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ABSTRACT
Disseminating a piece of information, or updates for a piece
of information, has been shown to benefit greatly from sim-
ple randomized procedures, sometimes referred to as gossip-
ing, or epidemic algorithms. Similarly, in a network where
mobile nodes occasionally receive updated content from a
base station, gossiping using opportunistic contacts allows
for recent updates to be efficiently maintained, for a large
number of nodes. In this case, however, gossiping depends
on node mobility. For this reason, we introduce a new gossip
model, with mobile nodes moving between different classes
that can represent locations or states, which determine gos-
siping behavior of the nodes. Here we prove that, when
the number of mobile nodes becomes large, the age of the
latest updates received by mobile nodes approaches a de-
terministic mean-field regime. More precisely, we show that
the occupancy measure of the process constructed, with the
ages defined above, converges to a deterministic limit that
can be entirely characterized by differential equations. This
major simplification allows us to characterize how mobility,
source inputs and gossiping influence the age distribution
for low and high ages. It also leads to a scalable numeri-
cal evaluation of the performance of mobile update systems,
which we validate (using a trace of 500 taxicabs) and use to
propose infrastructure deployment.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munications; C.4 [Performance of Systems]: Modeling
Techniques

General Terms
Performance, Theory
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Epidemic, Gossip, Mean Field, Infrastructure Deployment,
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1. INTRODUCTION
Epidemic algorithms were first introduced to maintain

consistency for a distributed database in the face of updates
[8], offering a simple randomized alternative to complex de-
terministic algorithms. More recently, the same epidemic
principle was introduced in order to forward information in
mobile networks where links between nodes are intermit-
tent [17]. In such a context, a node stores information and
takes advantage of opportunistic contacts with other nodes
to propagate this piece of content in a delay tolerant man-
ner. Epidemic algorithms are simple and scale well to deliver
the same content to a large number of hosts, complement-
ing the usual shortcomings of an infrastructure. With the
multiplication of mobile devices equipped with short-range
wireless radios, carried by either people or vehicles, it be-
comes possible to receive updated information in a peer to
peer manner. However, as the mobility of nodes is typically
limited in speed, and much slower than information prop-
agation over wired or wireless links, the delay for such a
mobility assisted scheme remains non-negligible. In addi-
tion, as each infrastructure or mobile node has a constant
capacity to forward information to its neighbors, this delay
could grow significantly with the network size.

We consider here an application based on opportunistic
content updates through mobile nodes. We assume that a
source constantly updates a file that is of interest for all
nodes in the network. This file, with its timestamp, is im-
mediately sent to one or several base stations, which then
propagate it to mobile nodes. In addition, whenever an op-
portunistic contact occurs between two mobile nodes, the
one with the most up-to-date copy of the file forwards it to
the other, following an epidemic principle. We call age of a
node the age of the latest copy of the file the node has seen
so far. The analysis of this simple mechanism is difficult
to characterize for a few reasons. First, the age is the time
elapsed since the content held by this node was emitted by a
base station. This differs from most epidemiological models,
which are interested only in the time elapsed since the last
infection of this node. In particular, the quantity of inter-
est to us is not the spread of a single packet, but the age
distribution across all nodes. Also, contacts between mobile
nodes occur in function of their positions rather than in a
random uniform way.

We build a model designed to shed light on the above is-
sues. We assume that a mobile node has a class attribute
that may represent its location, as well as other descrip-
tions of its state. As nodes change positions with time, they
switch between classes. Contacts with base stations and



contacts between mobile nodes occur at a rate that depends
on the current classes of these nodes. We wish to study a
very large system, in which the population of nodes follows
random mobility between classes, and random opportunis-
tic contacts. Our goal is to characterize the age distribution
among the population of nodes for each class.

We make the following contributions.
• We prove that, as the number of nodes participating

in the system becomes large (while keeping a constant con-
tact rate per base station/mobile node), this opportunistic
content update system converges to a deterministic spatial
mean-field regime that is uniquely characterized by a system
of partial differential equations (PDEs).

• We show that the system of PDEs can be transformed
into a set of ODE problems, and thus numerically easily
solved. It may be used as a fast simulation tool, in particular
either when traces are not available, or to perform a what-if
analysis, or when the number of mobile nodes is very large.
In spite of our simplifying assumptions, we demonstrate the
accuracy of this tool by comparing with a discrete event
simulation using measurement of mobility of 500 taxicabs,
collected over 30 days in San Francisco. We also illustrate
the use of the tool for infrastructure dimensioning.

• Using the system of PDEs, we show that the mean field
regime can be characterized as “infrastructure dominant” or
“opportunistic contacts dominant” depending on the con-
tact rates and mobility of the nodes, when the number of
classes is small. More generally, for extreme operating points
(maintaining a small fraction of nodes with a very up-to-date
content, or maintaining the age of content in a high fraction
of nodes), we show that the system efficiency is dominated
by a single characteristic value.

To the best of our knowledge our work is the first to
demonstrate the existence of a spatial mean-field regime for
opportunistic content systems, or equivalently, for the age
of a gossip in a multi-class system. Its unique feature is
to characterize the propagation of information via oppor-
tunistic contacts and via mobility among different classes.
We believe that the system of equations defining this regime
could lead to further simplification and characterization of
the multiple dimensions of these systems in the future.

The paper is organized as follows. After presenting related
work, we describe in §3 the model in more detail. In Sec-
tion 4 we prove the convergence of the system to a mean-field
regime and provide a unique characterization as the solution
of a system of PDEs. We derive in §5 the exact solution for
the single-class case, and prove more generally asymptotic
results on information propagation. In §6 we compare the
numerical solution of the PDEs with discrete event simula-
tions using real measurement, and we use this solution in §7
to solve an infrastructure deployment problem.

2. RELATED WORK
Gossip protocols or epidemic algorithms were used in the

past to maintain mutual consistency among multiple database
sites [8]. In addition to being simple and scalable, these
procedures were shown to be efficient with respect to their
deterministic counterparts and robust in the face of topolog-
ical changes. Most of the works studying gossip protocols
assume that a node is equally likely to contact any other
node at each time step. It was recently shown that similar
performance can be attained when nodes contact each other,
according to some general static graph topology [10].

Because epidemic algorithms usually assume that nodes
collaborate in an uncoordinated manner, they have also been
proposed for routing in ad-hoc or delay-tolerant networks
where topology is not known a priori [17]. Most of the
routing protocols proposed in opportunistic delay-tolerant
networks rely on epidemic algorithms as a primitive (usually
flooding), which is then further improved using additional
information and heuristics to decide which packet to trans-
mit (see, e.g., [5]). The main difference with the previous
works mentioned above is that messages between nodes are
not exchanged randomly or in a static set of neighbors, but
they rather follow contacts created by node mobility.

Close to our work is [2], which studies different epidemic
strategies for updates between nodes that are intermittently
connected, and focuses on optimal control. However there
are important differences: first, we assume a more general
model, where nodes move between classes and contact each
other and a base node with rates that depend on the class.
Though our model does not include cost, it allows to truly
study the influence of mobility and geographical constraint
on the performance of epidemic algorithm. Second, we prove
convergence to a mean field regime, whereas [2] mentions it
as a plausible assumption. Third, we completely character-
ize the mean field regime by PDEs, which allows us to both
obtain efficient solution methods and derive analytical con-
clusions. In particular, we show that the dynamics of this
system follow linear multidimensional ODEs when focusing
on low and high age, which gives new insight into the impact
of base stations and opportunistic node contacts.

