pendent from the process used to build the edges, the same
inequality holds for a random process defining the edges,
after conditioning on the value of this process. The right-
hand side above is therefore an upper bound for the fol-
lowing conditioning sumX
ðV;EÞ

P½xðk;l;homeÞm P xm j ðV;EÞ�P½ðV;EÞ�:

Choosing x large enough, we deduce that the seriesP
mP½xðk;l;homeÞm P xm� converges by an application of the

Borel–Cantelli Lemma. This proves Theorem 1.
A.2. The loss and re-sequencing model

In this subsection, we describe how to explicitly handle
packet losses in the graph presented in Section 6.2. As
shown in [7], when packet m is lost, the following window
evolution:

� The window is set to max((Wm � 1)/2,1) for
m + 1,m + 2, . . . ,m + Wm + max((Wm � 1)/2,1) � 1.

� The additive increasing evolution of the window is
resumed from packet m + Wm + max((Wm � 1)/2,1)
onwards.

is conservative in that the real system will have a larger
window size at all times and hence better throughput.

In the random graph associated with the loss model,
we add a third vertex (k, l, i,h,m)00, for all k P 1 i, l,h and
m, which represents the potential retransmission of a
packet sent between packets m and m + 1. Consequently,
vertices of the graph associated with the index m will
refer either to packet m itself, or to a retransmitted
packet that was sent after packet m and before packet
m + 1.

We also add the following edges to link this vertex to the
vertical and horizontal structure introduced in Section 6.2:

� Horizontal edges: (k, l, i,h,m)00 ? (k, l, i,h � 1,m)00 for
h = 2,. . .,H, (k, l, i,1,m)00 ? (k, l, i,beg,m);

� Vertical edges: (k, l, i,h,m)00 ? (k, l, i,h,m) for h = 1, . . . ,H.

Note that with no further additional edges, these com-
plementary vertices play no role in the graph.

In order to represent the effect of the loss and the
retransmission of packet m on the TCP connection (k, l):

� Edge E6: (k, l,home,m) ? (k, l, i,Hk,l,m + Wm � 1)00 in order
to represent the re-sequencing of packets
m,m + 1, . . . ,m + Wm � 1.

� Edges E7: (k, l, i,h,m00 + 1) ? (k, l, i,h,m00)00 for all h = 1, . . . ,
Hk,l,i and m00 = m, . . . ,m + Wm to represent the retransmis-
sion of packet m (as the extra packet in between indices
m + Wm � 1 and m + Wm) which delays the following
packets.

Note that the proof of Theorem 1 can be modified to in-
clude the case when retransmission due to packet losses
are explicit. This only requires a small modification to
the / function in Lemma 1.

J. He et al. / Computer Networks 53 (2009) 153–167 167
References

[1] X. Hei, C. Liang, J. Liang, Y. Liu, K.W. Ross, A measurement study of a
large-scale P2P iptv system, IEEE Transactions on Multimedia 9 (8)
(2007) 1672–1687.

[2] V. Janardhan, H. Schulzrinne, Peer assisted VoD for set-top box based
IP network, in: Proceedings of the ACM SIGCOMM Workshop on P2P-
TV, August 2007.

[3] K. Suh, C. Diot, J. Kurose, L. Massoulie, C. Neumann, D. Towsley, M.
Varvello, Push-to-peer video-on-demand system: design and
evaluation, IEEE JSAC 25 (9) (2007) 1706–1716.

[4] S. Narayanan, D. Braun, J. Buford, R. Fish, A. Gelman, A. Kaplan, R.
Khandelwal, E. Shim, H. Yu, Peer-to-peer streaming for networked
consumer electronics, IEEE Communications Magazine 45 (6) (2007).

[5] M. Cha, P. Rodriguez, S. Moon, J. Crowcroft, On next-generation telco-
managed P2P TV architectures, in: Proceedings of the IPTPS, 2008.

[6] N. Laoutaris, P. Rodriguez, L. Massoulie, Echos: edge capacity hosting
overlays of nano data centers, SIGCOMM Computer Communication
Review 38 (1) (2008) 51–54.

