
Sharpness
A Tight Condition for Scalability

Augustin Chaintreau

Thomson
augustin.chaintreau@thomson.net

Abstract. A distributed system is scalable if the rate at which it com-
pletes its computation and communication tasks does not depend on its
size. As an example, the scalability of a peer-to-peer application that
transmits data among a large group depends on the topology and the
synchronization implemented between the peers. This work describes a
model designed to shed light on the conditions that enable scalability.
Formally, we model here a collection of tasks, each requiring a random
amount of time, which are related by precedence constraints. We assume
that the tasks are organized along an euclidean lattice of dimension d.
Our main assumption is that the precedence relation between these tasks
is invariant by translation along any of these dimensions, so that the evo-
lution of the system follows Uniform Recurrence Equations (UREs). Our
main result is that scalability may be shown under two general con-
ditions: (1) a criterion called “sharpness” satisfied by the precedence
relation and (2) a condition on the distribution of each task completion
time, which only depends on the dimension d. These conditions are shown
to be tight. This result offers a universal technique to prove scalability
which can be useful to design new systems deployed among an unlimited
number of collaborative nodes.

1 Introduction

Scalability is usually regarded as an important if not critical issue for any dis-
tributed communication/computation system. However, it is in general difficult
to describe formally in mathematical terms. This paper describes a model de-
signed to shed light on the impact of synchronization among an ever-increasing
number of nodes participating in a distributed system. The results we provide
answer the following question: “Under which general conditions is a distributed
system scalable, in the sense that the rate of tasks’ completion remains the
same independently of the number of participating nodes?” We characterize in
particular the impact of three factors: 1- the organization of the local feedback
and synchronization mechanisms deployed between the nodes (acknowledgment,
etc.), 2- the global topology of the communication (in this paper, an euclidean
lattice), and 3- the variations of local delay, or local computation time, which
is captured in this model by random times to complete each step. This general
problem is primarily motivated today to study the throughput of communication
protocols in large scale data networks.

Model. This paper analyzes the process of completion times T for a collection
of tasks which are related together via precedence constraints. As an example
of precedence constraint, a customer can be served in a server only once the
previous customer has completed its service. As in a queueing system, each task,
once it has started, takes a random amount of time to finish, which is called its
weight. As an example, this random weight can represent either the time needed
to exchange a message over a wireless link, a link shared with background data
traffic, or the time needed to access some memory or processing unit. We assume
that the weights of different tasks are independent random variables. The weight
of a given task may occasionally take a large value (for instance, due to local
congestion, server load, etc.); this is represented in the model by the weight
distribution of this task. Hence, for a given initial condition of the system, the
completion time of a task is a random variable that depends on the precedence
relation with other tasks, and the (random) weights for all of them.

We focus here on the case where the collection of tasks is infinite and regular.
Formally, we assume there exists a finite subset of indexes H, which we call the
pattern, and a dimension d ≥ 1 such that the collection of tasks is{

a× h
∣∣ a ∈ Zd, h ∈ H

}
.

In other words, one can describe this system as a finite set H of tasks to be
done locally, which is reproduced at every position of a d-dimensional lattice.
Moreover, we assume that the precedence constraints that relate all the tasks
of the system together are invariant by translation. Thus, a given task (a × h)
depends on different tasks, some have the same position a in the lattice and a
different index h′ 6= h chosen in H, some have different positions in the lattice
and any index h′ in H. The above assumption guarantees that, after translation,
these precedence relations do not depend on the position a.

Main result. In this paper we provide sufficient and necessary conditions for the
following property to hold: for any a ∈ Zd, and any h ∈ H we have

∃M ∈ R such that almost surely lim sup
m→∞

1
m
T(m·a)×h < M , (1)

where Ta×h denotes the completion time for the task (a×h), and (m ·a) denotes
the vector (m · a1, . . . ,m · ad) ∈ Zd.