Also close to our work is [3], which compares delivery la-
tency of mesh, base stations and mobile relays in oppor-
tunistic systems. Similarities are in the use of a multiclass
model for spatial aspects, and in the use of differential equa-
tions. Our results are significantly different, though. First,
because we focus on opportunistic content updates, we want
to characterize the distribution of latency among nodes and
classes, rather than the dissemination of a single content.
To put it differently, and leaving aside the class attribute of
a node, in [3] and [18], the state of one node is a single bit
(infected or not) whereas in our case it is a nonnegative real
number (the age of the node’s content). Note that the age
cannot be deduced from the time since the last infection,
as it depends on when the content was originally emitted
by a base station. Thus we have a new way to evaluate the
freshness of disseminated information. Showing convergence
to a mean field regime in our case is entirely new (and non
trivial), whereas convergence to a mean field regime in the
case of one bit of information per node as in [3] follows for
example from [13]. Also note that one can derive the extent
of infection from the age distribution, so that, in some sense,
our model generalizes the model in [3] (but note that [3] fo-
cuses on dimensioning rules that are not directly addressed
in this paper).

We believe that our characterization of the age of gossip
for large systems significantly complements previous works.
It can be used as a building block to address future issues
of cost efficiency when mobility plays an important role.

3. SPECIFICATIONS AND MODEL

3.1 A Multiclass Approach
We generally assume that nodes are distributed in a finite

number of classes. A node may belong to only one class at



any given time, although its class may change with time.
This allows us to capture the mobility of nodes, as differ-
ent classes can represent different locations or cells. Note
that classes can capture other aspects of the system (type
of nodes, wireless interface, etc.). We assume that nodes
in the same class are statistically equivalent. Essentially it
means that two different nodes, under the same condition of
position, type, interface (captured via their class), behave
statistically the same with respect to the evolution of their
current information age.

Assumptions.
A collection of N nodes move and collect updates accord-

ing to the following three dynamics.
• Mobility: There exists a finite collection C ⊂ N of C

classes, and each node belongs to a only one class at any
given time. We call ρc,c′ the rate of movements from class c
to class c′ per time unit.

• Source Emission: At any time a node can receive
updated information directly from the source (i.e. a server
maintained in an infrastructure). This may happen with
rate μc for nodes that are in class c.

• Opportunistic Contacts: A node may meet oppor-
tunistically with nodes in the same or other classes. In this
case we assume that the node with the most recent informa-
tion transmits it to the other. We define the parameters ηc,
c ∈ C such that, whenever a pair of nodes both are in class

c, they meet with a rate
“

2ηc
N−1

”
. This implies that the total

contact rate in one class is Nc(t)(Nc(t)−1)
N−1

ηc where Nc(t) is
the number of nodes currently in class c.

We also allow for opportunistic contacts among nodes in
different classes. This applies to cases where classes rep-
resent different types of nodes in the same location, or, as
in §6, to contacts across class boundaries, when two classes
are mapped to neighboring subareas. We define β{c,c′}, for
c �= c′ such that two nodes belonging to classes c �= c′ meet

with a rate
“

2β{c,c′}
N−1

”
.

Note that a class may have no infrastructure (i.e. μc = 0).
In this case, the update of information can only come from
nodes that visited different classes. It may also represent an
inactive state (i.e. μc = ηc = 0) where no meeting occurs.

Example 1 (Homogeneous Network). There is C = 1
class. This is the simplest but probably not a realistic model.
All nodes are the same and are equally likely to meet with
the information source at any time (with rate μ), as well as
with each other (with rate η).

Example 2 (Classes as geographical regions). We can
map a realistic scenario to classes as follows. We map a geo-
graphical area of interest to classes, where each class repre-
sents a sub-area. In some classes there is one or more sources
of information, in which case μc is the aggregate rate of in-
jection of new information at the sources (we explain in §6
how to measure μc). In other classes, there is no source, in
which case μc = 0. We also consider an extra class (class
16 in §6) to represent mobile nodes that are not currently in
the area of interest.

We show in §6 that classes do matter, in the sense that a
model with just one or two classes gives a poor fit to trace
results, whereas one with more classes gives a good fit.

Note that we assume in the model that the total number
of nodes N is constant, but, as illustrated in Example 2
above, we can account for a variable number of nodes by
introducing an extra class, to represent mobiles that are not
present in the area of interest. Thus, with our model, N is
in fact an upper bound on the number of nodes in the area
of interest. We leave it to a forthcoming paper to extend
the model to a variable, possibly unbounded, N .

Metric.
We are interested in the age distribution at any time and

in any class. We are interested in the following quantities.
• uN

c (t) is the fraction of nodes in class c at time t.
• F N

c (z, t) is the fraction of nodes at time t that are in
class c and whose information (obtained from the source or
by gossiping) has age ≤ z. Note that we have, for any t ≥ 0,
0 ≤ F N

c (z, t) ≤ uN
c (t), and F N

c (0, t) = 0, F N
c (∞, t) = uN

c (t).

3.2 Model
The evolution of the system above is captured in continu-

ous time via a drift and jump process. The state of the sys-
tem at time t is ( �XN (t),�cN (t)) =

`
(XN

n (t))N
n=1, (c

N
n (t))N

n=1

´
,

with:

XN
n (t) : age of the most recent information held by node n.

cN
n (t) : current class of node n.

The dynamics of ages is essentially characterized by:
• If nodes m, n meet at time t then
XN

m (t) := XN
n (t) := min(XN

m (t−), XN
n (t−).

• If node m meets a base station at time t then XN
m (t) = 0.

• The age of a node increases at rate 1 in an interval where
this node does not meet any other nodes nor base stations.

We now formally describes all details of our model.

3.2.1 Evolution of Nodes Between Classes
Let { Kn,c,c′ | n ∈ N, c ∈ C, c′ ∈ C, c �= c′ } be N × C ×

(C−1) independent Poisson Processes such that Kn,c,c′ has
a rate ρc,c′ . Each point of this process denotes a possible
transition from the class c to the class c′ for node n (the
transition always exist, but it has no effect unless the node
n is currently in state c). Thus

d�cN =
X
n∈N

X
c∈C,c′∈C,c′ �=c

(c′ − c) · 1{cN
n =c} · �endKn,c,c′ ,

where �em is the N×1 vector with 0 at all components except
the mth which is equal to 1. We can rewrite the fraction of
nodes in class c, uc for any N and any time t as:

uN
c (t) =

1

N

NX
n=1

1{cN
n =c} .

The process
˘

(uN
c (t))c∈C

˛̨
t ≥ 0

¯
may also be thought of

as the occupancy measure of the vector �cN with values in
C. In other words, it characterizes the values taken by all
the coordinates of �cN but ignores to which coordinates each
value corresponds.