[7] F. Baccelli, A. Chaintreau, Z. Liu, A. Riabov, The one-to-many TCP

overlay: a scalable and reliable multicast architecture, in:
Proceedings of the IEEE INFOCOM, 2005.

[8] A. Chaintreau, Processes of interaction in data networks. Ph.D.
Thesis, Ecole Normale Supérieure, 2006.

[9] Y. Chu, S.G. Rao, H. Zhang, A case for end system multicast (keynote
address), Proceedings of the ACM SIGMETRICS, ACM Press, 2000. pp.
1–12.

[10] B. Cohen, Incentives build robustness in bittorrent, in: Proceedings
of the First Workshop on Economics of Peer-to-Peer Systems, 2003.

[11] X. Zhang, J. Liu, B. Li, T.-S.P. Yum, DONET/CoolStreaming: a data-driven
overlay network for live media streaming, in: Proceedings of the
IEEE INFOCOM, 2005.

[12] M. Zhang, Q. Zhang, L. Sun, S. Yang, Understanding the power of pull-
based streaming protocol: can we do better?, IEEE JSAC 25 (2007)
1678–1694.

[13] T. Silverston, O. Fourmaux, Measuring P2P iptv systems, in:
Proceedings of the 17th NOSSDAV Workshop, 2007.

[14] A. Sentinelli, G. Marfia, M. Gerla, L. Kleinrock, S. Tewari, Will iptv ride
the peer-to-peer stream?, IEEE Communications Magazine 45 (6)
(2007).

[15] B. Li, S. Xie, G.Y. Keung, J. Liu, I. Stoica, H. Zhang, X. Zhang, An
empirical study of the coolstreaming + system, IEEE JSAC 25 (2007)
1627–1639.

[16] S. Ali, A. Mathur, H. Zhang, Measurement of commercial peer-to-
peer live video streaming, in: Proceedings of the Workshop in Recent
Advances in Peer-to-Peer Streaming (WRAIPS), 2006.

[17] Saurabh Tewari, L. Kleinrock, Analytical model for bittorrent-based
live video streaming, in: Proceedings of the IEEE Consumer
Communications and Networking Conference, 2007.

[18] F. Pianese, D. Perino, Resource and locality awareness in an
incentive-based P2P live streaming system, in: P2P-TV ’07:
Proceedings of the 2007 Workshop on Peer-to-Peer Streaming and
IP-TV, 2007, pp. 317–322.

[19] X. Liao, H. Jin, Y. Liu, L. Ni, D. Deng, Anysee: peer-to-peer live
streaming, in: Proceedings of the IEEE INFOCOM, 2006.

[20] X. Hei, Y. Liu, K. Ross, Inferring network-wide quality in P2P live
streaming systems, IEEE JSAC 25 (2007) 1640–1654.

[21] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, A.
Singh, SplitStream: high-bandwidth multicast in a cooperative
environment, in: Proceedings of the SOSP, October 2003.

[22] J. Venkataraman, P. Francis, Chunkyspread: multi-tree unstructured
peer-to-peer multicast, in: Proceedings of the International
Workshop on Peer-to-Peer Systems, February 2006.

[23] T. Locher, R. Meier, S. Schmid, R. Wattenhofer, Push-to-pull peer-to-
peer live streaming, in: Proceedings of the DISC, 2007.

[24] F. Wang, Y. Xiong, J. Liu, Mtreebone: a hybrid tree/mesh overlay for
application-layer live video multicast, in: Proceedings of the IEEE
ICDCS, 2007.

[25] V. Aggarwal, A. Feldmann, C. Scheideler, Can ISPs and P2P users
cooperate for improved performance?, SIGCOMM Computer
Communication Review 37 (3) (2007) 29–40.

[26] L. Kontothanassis, R. Sitaraman, J. Wein, D. Hong, R. Kleinberg, B.
Mancuso, D. Shaw, D. Stodolsky, A transport layer for live streaming
in a content delivery network, IEEE Special Issue on Evolution of
Internet Technologies 92 (2004) 1408–1419.