A system that satisfies the above property is called scalable, as this guarantees
that the completion time grows linearly along any direction drawn in the lattice.
Equivalently, the (random) set that contains all tasks completed before t grows
with t according to a positive linear rate, in any given direction. As an example,
if one dimension of Zd denotes the sequence number of a packet to be received,
this condition guarantees a positive throughput for each node in the system,
even if the system itself is infinite.

We prove that scalability, as defined above, is characterized only by two con-
ditions: one that deals with the organization of the precedence relation between
tasks, which is called sharpness, and another condition that deals with the weight

distributions, and which only depends on d. We also prove that these two con-
ditions are tight, and in particular that a non-sharp system in dimension d = 2
is never scalable.

Implications. The result above, although it is stated in quite abstract terms,
has some important consequences for the design of distributed systems. First, it
proves that a large class of systems are scalable although they implement some
closed feedback loop among an infinite number of nodes. In particular it shows
that distributed reliable systems can be implemented using only finite buffers in
nodes, while remaining truly scalable. A few examples of this counter-intuitive
fact have already been shown in [1,2]. What is new in this paper is that we
identify the ingredients of such scalability in a systematic way.

Second, under appropriate moment condition on weights, the scalability of a
distributed system is shown to be equivalent to the sharpness condition, which
itself corresponds to a finite number of linear inequalities. Proving scalability is
therefore greatly simplified, and keeping this condition in mind can even help
dimensioning new distributed systems (as happened for instance in [3]).

The assumption that the precedence relation among tasks should be invariant
by translation might seem restrictive at first. It is to some extent necessary since
designing a general model for irregular systems seems difficult, not to mention
finding exact conditions for their scalability. However, we would like to point
here that our model allows for patterns H of arbitrary finite size. It is therefore
sufficient to model systems that are regular only at a certain scale. Moreover,
it is often the case that irregular systems are included in a larger one that is
regular; it is then sufficient to prove scalability by inclusion using stochastic or-
dering. Last, we have assumed that the systems is organized along an euclidean
lattice, although in practice many distributed systems are organized along other
hierarchical topologies. The sharpness condition and the scalability result pre-
sented here can be extended to this case, although it is far beyond the scope
of this paper. The interested reader may found first results on general graphs
reported in [4].

Relation with previous work. Scalability has been addressed in the past for dis-
tributed communication protocols and congestion control [2,5,3] , stream pro-
cessing [6] and computational grids [7]. All these works addressed the issue of
scale for a distributed system where a form of synchronization is implemented
between a large number of nodes. In contrast, our work treats a general case,
and identify for the first time a tight condition that characterizes scalability.

Our results extend recent advances in stochastic network theory on infinite
tandem of queues with general service time distribution and blocking [1]. Rather
than studying a certain feedback mechanism, our results determine which feed-
back systems make the throughput independent of the system size. In addition,
most of the previous results deal only with networks of single server queues. In
contrast, our model applies for any pattern H that contains an arbitrary finite
number of tasks. As an example, it can be used to characterize tandem of any
finite timed event graph. Such generalization is made possible, as in [1], through

a formulation that reminds last-passage percolation time, which allows to use
the powerful framework of subadditive ergodic theory [8]. However, no prior
knowledge of last-passage percolation is needed to prove this result.

The systems we consider follow solutions of Uniform Recurrence Equations
(UREs). UREs were introduced by Karp et al. in [9], where a general condition
for the existence of a solution is presented. UREs have been used in the past
to study synchronization in parallel computation, such as the discrete solution
of differential equations. Our work points in a different direction: for the first
time we study the solutions of general UREs when each step takes a random
amount of time, and we characterize exactly when this solution grows linearly
as its index grows. This is a stronger property as we prove that the sharpness
criterion defined here is strictly stronger than the condition defined in [9] to
classify UREs.

The organization of the paper is as follows. Section 2 presents the model
sketched above in more details. Examples and relations with Uniform Recur-
rence Relations are explained. Section 3 defines the sharpness condition, and
establishes the topological consequence of this criterion on the dependence paths
between the tasks. Section 4 contains the main results of the paper. Section 5
concludes the paper with remarks on possible extensions.