If we assume that the process above satisfies the initial
conditions that converge to a deterministic limit (dc)c∈C:

∀c ∈ C , lim
N→∞

uN
c (0) = dc ,

 
for dc ≥ 0,

X
c∈C

dc = 1

!
(1)



then as N becomes large, Kurtz’s theorem (see e.g., [13])
states that the process of

˘
(uN

c (t))c∈C
˛̨

t ≥ 0
¯

converges
to a deterministic limit { (uc(t))c∈C | t ≥ 0 } which is the
unique solution of the following ODE problem:(

∀c ∈ C , ∂uc
∂t

=
P

c′ �=c ρc′,cuc′ −
“P

c′ �=c ρc,c′
”

uc

∀c ∈ C , uc(0) = dc .
(2)

By Cauchy-Lipschitz theorem, for any boundary condition
(dc)c∈ this ODE problem admits a unique solution. Follow-
ing classical notation, we denote the value at time t of the
solution for boundary condition d by uc(t|d).

Assuming that the matrix ρ is irreducible, we may con-
sider the stable mobility regime where uc(t) = ũc indepen-
dently of t and is defined as the unique solution of

∀c ∈ C , ũc(
X
c′ �=c

ρc,c′) =
X
c′ �=c

ρc′,cũc′ and
X
c∈C

ũc = 1 . (3)

3.2.2 Propagation of Information
Let An,c, n ∈ N, c ∈ C be N × C independent Poisson

Processes such that An,c has a rate μc. Each point of this
process denotes possible information received by n directly
from the source in class c (the transition always exist, but
it has no effect unless the node n is currently in class c).

Let Bm,n,c m ∈ N, n ∈ N, m < n, c ∈ C be N×(N−1)
2

×
C independent Poisson Processes such that Bm,n,c has a
rate 2·ηc

N−1
. Each point of this process denotes a possible

opportunistic contacts for the pairs { m, n }, occurring in
the class c (the transition always exist, but it has no effect
unless the nodes n and m are currently both in class c).

Similarly, define Cm,n,{c,c′} for m ∈ N, n ∈ N, m < n, c ∈
C, c′ ∈ C, c < c′ be N×(N−1)

2
× C×(C−1)

2
independent Poisson

Processes such that Cm,n,c,c′ has a rate
2·β{c,c′}

N−1
. Each point

of this process denotes a possible opportunistic contacts for
the pairs { m, n }, occurring when m or n is in class c and
m or n is in class c′ (the transition always exist, but it has
no impact unless the nodes n and m are currently one in
classes c, the other in class c′).

d �XN = �1dt −Pn∈N

P
c∈C XN

n · 1{cN
n =c} · �endAn,c

+
X
m<n

X
c∈C

h
1{XN

m<XN
n }�en

“
XN

m − XN
n

”
+ 1{XN

m>XN
n }�em

`
XN

n − XN
m

´i
1{cN

n =c}1{cN
m=c} · dBm,n,c

+
X
m<n

X
c<c′

h
1{XN

m<XN
n }�en

“
XN

m − XN
n

”
+ 1{XN

m>XN
n }�em

`
XN

n − XN
m

´i
1{{ cN

n ,cN
m }={ c,c′ }} · dCm,n,c,c′ .

We define the occupancy measure of �XN (t) in class c by:

MN
c (t) =

1

N

NX
n=1

1{cN
n (t)=c}δXN

n (t) .

F N
c (z, t) (i.e., the fraction of nodes that are in class c and

with ages under z) is

F N
c (z, t) = MN

c (t) ([0; z]) =

Z z

0

MN
c (t)(du) .

4. THE MEAN-FIELD REGIME

4.1 Mean-Field Limit
The main result of this section is that, as shown in §3.2.1

for the evolution of nodes between classes, the evolution of
the information age among nodes, when N gets large, be-
comes close to a deterministic limit characterized by differ-
ential equations.

We assume that the initial conditions of the system, as
N gets large, converge to a deterministic limit. In other
words, the occupancy of classes by nodes converges to a de-
terministic vector (dc)c∈C according to Eq.(1), and the initial
occupancy measure MN

c (0) of ages in each class converges
weakly to a deterministic distribution m0

c , with CDF F 0
c .

Theorem 4.1. As N gets large, the collection of occu-
pancy measures MN

c converges in distribution to determin-
istic processes { mc(t) | t ≥ 0 }.

If m0
c admits a density, then mc(t) has a density for all t

and its CDF Fc(z, t) is the unique solution of the following
PDE problem8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

∀c ∈ C ,
∂Fc(z, t)

∂t
+

∂Fc(z, t)

∂z
=

X
c′ �=c

ρc′,cFc′(z, t) −
0
@X

c′ �=c

ρc,c′

1
AFc(z, t)

+ (uc(t|d) − Fc(z, t)) (2ηcFc(z, t) + μc)

+ (uc(t|d) − Fc(z, t))
X
c′ �=c

2β{c,c′}Fc′(z, t)

∀c ∈ C , ∀t ≥ 0 , Fc(0, t) = 0

∀c ∈ C , ∀z ≥ 0 , Fc(z, 0) = F 0
c (z) .

(4)
where uc(t|d) denotes the solution of Eq.(2).

How to explain the equation above. Though we
give a mathematical proof in the next section, it is possi-
ble to heuristically derive Theorem 4.1 by considering the
mean field limit for the densities. The theorem implies that
Fc(z, t) admits a density fc(z, t) at all times t if it has one
at time 0; intuitively, the density should satisfy for all c:

fc(0, t) = μc · uc(t)

∂fc(z, t)

∂t
= −∂fc(z, t)

∂z
− μcfc(z, t)

+
X
c′ �=c

ρc′,cfc′(z, t) −
0
@X

c′ �=c

ρc,c′

1
A fc(z, t)

+ 2ηc [(+1) × (uc(t) − Fc(z, t)) · fc(z, t)

+ (−1) × fc(z, t) · Fc(z, t)]

+
X
c′ �=c

2β{c,c′} [(+1) × (uc(t) − Fc(z, t)) · fc′(z, t)+

+ (−1) × fc(z, t) · Fc′(z, t)] .

The second equation can be interpreted using the differ-
ent possible transitions from the point of view of the cur-
rent population of nodes in class c and with ages around
z: The first term denotes the passage of time. The sec-
ond term denotes the population removed from age z by
source injection. The second line denotes the movement of
the node population with age z among different classes. The
third and fourth line denotes the impact of opportunistic
contacts within the same class and among different classes.



The first transition corresponds to a new node in class c
becoming of age z (which is why it is multiplied by +1).
The node should already be in the class c and the nodes it
met should have age z, hence the rate of such a transition
is (uc(t) − Fc(z, t)) · fc(z, t) · 2ηc, or if the contacts is among
different classes (uc(t) − Fc(z, t))·fc′(z, t)·2β{c,c′}. Last, we
have to account for transition where one node in class c is
not any more with age z (which explains the −1 for the pop-
ulation) because its age decreases. This node leaving should
be of age z, and it should meet a node with an age at most
z, hence the transition occurs with rate fc(z, t) ·Fc(z, t) ·2ηc,
or respectively with rate fc(z, t) · Fc′(z, t) · 2β{c,c′} if this is
an opportunistic contacts with another class c′.