[27] J.W. Byers, J. Considine, M. Mitzenmacher, S. Rost, Informed content
delivery across adaptive overlay networks, IEEE/ACM ToN 12 (5)
(2004) 767–780.
[28] N. Magharei, R. Rejaie, Y. Guo, Mesh or multiple tree: a comparative
study of live P2P streaming approaches, in: Proceedings of the IEEE
INFOCOM, 2007.

[29] M. Castro, P. Druschel, A.-M. Kermarrec, A. Rowstron, Scribe: a large-
scale and decentralized application-level multicast infrastructure,
IEEE JSAC 20 (2002).

[30] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable
content-addressable network, in: Proceedings of the ACM
SIGCOMM, ACM Press, 2001, pp. 161–172.

[31] R. Melamed, I. Keidar, Araneola: a scalable reliable multicast system
for dynamic environments, in: Proceedings of the International
Symposium on Network Computing and Applications, 2004.

[32] S. Birrer, F.E. Bustamante, The feasibility of DHT-based streaming
multicast, in: Proceedings of the International Symposium on
Modeling, Analysis, and Simulation of Computer and Tele-
communication Systems, IEEE Computer Society, 2005, pp. 288–298.

[33] G. Urvoy-Keller, E.W. Biersack, A congestion control model for
multicast overlay networks and its performance, in: Proceedings of
the International Workshop on Networked Group Communication,
10, 2002.

[34] ‘‘PlanetLab.” <www.planet-lab.org>.

Jiayue He received her B.A.Sc. (Hon.) in
Engineering Science from University of Tor-
onto in 2004. She received her M.A. and Ph.D.
from Princeton University in 2006 and 2008,
respectively. Her thesis work was primarily
focused on traffic management. Her Ph.D. is
partially funded by the Gordon Wu Fellow-
ship at Princeton University and the gradu-
ate fellowship from National Science and
Engineering Research Council of Canada. She
interned at Thomson Research Labs in sum-
mer 2006.
Augustin Chaintreau joined the Thomson

Research lab soon after graduating in 2006
from Ecole Normale Superieure de Paris,
working at INRIA under the supervision of
Francois Bacelli. During his Ph.D. he worked
in collaboration with Alcatel Bell, as well as
the IBM Watson T.J. Research Center in New
York. He have spent a year visiting Intel
Research Cambridge. His research interests
focus on the analysis of emerging commu-
nication architectures, opportunistic mobile
networking, peer-to-peer systems and
wireless networks.
Christophe Diot received a Ph.D. degree in

Computer Science from INP Grenoble in
1991. He was with INRIA Sophia-Antipolis
(1993–1998), Sprint (1998–2003), and Intel
Research in Cambridge, UK (2003–2005). He
joined Thomson in October 2005 to start
and manage the Paris Research Lab. Diot has
been a pioneer in multicast communication,
DiffServ, Internet measurements, and more
recently Pocket Switched Networks. Diot’s
research activities now focus on advanced
P2P communication services. Diot is the
Thomson Corporate Research CTO and an
ACM fellow.

http://www.planet-lab.org

	A performance evaluation of scalable live video streaming with nano data centers
	Introduction
	Related work
	P2P-enabled Nano-data-centersnano data centers
	Nano data center features
	Architecture overview

	Reconfiguration of trees with minimum overhead
	Branching nodes
	Analysis of topological properties

	Flow control coping with node migration
	Back-pressure mechanism and buffers
	Impact of nodal dynamics on buffers

	Performance analysis
	Queuing Model model of BAND
	Last passage Last-passage percolation on a graph
	Scalability analysis
	Performance evaluation
	Experimental set-up
	Evaluation of overhead scalability
	Evaluation of performance scalability
	Impact of multiple groups

	Conclusion
	AcknowledgementAcknowledgements
	Proof of Proposition 2
	Proof of Theorem 1
	The Loss loss and Re-sequencing Modelre-sequencing model

	References