NB: As for UREs, the boundary condition defining the system initial condi-
tion plays an important role in the analysis. In order to focus on the essential
connection between sharpness and scalability, we choose to describe a single
boundary case, corresponding to a system “initially empty”. The result of this
paper can be obtained under more general boundary condition (see [4] Chap.3).

2 Pattern Grid

2.1 Definition

Pattern grids are defined as directed graphs that follow an invariant property.
Their vertices are indexed by both a multidimensional integer (i.e. the “position”
of the task in the d-dimensional lattice Zd) as well as a local index chosen in
a finite set H. Formally, a graph Gpatt = (V, E) is called a pattern grid, with
dimension d and pattern H, if:

– The set of its vertices is V = Zd ×H.
– The set of its edges E is invariant by any translation in the lattice Zd;

for all a, a′, v in Zd and h, h′ in H, we have
(a× h)→ (a′ × h′) ∈ E if and only if ((a+ v)× h)→ ((a′ + v)× h′) ∈ E .

In this work, we consider only the case of locally finite graphs (i.e. the number
of edges that leave any vertex is finite). The invariant property implies that the
degrees of vertices in this graph are uniformly bounded. We denote by H the
cardinal of H. When H = 1, the index h plays no particular role and the pattern
grid follows a lattice.

To illustrate this definition, fix all coordinates in the left index (for instance,
all of them null), consider the set of all the associated vertices (e.g. (0, . . . , 0)×H)
and all the directed edges starting from any of those vertices. This defines a finite
collection of local tasks to complete and relations between them and a few others
“neighboring” tasks. The pattern grid is what is obtained when one reproduces
this finite object at every site of an euclidean lattice.

2.2 Examples

Due to space constraints, we can only describe a few illustrating examples of the
definitions above.

Infinite tandem of queues. The simplest case of a pattern grid with dimension
2 is an infinite line of single server queues (indexed by k) in tandem, serving
customers (indexed by m). It works as follows: when a customer has completed
its service in server k, he enters immediately the (infinite) buffer of server (k+1),
where it is scheduled according to a first-come-first-served discipline.

Let us consider all the tasks of the type “service of customer m in server
k”, which are naturally indexed by (m, k) ∈ Z2. The relation between them is
essentially described by two precedence rules:

– (m, k) → (m, k − 1) (i.e. the service of m in k cannot start unless its service in
server (k − 1) is completed).

– (m, k) → (m − 1, k) (i.e. the service of m in k cannot start unless the previous
customer has completed its service in k).

Hence this system is well described by a pattern grid with dimension 2, a
pattern containing a single element, and the above edges.

Infinite tandem of queues with blocking. Let us now assume as in [1] that each
server implements two queues (input and output), both with a finite size BIN

and BOUT, such that buffers overflow are avoided by the appropriate blocking of
service. It is not hard to see that such systems can be modeled by a pattern grid
with dimension 2 and pattern H = {i, o}. It contains the following edges:

– (m, k) × i → (m, k − 1) × o (i.e. serving a customer in k requires that he was
forwarded from the previous server (k − 1).)

– (m, k)× o→ (m, k)× i (i.e. a customer cannot enter the output buffer before he
has been served by this server.)

– (m, k) × i → (m − 1, k) × i (i.e. serving a customer requires that the previous
customer has been served.)

– (m, k)× i→ (m−BOUT, k)× o (i.e. avoid BOUT overflow.)
– (m, k)× o→ (m−BIN, k + 1)× i (i.e. avoid BIN overflow.)

Fig.1 describes a portion of the graph defined in the two above examples.
Other mechanisms of feedback fit in the same model. As an example, one may
model TCP connections, with varying windows, organized in tandem and that
implement back-pressure blocking [2].

Fig. 1. Two examples of pattern grids: infinite tandem of single server queue
(left), the same with input-output blocking (right) (i is represented by a white
dot, o by a black dot, we set BIN = 1, BIN = 2).

2.3 Evolution equation of a pattern grid

We now define how the relations between tasks, represented by edges, describe
the evolution of the system: the edge (a×h)→ (a′×h′) in E represents that the
task (a×h) cannot start unless (a′×h′) has been completed. Vertex (a′×h′) is
then called an immediate predecessor of (a× h).