The above system of equations may be simplified if we
write by convention, when c = c′, β{c,c′} = ηc. We can then
write, as an example,

P
c∈C β{c,c′} =

P
c �=c′ β{c,c′} + ηc.

fc(0, t) = μc · uc(t)

∂fc(z, t)

∂t
= −∂fc(z, t)

∂z
− μcfc(z, t)

+
X
c′ �=c

ρc′,cfc′(z, t) −
0
@X

c′ �=c

ρc,c′

1
A fc(z, t)

+
X
c′

2β{c,c′} [(uc(t) − Fc(z, t))fc′(z, t) − fc(z, t)Fc′(z, t)] .

Note that z 	→ (uc(t) − Fc(z, t)) · Fc′(z, t) is a primitive
with regard to z of the terms in the last sum. Therefore,
after integrating with regard to z, we obtain Eq.(4).

4.2 Solution of the PDE problem
The PDE problem described by Eq.(4) admits a unique

solution, obtained as the transform of a function defined by
an ODE problem.

Theorem 4.2. The problem in Eq.(4) has a unique solu-
tion F given by:

∀c ∈ C , Fc(z, t) =

j
hc(z|0, u(t − z|d)) for z ≤ t

hc(t|F 0
c (z − t), d) for z > t

(5)

where h(.|b, d) denotes the solution of the following ODE
problem defined for a function H : [0;∞[→ [0; 1]C :8>>>>>>>><
>>>>>>>>:

∀c ∈ C ,
d Hc(x)

dx
=
X
c′ �=c

ρc′,cHc′(x) − (
X
c′ �=c

ρc,c′)Hc(x)

+ (uc(x|d) − Hc(x)) (μc + 2ηcHc(x))

+ (uc(x|d) − Hc(x))

0
@X

c′ �=c

2β{c,c′}Hc′(x)

1
A

∀c ∈ C , Hc(0) = bc .
In the special case where the class occupancy starts in steady
state (i.e. u(0) = ũ), we have F (z, t) = h(z|0, ũ) for z ≤ t
and thus F (z, t) does not depend on t for z ≤ t; however, it
still depends on t for z > t.

4.3 Proof of the Mean Field Regime
We do the proof of Theorem 4.1 for C = 1, as the general

proof is similar, but the notation becomes much heavier.
Due to space limitations, we give only the essential elements
of the proof. The proof is based on the method of [13, 15,
7, 4]. The proofs of lemmas can be found in [6].

We use the notation: P(R+) is the set of probabilities on
R

+. For ν ∈ P(R+) and f bounded defined on R
+, <f, ν >=

R +∞
0

f(x)dν(x). Note that <f, MN (t)>= 1
N

PN
n=1 f(XN

n (t)).

The dirac mass at x ∈ R is δx, so MN (t) = 1
N

PN
n=1 δXN

n
(t).

We consider
`
MN (t)

´
t≥0

as a stochastic process with sam-

ples paths in DP(R+)[0,∞) (the set of càdlàg functions of

t ∈ R
+, with values in P(R+))1. Theorem 4.1 states that

MN converges in distribution to m where m is deterministic,
and its set of marginal CDFs satisfy the PDE in Eq.(4).

The main steps are as follows. First, we show that the
original system satisfies a martingale problem, obtained by
computing the generator and applying it to linear and quadratic
functions. Application to linear functions captures the de-
terministic component of MN (t), whereas application to
quadratic functions captures the variance of MN (t). More
precisely, let GN be the generator of MN ; for φ a function
from P(R+) to R and ν ∈ P(R+):

(GNφ)(ν) := lim
dt→0

1

dt
E

“
φ(MN (t + dt) − φ(ν))

˛̨̨
MN (t) = ν

”
.

We compute GN for φ of the form φ(ν) =< h, ν > and
φ(ν) =<h, ν >2, where h is an arbitrary test function from
R

+ to R with bounded and continuous first and second
derivatives. We show in appendix that:

GN (<h, .>)(ν) = A(h, ν) + B(h, ν) +
N

N − 1
C(h, ν) (6)

with

A(h, ν) = <h′, ν >

B(h, ν) = μ (h(0)− <h, ν >)

C(h, ν) = 2η

Z Z
1{x<y} (h(x) − h(y)) dν(x)dν(y) .

The term A accounts for aging, B for direct dissemination
by the source and C for dissemination by meetings. Further:

GN (<h, .>2)(ν) = 2 <h, ν > (GN <h, .> ν)

+
1

N
D(h, ν) +

1

N − 1
E(h, ν) (7)

with (GN <h, .> ν) given by Equation (6) and

D(h, ν) = μ < (h(0) − h)2 , ν >

E(h, ν) = 2η

Z Z
(h(x) − h(y))21{x<y}dν(x)dν(y) .

The terms D and E represent, in a sense, the variance of
MN (t). As N → ∞, these terms disappear (due to the 1/N
or 1/(N − 1) factors) and, informally speaking, this is why
the large N limit is non-random. It follows from standard
results on jump and drift processes [13] that

Lemma 4.1. MN is a solution to the martingale problem
defined by:

For all functions h : R
+ → R with continuous and bounded

first and second derivatives:
<h, MN (t)> − <h,MN (0)> − R t

0
GN <h, .> (MN (s))ds

and
<h, MN (t)>2− <h, MN (0)>2− R t

0
GN (<h, .>2)(MN (s))ds

are MN (t)−martingales.

Second, using dominated convergence arguments, we show
that any weak limit of a subsequence MNk , k → ∞ must
satisfy the following martingale problem:

1It should be possible to extend the proof to a stronger result,
namely the convergence in P (D

R+ [0,∞)) of μN = 1
N

P
n δXN

n
,

of which MN is the set of marginals.



Definition 4.1. PROBLEM MP : For all functions h :
R

+ → R with continuous and bounded first and second deriva-
tives:
<h, M(t)> − R t

0
G(h, M(s))ds

and
<h, M(t)>2− <h, M(0)>2− R t

0
2 <h, M(s)> G(h, M(s))ds

are M(t)−martingales, where for all ν ∈ P(R+):

G(h, ν) = A(h, ν) + B(h, ν) + C(h, ν) (8)

with A, B and C defined in Eq (6).
Third, we show that MP has at most one solution with
continuous sample paths and we establish, by means of the
next three lemmas, equivalence with the PDE problem:

Lemma 4.2. Let m(t) be a solution of the martingale prob-
lem MP , with almost all sample paths continuous (in P(R)+

with Prohorov’s topology), and such that m(0) = m0 almost
surely, where m0 ∈ P(R+). Then almost every sample path
of m(t) satisfies: for each function h with continuous deriva-
tive:

<h, m(t)>=<h,m0 > +

Z t

0

G(h, m(s))ds . (9)

Lemma 4.3. The problem in Equation (9), where m(t) is
unknown but deterministic and m0 ∈ P(R+) is given, has at
most one solution.

Lemma 4.4. Assume F (z, 0) is differentiable and let F (z, t)
be the unique solution to the PDEs in Eq (4). For every t let
m(t) be the measure with CDF F (., t). Then m(t) satisfies
Equation (9).

Fourth, we show that:
Lemma 4.5. Any weak limit of a subsequence MNk , k →

∞ a.s. has continuous sample paths.
At this point, it follows that any weak limit of a subse-

quence MNk , k → ∞ is uniquely determined, thus all that
remains to be shown is that the sequence MN is relatively
compact, which follows from:

Lemma 4.6. The sequence MN is tight.

5. ANALYTICAL RESULTS

5.1 Single-class
We prove in [6] that, for the single class case, the distri-

bution of age seen in a mean field regime has the following
explicit expression:

F (z, t) =

8<
:

1 − 2η+μ

2η+μe(μ+2η)z , when z ≤ t

1 − 2η+μ

2η+
2ηF (z−t,0)+μ
1−F (z−t,0) e(μ+2η)t

, when z > t

(10)
where F (z, 0) is the cdf at time t = 0.

This solution for F can be well understood. When z is less
than t, gossips for this age are created after initialization,
thus they follow the steady state behavior, and the density
function around z does not depend on t. Otherwise, when
z > t this part of the distribution denotes gossip that was
present during the initialization (at time 0 they had the age
(z − t)). The current value of F (z, t) then depends on the
value F (z − t, 0) (i.e., at time 0), and the elapsed time.

Introducing A = (μ + 2η) and α = 2η
μ+2η

, Eq.(10) implies

f(z, t) =

8><
>:

(1−α)AeAz

(α+(1−α)eAz)2
, when z ≤ t

eAtf(z−t,0)/(1−F (z−t,0))2“
α(1−eAt)+ 1

1−F (z−t,0) eAt
”2 , when z > t

when z ≤ t,
∂f(z, t)

∂z
=

(1 − α)A2eAz
`
α − (1 − α)eAz

´
(α + (1 − α)eAz)3

.

As shown in Figure 1, the density may then exhibit two
different behaviors depending on the value of α, i.e. of η/μ:

• When 2η ≤ μ, the density f(z, t) for z ≤ t sufficiently
large, is always non-increasing in z. In that case, the highest
density remains equal to μ around the value z = 0, exactly
as if no opportunistic contacts occur between the mobile
nodes. In other words, for these values of η, gossip through
opportunistic contacts does not modify qualitatively the dis-
tribution of ages.

• When μ < 2η, the density f(z, t) for z ≤ t admits a max-

imum at z0= 1
μ+2η

ln
“

2η
μ

”
with f(z0, t)=μ

“
1 − (μ−2η)2

(μ+2η)2

”−1

.

This indicates that gossiping among mobile nodes creates in
this case a new typical age of the information seen by a node.
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Figure 1: Density of age in a single class for different
values of α = 2η/(μ + 2η) (normalized by assuming
A = μ + 2η = 1). A pole exists if and only if α > 1/2.

5.2 Multi-Class Asymptotics
The previous section has shown that the single class case

can be solved in a closed form. In contrast, the multi-class
model does in general not follow a simple expression. This is
because the ODE defining h, and therefore F , is multidimen-
sional and not linear. However, as we show below, this ODE
may be approximated for low age asymptotics and high age
asymptotics by multi-dimensional linear ODEs.

To simplify the analysis, we assume that the class occu-
pation process uc(t) starts in its steady state ũc. In that
case, we know that for t sufficiently large F (z, t) = h(z|0, ũ),
where h is the solution of the following ODE on H :8>>>>>>><
>>>>>>>:

∀c ∈ C , d Hc(x)
dx

=
X
c′ �=c

ρc′,cHc′(x) −
0
@X

c′ �=c

ρc,c′

1
AHc(x)

+ (ũc − Hc(x))

 
μc +

X
c′∈C

2β{c,c′}Hc′(x)

!

∀c ∈ C , Hc(0) = 0
(11)

where we have by convention when c′ = c, β{c,c′} = ηc.

5.2.1 Low Age
Note first that, according to Eq.(11) above, the stationary

distribution of age Fc(z) satisfies ∀c ∈ C, Fc(0) = 0, as well



as the following ODE:

d Fc(z)
dz

= ũcμc +

0
@ũc2ηc − μc −

X
c′ �=c

ρc,c′

1
AFc(z)

+
X
c′ �=c

`
ρc′,c + ũc2β{c,c′}

´
Fc′(z) −

X
c′∈C

2β{c,c′}Fc(z) · Fc′(z) .

For low value of the age z, for any class c, Fc(z) becomes
close to zero. Hence, in the equation above, the last term
(that corresponds to a square product of Fc and Fc′) will be
asymptotically negligible when compared to the other two.
This equation then becomes a linear differential equation on
the vector F (with dimension C × 1), which may be written
as F ′ = FA + B with8<

:
Ac,c = ũc2ηc − μc −Pc′ �=c ρc,c′ ,
Ac,c′ = ρc,c′ + ũc′2β{c,c′} if c �= c′ ,
B =

`
μ0ũ0 , . . . , μC ũC

´
.

This linear differential equation has an explicit solution in
matrix form, given by F (z) = B

R z

0
e(z−s)Ads. Using the

Taylor series expansion around z = 0 it follows that

Fc(z) = z · Bc +
z2

2

X
c′∈C

Bc′Ac′,c + o(z2) .

Hence for a class c ∈ C and low age z, the density of nodes
with age z is μcũc, and its derivative at z = 0 is given by

μcũc(ũc2ηc−μc−
X
c′ �=c

ρc,c′)+
X
c′ �=c

μc′ ũc′
`
ρc′,c + ũc2β{c′,c}

´
.

If we assume that contacts do not occur between different
classes (i.e., βc,c′ = 0 for all c′ �= c), we deduce.

dfc(z)

dz
= μcũc (ũc2ηc − μc) +

X
c′ �=c

(μc′ − μc) ũc′ρc′,c . (12)

Eq.(12) can serve to classify classes: We may say that a
class has “dominant opportunistic contacts” if the density
is initially increasing. Such a situation indicates that there
exists a pole, or maximum of density, for nodes with pos-
itive ages, which is maintained by opportunistic contacts.
In contrast, a class where the density is initially decreasing
indicates that, at least in the first order, the age of a node
rarely benefits from opportunistic contacts. The age in such
a class is mostly maintained by infrastructure and we say
that the class has “dominant infrastructure”.

One immediately sees from the above equation that
• When infrastructure is deployed uniformly (i.e., μc does

not depend on c), then a class has dominant infrastruc-
ture (resp. dominant opportunistic contacts) if and only
if 2ηcũc < μc (resp. 2ηcũc > μc). Note that this charac-
terization does not depend at all on the rates of movement
between different classes.

• As expected, any class with no infrastructure coverage
(such that μc = 0) has dominant opportunistic contacts (this
is obvious as the density is initially null).

• If infrastructure is deployed on a subset of non-neighboring
classes (for instance, if it is deployed in a single class), then
a class with infrastructure has a dominant infrastructure iff

2ηcũc < μc +
X
c′ �=c

ρc,c′ .

In other words, for a sparse infrastructure (i.e., infrastruc-
ture is never found in two neighboring classes), a class is

dominated by opportunistic contacts only if the rates of ad-
hoc contacts among nodes compensate both the infrastruc-
ture and departure rate from this class.

In a more general case, when infrastructure is deployed
in many classes (in different degrees), the characterization
above permits the following conclusion: It tells, in the first
order that deals with low age, whether a system of mobile
nodes significantly benefits from mobility and opportunistic
contacts, or if the benefit is only marginal. This conclu-
sion is reached by estimating parameters, and computing
the density derivative through Eq.(12).