We associate with each vertex (a×h) of the pattern grid a weight denoted by
W(a×h), representing the time needed to complete this task, once it has started.
For instance in the two examples shown above, this weight is the service time of
customer m in server k. It is generally random; sometimes it can be taken equal
to zero (like for (m, k) × o in the second example above, if the delay between
two servers is neglected).

We consider the process of completion time for every task

T =
{
Ta×h ∈ R ∪ {−∞}

∣∣ a ∈ Zd, h ∈ H
}
.

Assuming that a task begins as soon as all its immediate predecessors have been
completed, we have for all a in Zd and h in H:

Ta×h = W(a× h) + max {Ta′×h′ | (a× h)→ (a′ × h′) ∈ E} . (2)

As an example, for the infinite tandem of queues described above it becomes
Lindley’s equation:

T(m,k) = W(m, k) + max
(
T(m,k−1), T(m−1,k)

)
.

Relation with UREs. It is easy to see that another way to characterize the set E
of edges in a pattern grid is via a collection of dependence sets: a finite collection
(∆h,h′)h,h′∈H of subsets of Zd indexed by H2, such that

(a× h)→ (a′ × h′) ∈ E if and only if (a′ − a) ∈ ∆h,h′ . (3)

Note that, as the graph is supposed locally finite, all these subsets are necessarily
finite. Following this definition, Eq.(2) may be rewritten as

Ta×h = W(a× h) + max
{
T(a+r)×h′

∣∣ r ∈ ∆h,h′ , h′ ∈ H
}
. (4)

which defines a set of Uniform Recurrence Equations (UREs), already intro-
duced in [9]. These systems of equations have been studied as they characterize
dependencies between computation tasks in a parallel computation. The article
by Karp et al. is motivated by the numerical resolution of discrete version of
classical differential equations.

Boundary condition. Let beg be chosen in H. We assume that the system starts
to complete the task (0 × beg) at time t = 0, and that the system is “initially
empty” (i.e. all tasks (a × h) such that a has at least one negative coordinate
are supposed to be initially complete). In other words, we introduce G[0]

patt the
pattern grid where the weight of any task (a× h) is replaced by −∞ whenever
a has at least one negative coordinate. The process T is then a solution of the
following system of equations:{

T0×beg = W(0× beg) ,
Ta×h = W(a× h) + max

(a×h)→(a′×h′)∈E
Ta′×h′ , for (a× h) 6= (0× beg). (5)

One can immediately check that the following defines a solution of Eq.(5):

∀a ∈ Zd, h ∈ H , Ta×h = sup
{

W(π)
∣∣∣∣ π a path in G[0]

patt

π : a× h 0× beg

}
, (6)

where a path π is defined following the natural definition of paths in directed
graph, and its weight W(π) is the sum of the weights of all its vertices. The
supremum is taken over all possible paths, where we include paths that contain
a single vertex and no edge.

Note that whenever a contains a negative coordinate, the supremum is equal
to −∞. When the precedence relation between tasks is acyclic (i.e. when the
system has no deadlock, see the next section) one can show by induction that
this solution is unique for every task (a×h) for which a path exists in the above
supremum.

One may rephrase Eq.(6) as “The completion time of task (a × h) is the
maximum sum of weights along a dependence path leading from (a×h) back to
the origin task (0×beg).” By an analogy with models from statistical physics, this
may be called the last-passage percolation time in (a×h). It is important to note
that, as in percolation model, these variables exhibit super-additive property,
such that one can benefit from the subadditive ergodic theorem which generalizes
the law of large number [8].

3 Sharpness

In this section, we characterize the properties of the paths in the pattern grid
with a single condition: the sharpness criterion. We first prove under this condi-
tion that the combinatorial properties of these paths follow the connected subsets
of a lattice (also called lattice animals [10]). When this condition is not verified,
we show in dimension 2 that the combinatorial properties of these paths are
radically different.

3.1 Definitions

Dependence graph, simple cycle For any pattern grid, we define the asso-
ciated dependence graph as the following directed multi-graph, where all edges
are labeled with a vector in Zd:{

Its set of vertices is H.
Its set of edges is {h→ h′ with label r | r ∈ ∆h,h′ , h, h′ ∈ H} .

Note that according to this definition, h → h′ is an edge of the dependence
graph with label r if and only if for all a ∈ Zd, (a× h)→ ((a+ r)× h′) is in E .
We represent the dependence graph associated with the two examples of 2.2 in
Figure 2.

(0,−1)

(−1, 0)
i

o

(0, 0)(−1, 0)

(0,−1)

(−BIN, 1)

(−BOUT, 0)

Fig. 2. Two examples of dependence graphs: for an infinite tandem (left), same
with input and output blocking (right).

A path in the dependence graph follows the natural definition of a path in
a graph. Its size is given by the number of vertices it contain (the same vertex
can be included multiple times); its associated vector is the sum of the label for
the edges that it contains.

A path drawn in the dependence graph which begins and ends in the same
vertex h of H is called a cycle. It is a simple cycle if it does not contain any
other cycle. In other words, all vertices visited by this cycle are distinct except
the first and last one, which are necessarily the same. As a consequence, a simple
cycle contains at most H + 1 vertices (including multiplicity), and the collection
of simple cycles is finite.

Sharpness condition We denote by C the set of all vectors associated with a
simple cycle in the dependence graph. For two vectors u and v in Zd, <u, v>
denotes their scalar product, <u, v> =

∑d
i=1(ui · vi).

Condition 1 The following conditions are equivalent

(i) There exists s ∈ Zd, such that ∀r ∈ C , <r, s> < 0 .
(ii) There exists s ∈ Zd, such that ∀r ∈ C , <r, s> ≤ −1 .

(iii) There exists a hyperplane of Rd such that all vectors in C are contained in
an open half-space defined by this hyperplane.

A pattern grid is then called sharp. A vector s satisfying (ii) is called a sharp
vector.

Condition (iii) may be seen as a rewriting of (i) in geometric terms, (i)
implies (ii) since the family C contains a finite number of vectors. In practice, to
determine whether a sharp vector exists, one has to extract all the simple cycles
in the dependence graph, and then to solve a finite system of linear inequalities.

As an example s = (1, 1) is a sharp vector for the infinite tandem in Sec-
tion 2.2. For the second example, s = (2, 1) is a sharp vector since we obviously
assume BIN +BOUT ≥ 1.

Geometric interpretation. Let us define the cone Cone(C) containing all linear
combinations of elements in C with non-negative coefficients. Assuming that
the pattern grid is sharp, this cone intersects one hyperplane only in 0 and is
otherwise contained in one of the open half space defined by this hyperplane. In
other words, the angle of this cone should be acute. By analogy, the pattern grid
is then called “sharp”.

(d)

(a) (b) (c)

Fig. 3. Geometric representation: (a) and (b) represent families that admit a
sharp vector, (c) and (d) families that do not admit such a vector.

Some examples are shown in Figure 3 for the case of dimension 2. Different
families C have been represented, containing from 3 to 6 vectors. The cone gen-
erated by positive linear combination of this family is shown in gray. We have
shown in black the directions that can define a sharp vector, for the cases (a)

and (b), where such a vector may be found. Case (c) shows an example of family
containing opposite vectors, making it impossible to find a sharp vector. In the
case (d), the cone created by positive linear combination of vectors is the whole
space R2, such that, again, no sharp vector may be found. We prove in §3.3, that
these cases depict all possible situations for dimension 2.

Relation with deadlock avoidance. A loop in the graph defining the pattern
grid corresponds to a deadlock of the system, since it denotes that a task in-
directly depends on its own completion to start. Karp et. al proved necessary
and sufficient conditions to avoid such deadlock, and showed that they charac-
terize system of Uniform Recurrence Equations where an explicit solution can
be constructed [9]. Note that a deadlock corresponds to a cycle drawn in the
dependence graph whose associated vector is null. In other words, the system
has no deadlock if and only if 0 /∈ C.