5.2.2 High Age
Let us denote by Gc(z) the fraction of nodes that are in

class c and have an age higher than z, i.e. Gc(z) = ũc−Fc(z).
We expect that Gc(z) → 0 as z → ∞. We may change vari-
able Fc in Gc in the associated differential equation above.
We find that Gc(z) satisfies

d Gc(z)
dz

= −
0
@X

c′∈C
ũc′2β{c,c′} + μc +

X
c′ �=c

ρc,c′

1
AGc(z)

+
X
c′ �=c

ρc′,cGc′(z) +
X
c′∈C

2β{c,c′}Gc(z) · Gc′(z) .

For high value of z we can expect Gc(z) to be small for any
class c. Therefore, the last term in the expression above be-
comes negligible and G follows the multi-dimensional linear
equation G′ = GA, wherej

Ac,c = −Pc′∈C ũc′2β{c,c′} − μc −Pc′ �=c ρc,c′ ,
Ac,c′ = ρc,c′ if c �= c′ .

The solution of this equation is G(z) = G(z0)e
(z−z0)A. The

matrix A satisfies that all terms outside the diagonal are
non-negative, which is sometimes called a Metzler-Leontieff
matrix, or ML-matrix (see [16], Chap.2). If we further as-
sume that all classes of nodes communicate, this matrix is
irreducible and we can apply Theorems 2.6 and 2.7 in [16]
and obtain that A has a dominant eigenvalue τ such that
τ ∈ R, and Re(λ) < τ for any eigenvalue λ of A; further-
more, τ < 0.

It follows that there exists a constant Kc such that Gc(z) =
Kce

zτ + o(ezτ ). Thus τ characterizes the rate of decay of
the age distribution, for all classes. The numerical value of
τ may be obtained as the dominant eigenvalue of A. It is
contained within the following bounds ([16]):

min
c

(−
X
c′∈C

ũc2β{c,c′}−μc) ≤ τ ≤ max
c

(−
X
c′∈C

ũc2β{c,c′}−μc) .

6. VALIDATION WITH TRACES
In this section we test the accuracy of the model and the

mean-field approximation. We use a large, publicly available
data set of GPS traces collected by 500 San Francisco’s taxi
cabs during a period of more than two years [1]. It allows us
to generate contact traces between Yellow Cabs (our mobile
nodes), and base stations that we can place arbitrarily.

6.1 Validation Setup
In our scenario, the San Francisco Bay Area is divided into

16 classes, as shown in Figure 2. Fifteen classes are obtained
using a regular square grid. Each of them corresponds to a
region of about 4 sq km. The 16th class surrounds the other



classes and contains the area outside classes 1-15. Its exis-
tence is important, as it keeps the number of mobile nodes
in the system rather constant. Base stations are placed in
fixed locations, and we assume that they always have fresh
information from a source server. We assume that each mo-
bile node (i.e., a Yellow Cab) is equipped with a short-range
radio that allows for the exchange of data upon a meeting
with base stations or other mobile nodes. As before, upon a
meeting with a base station, a mobile node receives fresh in-
formation; and a meeting between two mobile nodes results
in both of them having the latest information available in
any of them before the meeting.

Figure 2: The Bay Area is split into 16 classes.

Data Sets. We use GPS position records, measured ap-
proximately once per minute, which were collected within
the Cabspotting project [1] that aims at visualizing the as-
pects of everyday life in SF. About 500 Yellow cab vehicles
that operate in the area are equipped with GPS receivers.
Recorded data is sent to the central dispatcher and stored
in the database. Each GPS record contains the cab’s ID,
current location, as well as the time stamp (as Unix epoch).
This allows us to reconstruct the path of each individual
mobile node for the past two years.

We consider a 30 day GPS trace, from May 17 to June 15,
2008. We observe the 16 hour periods between 8 a.m. and
midnight. We want to avoid night-time, when the number
of active cabs drops.

Generation of Contact Traces. In order to obtain an
artificial contact trace from an existing GPS trace, we first
have to define ranges, for both mobile nodes and base sta-
tions. We also have to define the notion of meeting between
two mobile nodes or a mobile node and a base station.

We assume that mobile nodes’ radios, as well as base sta-
tions, have a range of 200m. This corresponds to the en-
visioned range in vehicular communications [11], and it is
a bit longer than the ranges of 802.11 devices (∼140m) or

Bluetooth Class 1 devices (∼100m). Each mobile node per-
forms scanning once per minute, looking for base stations
and other mobile nodes in range. Once another mobile node
or a base station is discovered, we use interpolation to make
sure that the contact lasts at least 10 seconds. So, we assume
that a meeting between two mobile nodes, or a mobile node
and a base station happened if, during scanning, a mobile
node detected another mobile node, or a base station and
their contact lasted for at least 10 seconds. As shown in [5],
a real system implemented on buses equipped with 802.11b
radios has an average transfer opportunity duration of 10.2s,
which is sufficient to exchange on average 1.2MB of data.
Contacts between mobile nodes, and with a base station,
can occur between scanning periods. We decide to ignore
these contacts as most of the existing wireless technologies
do not allow scanning and data exchange at the same time.

Using the provided definition of a meeting, we run a sim-
ulation (written in Java) and obtain the contact trace.

Parameter Settings. The input parameters for the model
and the mean field approximation, as defined in Section 3.1,
are μc, ηc, βc,c′ and ρc,c′ . For each class, we extract them
from the contact traces as follows:

μc (t) =
Nc,ub (t)

Nc (t)
, μc =

1

60

t0+60X
t=t0

μc(t) ,

ηc (t) =
Nc,uu (t)

uc(t) ∗ (Nc (t) − 1)
, ηc =

1

60

t0+60X
t=t0

ηc(t) ,

βc,c′(t) =
Nc,c′,uu(t)

2 ∗ N(t) ∗ uc(t) ∗ uc′(t)
, βc,c′ =

1

60

t0+60X
t=t0

βc,c′(t) ,

ρc,c′(t) =
Nc,c′,trans(t)

Nc(t)
, ρc,c′ =

1

60

t0+60X
t=t0

ρc,c′(t) .

where for any time slot t (in minute), N(t) is the total num-
ber of nodes; for any c we denote by Nc(t) (resp. uc(t))
the number (resp. the fraction) of nodes in class c, and we
denote by Nc,ub(t) (resp. Nc,uu(t)) the number of meeting
between mobile nodes and base stations (resp. between two
mobile nodes) during the time slot t; finally, for any classes
c �= c′, we denote by Nc,c′,uu(t) (resp. Nc,c′,trans(t)) the
number of meetings between nodes of different classes (resp.
the number of transitions from c to c′) during time slot t.
As shown above, per hour values of the parameters are cal-
culated by averaging their per minute (per time slot) values
over the period of one hour. The necessary per minute values
are extracted from the generated contact trace.

The values of the input parameters indicate that the node
distribution is highly skewed: 75% of the nodes are con-
tained within 4 popular classes (2,3,6 and 15, i.e., city center
and airport); nodes spend on average 12 to 40 min in one of
these classes before moving; 10% of the nodes are contained
in surrounding classes (1,4,5,9 and 12) where nodes stay less
time (4 to 12mn before moving). Class 16 contains roughly
10% of “persistent”nodes that remain in this class two hours
on average. All the other classes contain in total 5% of the
nodes; class 13 is generally empty. The rate of meetings for
two given nodes within the same class is generally between
(1/60mn) and (1/80mn); this contact rate is higher in classes
9,12,15 (1/20mn), and much smaller in 10,11,13,16 (under
1/200mn). Contacts between the nodes in different classes
are almost negligible (with rate less than 1/2000mn).



Running the Simulations. The calculated input param-
eters are used twice: first, to simulate the random model
described in Section 3.2 with N = 500 nodes, and, second,
to evaluate the mean field limit by solving the associated
ODEs (Theorem 4.2) in Matlab2. The contact trace itself is
used directly for an event-driven simulation.

In all three cases, we get the corresponding age distribu-
tions for each minute of observation.

6.2 Comparison of Trace, Model & MF Limit
We now compare the age distributions obtained from the

trace, the model and the mean-field approximation, for the
case of a single base station, placed in class 3. In terms of
contacts, a given node in class 3 meets the base station with
a rate (1/45mn). Simulations begin at 8 a.m. We set the
initial age of information for each mobile node to 8 hours,
in line with the night-time inactivity.

Figure 3 shows the trace, the model and the mean-field
CDFs for ages in different classes, observed at 1 and 8 p.m.
by the three methods mentioned above. CDFs were esti-
mated every minute and averaged over an hour. We omit
classes 13 and 16 as they are of less interest and generally
not connected to the rest of the network.

The distribution of age, obtained from the model, shows
a very good match with the distribution taken from the
traces, in particular for popular classes (2, 3, 6, 15) and their
surroundings (1, 4, 5, 6, 12). This means that our modeling
assumptions succeeded in accurately capturing the collec-
tive behavior of gossip among taxis. Some discrepancies are
observed for peripheral classes, which may be explained as
follows: In classes with very few mobile nodes, the age of a
single mobile node (which stopped for some reason too far
from the main road and cannot receive an update), can cre-
ate a significant difference between the trace and the model.
Indeed, classes 10, 11 and 14 contain on average 1.1, 2.1 and
2 mobile nodes respectively.

The mean-field limit matches the model extremely well,
except, again, for discrepancies observed in peripheral areas.

6.2.1 The Importance of Being Opportunistic
For update applications, the quality of service (in terms

of age) can be measured as the fraction of mobile nodes in
each class whose age is lower than a given threshold. We
now compare this metric for the cases when opportunistic
exchanges between mobile nodes are allowed, and when the
dissemination is performed only through the base station.

Figure 4 shows the percentage of mobile nodes in each
class that have age less than 20 minutes at 1p.m. and 8p.m.
(300 and 720 minutes after the start of observation), ob-
tained from the trace, the model and the mean-field approx-
imation. The figure also displays the same percentage for the
case where only the base station is allowed to disseminate
information; this percentage is generally very small and re-
mains under 20%, even in class 3 where the base station is lo-
cated. Using opportunistic contacts between mobile nodes,
in contrast, allows us to significantly improve percentages in
all classes, and to approach very high percentages in classes
2, 3, 6, 9, 12, 15 (which together contain 80% of the nodes).

These results are best interpreted using a spatial repre-
sentation as in Figure 5, where data provided in the upper
panel of Figure 4 are shown spatially for the trace and the
mean-field approximation.

2The value of ũc in the ODE is obtained from Eq.(3).

(a) t=1pm

(b) t=8pm

Figure 3: CDFs for classes 1-12 and 14-15, obtained
from the trace, the model and the mean field limit.
The CDFs show the age distribution (z) in different
areas of San Francisco at 1 p.m. and 8 p.m., for the
case of a single base station, placed in class 3.

We observe that classes benefit differently from the base
station located in class 3. First, classes 2 and 6 benefit
from it as they are immediate neighbors. Second, classes 9,
12 and 15 benefit from the cars traveling on the highway
between the city center and the airport, as well as the high
meeting rate between cars in these classes. Classes 1 and 5,
although geographically closer to class 3, benefit less from
opportunistic contacts, due to bias in the mobility. All other
classes benefit only marginally as the density of cars and
exchanges are too small.

In summary, the opportunistic contacts are useful as they
significantly improve the availability of accurate information
in the network and can compensate for a lack of infrastruc-
ture. The improvement depends critically on the node den-
sity, the mobility and the opportunistic contact rates and it
is accurately captured by the mean-field limit.

6.2.2 The Importance of Being Spatial
We now evaluate the influence of the spatial approach on

the accuracy of the model, by comparing our previous results
to a case where all classes 1 − 15 have been merged into a
single one (so that only 2 classes remain, i.e., C = 2)
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Figure 4: The fraction of mobile nodes in classes 1-
15 that have age z<20mn acquired from the trace,
the model and the mean field limit, for a single base
station placed in class 3. We plot for comparison the
values obtained from the trace without opportunis-
tic contacts (bottom curves). Top panel - values at
1 p.m. (t=300mn). Bottom panel - values at 8 p.m.
(t=720mn).

Figure 6 displays QQ plots, comparing the age distribu-
tion of trace data with the corresponding age distributions
obtained from the mean-field approximation, for both of the
aforementioned cases (C = 16 and C = 2). The trace data
shown in the figure, for the case C = 16, was collected by
mobile nodes in classes 1 − 15, during the afternoon peak
hour (5pm-6pm), while the trace data for the 2 class case
was collected by mobile nodes in class 1, during the same
period. Age samples were taken on a per minute bases. The
artificial mean-field data samples were generated from the
mean-field CDFs, for the same time interval.

Figure 6(a) suggests that the mean-field and trace age
data samples, for the case C = 16, come from the same
distribution. In contrast, when C = 2, (Figure 6(b)), we
observe that the mean-field limit underestimates quantiles
for low age and almost always overestimates quantiles for
high age. This is a clear indication that data came from
different distributions.

The results above show that it is essential to capture the
diversity of locations (via classes), as they differ radically in
terms of expected performance (age distribution). The pri-

Figure 5: Comparison between the mean field limit
and the trace. Percentages of mobile nodes in classes
1-15 with age z<20mn at time t=300mn (1 p.m.).
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Figure 6: The importance of being spatial. QQ
plots, comparing the age distributions of trace data
and data artificially obtained from the mean field
CDF, for 16 class and 2 class scenarios. Time period
observed is 5 p.m.-6 p.m.

mary factors are the dependencies between classes created
by patterns of mobility (transition matrix ρc,c′) and the con-
tact rates (μc, ηc, βc,c′) that are influenced by mobile node
densities and variations in placement of base stations.

7. APPLICATION
Let us consider the following problem. We would like to

leverage mobility and opportunistic contacts between taxi-
cabs to disseminate news, traffic information or advertising.
Each of these applications, however, requires a certain level
of infrastructure (base stations). The number and place-
ment of base stations, needed to achieve a given quality of
service, are not easy to guess. The answer, in general, de-
pends on the density of nodes in different areas, as well as
the transition rates and rates of opportunistic contacts. We
demonstrate in this section that a greedy algorithm based
on the mean-field limit offers a fast and efficient method
for placement of base stations, over multiple classes and a
significant improvement over the other simple heuristics.