One may immediately observe that sharpness implies deadlock avoidance
(e.g. as a direct consequence of (i)). It is however less obvious that the sharpness
condition is indeed strictly stronger than deadlock avoidance (see Section 4.2).

3.2 why is a sharp vector useful ?

The main consequence of sharpness is that one can define a direction in the
grid so that dependence paths between tasks remain close to that direction. It
comes from the following fact: a path in the dependence graph is more or less
a concatenation of a large number of cycles. We can then limit the size of a
dependence path based only on its direction in the grid.

Lemma 1. Suppose that a pattern grid admits a sharp vector s. There exist two
constants B,C such that, for any path π : (a× h) (a′ × h′)

|π| ≤ B + C · <a− a′, s> .

Proof. Let us introduce the residue of a pattern grid, for a sharp vector s.

Res = max
{

(<r, s>)+| r assoc. with π and |π| ≤ H
}
.

It is a finite maximum by definition, because the dependence graph contains a
finite number of vertices and edges. Note that for the case where the motif set
H contains a single element, this residue is null, because every path is a cycle.
The above result is implied by the following result on paths in the dependence
graph: for any path π associated with r, we have |π| ≤ H (1 + Res− <r, s>) .

We will prove this fact by induction on the size of π. First, from the definition
of the residue, this result holds trivially for any path π whose size is less than
or equal to H.

If π has a size strictly larger than H, then it contains a cycle, and hence a
simple cycle, σ. We can write π = π1 ◦σ ◦π2. The path π1 ◦π2 is well defined, as
the vertex ending π1 is also the one starting π2. The path π1 ◦π2 has necessarily

a smaller size than π. If we assume by induction that it satisfies the result of the
theorem, we can deduce:

|π| ≤ |π1 ◦ π2|+ |σ| − 1 ≤ |π1 ◦ π2|+H + 1− 1
≤ H(1 + Res− <rπ1 + rπ2 , s>) +H
≤ H(1 + Res− <rπ1 + rπ2 , s>)−H <rσ, s> , (since <rσ, s> ≤ −1)
≤ H(1 + Res− <rπ, s>) .

This bound only depends on the positions in the grid of the two extreme
nodes of this path. Hence this result provides an upper bound on the size of
any dependence path between two given tasks in the pattern grid. We need
slightly more than that: we aim at bounding the maximum weight of any path
between two given nodes. Hence we have to capture in addition the combinatorial
property of the sum of weights found in such paths.

We can address this second problem as follows: Since H is a finite set, we can
construct a one-to-one correspondence between Zd×H and Zd. Let us introduce
the following definition, we say that a subset of Zd is lattice-connected if it is
connected according to the neighbor relation of an undirected lattice. A subset
of Zd ×H is called lattice-connected if its associated subset in Zd (by the above
correspondence) is lattice connected.

Lemma 2. Suppose that a pattern grid admits a sharp vector s. There exist two
constants B,C such that, for any path π : (a× h) (a′ × h′)

∃ξ a lattice-connected set, such that π ⊆ ξ and |ξ| ≤ B + C · <a− a′, s> .

Proof. The proof is an application of Lemma 1. We introduce the radius of a
pattern grid as the finite maximum

Rad = max {||r||∞ for r ∈ ∆h,h′ , h, h′ ∈ H} .

It is the maximum difference on one coordinate between vertices a×h and a′×h′
that are connected by an edge in the pattern grid. One can show that any path
π may be augmented into a lattice-connected subset which contains at most
|π| · (H + d · Rad). A formal version of this argument, based on a one-to-one
correspondence between Zd ×H and Zd is detailed in [4].

This turns out to be a very powerful tool, because the class of lattice-
connected subset, also known as lattice animals, have been well characterized
from a combinatorial and probabilistic standpoint [10],[11].

3.3 why is a sharp vector necessary ?

Focusing on dimension d = 2, we describe properties of non-sharp pattern grids.
These results are only used later to prove that sharpness is a tight condition of
scalability. We start by a result showing that a non-sharp pattern grid always
exhibits some pathological case: the proof of this lemma may be found in [12].