7.1 Method for Infrastructure Deployment
Based on MF Approximation

The problem we solve can be formulated in the following
way: For a fixed budget (fixed number of base stations),
we would like to find an efficient placement of base stations



over a predetermined finite set of classes, based on a range
of possible metrics.

Assumptions. We assume that a predefined set of possi-
ble locations in each class, where the base stations can be
placed, is known to the service planners. Each of these loca-
tions carries information about the popularity of the spot.
Our assumption is that this piece of information, along with
the other input parameters required by the model, can be
provided by traffic engineers (traffic counting and estima-
tion models), or based on a trace, collected by some other
service in the city (a taxi company for instance).

Metrics. We wish to maximize one of the following objec-
tives (Fc(z0, t0) and ũc follow previous definitions):

metric1 metric2 metric3PC′
c=1 Fc(z0, t0)

PC′
c=1

Fc(z0,t0)
ũc

minc=1,...,C′ Fc(z0,t0)
ũc

Maximizing metric1 is a global “per mobile node” objec-
tive; it tends to maximize the number of mobile nodes, in
all classes, that have an age lower then z0 during the peak
hour (t0); Metric2 is a “per class” metric; using this metric
we try to achieve more even distribution of mobile nodes
with ages lower than z0, over the observed 15 classes. Fi-
nally, metric3 focuses on the class with the “worst” value of
the age, and tends to decrease the gap in quality that exists
between this class and the other classes; this metric can be
used for instance if we want to achieve some minimal QoS
in all classes. We denote the total number of classes, where
we plan to place base stations, by C′. In our particular case
C′ = 15, as we do not place any base stations in class 16
(our goal is not to maximize the quality in class 16).

Placement of base stations. The algorithm we propose
for the placement of base stations is a greedy algorithm
(see [9]). Let us denote the total number of base stations
by S, and the the number of base stations placed in class c
by ac. The cost will be defined as the total number of base

station (i.e., cost =
PC′

c=1 ac). As explained in Assump-
tions, we assume that the dependency μc(ac) is known to
the service planners, along with the other input parameters
for our model. As defined in 3.1, μc denotes a contact rate
with the base stations, per mobile node, per time unit, in-
side class c. A base station placed in class c cannot be seen
from other classes, but only within a region, limited by the
base station’s range, inside class c. We start adding base
stations one by one. For each base station there are C′ pos-
sible placement options, one for each of the classes to which
base stations are being added. Here we apply the greedy ap-
proach and use the ODEs (Theorem 4.2) to evaluate which
placement, out of C′ possibilities, brings the most benefit
to the observed metric. The base station is then placed ac-
cordingly. The procedure is repeated S times until all S base
stations are placed. Algorithm requires the system of ODEs
to be solved SxC′ times.

Example. Here we provide a numerical example for the
placement method described above, based on the taxicab
scenario described in Section 6. We assume that 30 base sta-
tions should be placed. The input parameters for the system
of ODEs are known, as well as the dependency μc(ac). We

used input parameters for the afternoon peak hour (5p.m.−
6p.m.). The goal is to choose values of ac for each of the
fifteen classes where base stations can be placed.

Class Number of base stations per class
num metr1 metr2 metr3 unif. prop.
c = 1 3 2 0 2 0
c = 2 0 0 0 2 6
c = 3 0 0 0 2 10
c = 4 7 5 0 2 0
c = 5 0 0 0 2 2
c = 6 1 1 0 2 5
c = 7 2 2 1 2 0
c = 8 3 3 1 2 0
c = 9 0 0 1 2 1
c = 10 2 3 5 2 0
c = 11 1 1 9 2 0
c = 12 0 0 0 2 1
c = 13 5 7 7 2 0
c = 14 6 5 5 2 0
c = 15 0 1 1 2 5

Table 1: Placement of 30 base stations in classes
1 − 15, acquired from the greedy placement, which
uses the ODEs for quality estimation, for 3 metrics
defined in this section. Uniform and proportional
placements of base stations are also shown.

Table 1 shows results obtained with 3 different metrics
defined in this section, as well as the values of ac for propor-
tional and uniform placements. In each of the metrics we
use z0 = 20min as the value for age.
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Figure 7: QoS achieved in classes 1− 15 using greedy
method for placement of base stations, based on MF
approximation. The curves show proportions of mo-
bile nodes in each class with age z < 20 minutes,
at time t0 = 6p.m., for 3 metrics, defined earlier in
this section, as well as for proportional and uniform
placements of base stations.

Figure 7 shows the effect these placements have on quality
of service. It displays the fraction of mobile nodes in each
class that have age lower then 20mn; we see that metric1 and
metric2 provide similar results, even though the placements
of base stations for these two metrics are different. Metric3
sacrifices efficiency for fairness, and degrade performance of
most classes, to reach a marginal improvement in the worst
case class. Finally we see that proportional placement of



base stations, based on the density of mobile node, results
in worse performance, than the less sophisticated uniform
placement with 2 base stations in each class.

7.2 Classification of Classes
While the tail of our trace is insufficient for an evalua-

tion of high age asymptotic, (Section 5.2.2), low age asymp-
totic analysis proves to be an efficient tool for classification
of classes proposed in Section 5.2.1. For different place-
ments of base stations, evaluated in the previous example,
the sign of the first derivative (Eq.(12)) always correctly
classifies the classes into those with “dominant opportunis-
tic contacts” and those with “dominant infrastructure”, i.e.
it always matches the characteristic shapes of the age his-
tograms, for these two types of classes (Figure 8). Due to
the lack of space, the complete set of results will be provided
in the associated tech-report.
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Figure 8: Typical shapes of age histograms for class
with “dominant infrastructure” (c=1) and class with
“dominant opportunistic contacts” (c=2). base sta-
tion placement corresponds to metric1 (Table 1).

For the case of a base station put in class 3, which corre-
sponds to the scenario with base stations placed in a subset
of non-neighboring classes (Section 5.2.1), we conclude that
class 3 is also dominated by opportunistic contacts.

8. CONCLUSION
It is sometimes possible to rely on the mobility of nodes

to mimic a simple randomized scheme where nodes contact
each other at random. However, as we have shown in a sim-
ple case (maintaining recent updates of a content with op-
portunistic contacts), the mobility of nodes is usually heavily
biased towards a few regions of the network, and its statis-
tics play a critical role in the performance seen by users in
different places. To the best of our knowledge, we are the
first to characterize the age distribution of a dynamic piece
of information maintained through gossip in a large system
with arbitrary locations, contact rates and input sources.
These distributions can be computed as a unique solution of
a system of differential equations. This offers both fast nu-
merical estimates and simple linear forms for the asymptotic
value of age.

This complete characterization extends recent results on
the performance of applications deployed on top of large op-
portunistic mobile networks [18, 3, 2]. We believe that our
result can be significantly extended in several ways: first, by
showing that large systems approach the mean-field regime
even when their contacts do not follow memoryless statis-
tics. Moreover, since many energy efficient protocols can
be modeled as the evolution of nodes in different states, we
believe that our method can be applied to understand their
performances. Last, in the example we provide (taxicabs in

San Francisco), we have observed that a certain number of
classes are necessary to describe the diversity of the data
sets. We used a simple, regular division of the area of inter-
est into classes. One could study more generally how to best
design the number of classes, their shapes and placement in
order to minimize the number of classes.
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