Lemma 3. If we consider a family of vectors C in Z2 that does not admit a
sharp vector, then one of the following statements is true:

(i) It contains the vector 0.
(ii) It contains two opposite vectors: there exist e and f in C such that

∃α ∈ R, α > 0 , such that e = −α · f .

(iii) It contains a generating triple: there exist e, f, g in C such that{
<e, f> < 0 <e, g> < 0
<ẽ, f> > 0 <ẽ, g> < 0 , with <ẽ, e> = 0 .

Let us define a pattern grid as irreducible if its dependence graph is strongly
connected (i.e. there always exists a path leading from h to h′, for any h and h′).
A non-irreducible pattern grid can be decomposed using the strongly connected
components of the dependence graph, and studied separately. The next result,
a consequence of Lemma 3 proves that dependence paths in non-sharp pattern
grid cannot be bounded as in Lemma 1. Due to space constraint, we omit the
proof which may be found in Appendix B.2 of [12].

Corollary 1. We consider a pattern grid, irreducible, with dimension d = 2
that does not admit a sharp vector. We pick an arbitrary vertex of this graph
as an origin. There exists a vertex v × h, such that we can build a path of size
arbitrary large from v × h to the origin.

4 Scalability

In this section, we establish the main result of this paper: under a moment
condition, a distributed system represented by a sharp pattern grid is scalable.
Moreover, we prove that the rate of completion along any direction converges to
a deterministic constant. We then prove that the sharp condition is necessary for
scalability, at least for dimension 2, when one avoids degenerate cases. A simple
example is provided to illustrate how sharpness is a stronger condition than the
one defined in [9].

4.1 The sharp case

Moment condition. The weight of a×h is supposed to follow that depends only
on h and is upper bounded by s̄, for the stochastic ordering,

∀u ∈ R , we have P [W(a× h) ≥ u] ≤ P [s̄ ≥ u] .

Condition 2 We assume
∫ +∞

0

P (s̄ ≥ u)1/ddu <∞ .

Condition 2 implies E[(s̄)d] < +∞. It is implied by E[(s̄)d+ε] < +∞ for any
positive ε, but it is slightly more general.

Theorem 1. Let Gpatt be a pattern grid satisfying Condition 1 and 2, then

(i) The system is scalable.

∃M ∈ R such that almost surely lim sup
m→∞

1
m
T(m·a)×h < M .

(ii) If there exists a path π : a× beg 0× beg with non-negative coordinates
(i.e. such that W(π) 6= −∞ and Ta×beg 6= −∞), then

lim
m→∞

T(m·a)×beg

m
= l ∈ R almost surely and in L1.

As a consequence, the throughput of an infinite number of queues organized
in tandem is positive, with or without blocking, whenever Condition 2 is verified
by the service time. Condition 2 is almost tight since one can build a counter-
example when E[(s̄)d] =∞ [1].

Proof. We prove a slightly more general result, that for any a there exists M ∈ R
such that, almost surely

max
h,h′∈H

lim sup
m→∞

1
m

(
sup

π: ((m·a)×h) (0×h′)

W(π)

)
≤M < +∞

Theorem 1.1 in [11] tells us that in a lattice Zd, where weights satisfy Con-
dition 2, the maximum weight of a lattice-connected set ξ grows linearly: There
exists N ∈ R such that, when n→∞,

1
n

(
max

ξ latt. conn., |ξ|=n , 0∈ξ
W(ξ)

)
→ N <∞ almost surely and in L1.

For any fixed h and h′, as a consequence of Lemma 2, a path π leading from
((m · a) × h) to (0 × h′) is contained in a lattice connected subset ξ with size
smaller than

|ξ| ≤ (H2 + d · Rad ·H)(1 + Res +m · <a, s>) ,

where s is a sharp vector for this grid. All these connected subset contain in
particular 0× h′. The weight of a path is then upper bounded by the maximum
weight of a connected subset that contains this fixed point. We deduce

lim sup
m→∞

1
m

sup
π: ((m·a)×h)→(0×h′)

W(π) ≤ (H2 + d · Rad ·H) · <a, s> ·N <∞ .

The proof of (ii) relies on the sub-additive ergodic theorem. It is omitted due
to space constraint and may be found in the Appendix A of [12].

(1,−1) (0,−1)

(0, 0)
(−1, 1)

Fig. 4. Example of a pattern grid that avoids deadlock but does not satisfy
the sharpness condition: represented via pattern grid (left), dependence graph
(middle), shape of a path with a “super-linear” size (right).

4.2 The non-sharp case

Let us first illustrate with an example the case of a non-sharp pattern grid. The
pattern grid represented in Figure 4 avoids deadlock since one cannot build a
cycle in the dependence graph associated with a null vector. It is not sharp as
two opposite vectors are associated with cycles in the dependence graph.

As shown in Figure 4 on the right, one can construct a path from any vertex
to the origin by following first the top left direction (remaining only over black
vertices), following an edge towards a white vertex before crossing the y-axis,
then following a right bottom line, remaining on white vertices. It can be seen
that starting from coordinate (m, k), the length of this path for large m and k is
of the order of (m+ k)2. This proves that the T(m,0)×b ≈ m2, and thus that the
growth rate associated with this direction is more than linear (i.e. its associated
completion rate in this direction is zero).

We now prove that the phenomenon found above is not an exceptional case
but that it always occurs when the sharp condition is not verified. Just like
for the study made in Section 3.3, we consider irreducible pattern grid with
dimension 2. The proof of the following result is in Appendix B.3 in [12].

Theorem 2. Let Gpatt be an irreducible pattern grid with dimension 2 that does
not admit a sharp vector and T be any solution of Eq.(5).

We assume that there exists a, with only positive coordinates, and h ∈ H,
such that a path a× h 0× h exists and always has non-negative coordinates.
We also assume that all weights are non negative and not identically null, then

∃a′ ∈ Zd , lim
m→∞

T(m·a′)×h

m
= +∞ almost surely and in expectation.

5 Concluding Remarks

In this paper we have proved a general result on the scalability of distributed
systems. It was obtained in two steps. First, we have proved that the dependence

paths in a general precedence relation can be bounded by a scalar product when-
ever a sharp vector exists. Second, the completion of tasks associated with the
system have been analyzed taking advantage of subadditive ergodic theory. The
scalability result implies that the random set that contains all completed tasks
grows linearly with time, in any direction. This work refines the classification of
distributed computing systems introduced in [9] via Uniform Recurrence Equa-
tions (UREs).

Some aspects of this method have not been included in the paper, due to space
constraint. Let us now review them briefly. All the results presented here can be
shown for the case of a random pattern grid (i.e. where the collection of edges
is random, with a distribution invariant per translation). Similarly, the same
result can be obtained with different boundary conditions, allowing to construct
stationary regimes and analyze stability of large scale system. Another important
extension that we could not describe in this paper is when the topology does
not follow a lattice but different types of infinite graphs, such as trees. We refer
to [4] for a first account of these extensions, which will be described more in
future work. In a more longer term, we wish to study how other synchronization
between nodes (like the presence of conflicting services) may impact scalability.

References

1. Martin, J.: Large tandem queuing networks with blocking. Queuing Systems,
Theory and Applications 41 (2002) 45–72

2. Baccelli, F., Chaintreau, A., Liu, Z., Riabov, A.: The one-to-many TCP overlay: A
scalable and reliable multicast architecture. In: Proceedings of IEEE INFOCOM.
Volume 3. (2005) 1629–1640

3. He, J., Chaintreau, A.: BRADO: scalable streaming through reconfigurable trees
(extended abstract). In: Proceedings of ACM Sigmetrics. (2007) 377–378

4. Chaintreau, A.: Processes of Interaction in Data Networks. PhD thesis, INRIA-
ENS (2006) www.di.ens.fr/˜chaintre/research/AugustinChaintreauPhD.pdf.

5. Jelenkovic, P., Momcilovic, P., Squillante, M.S.: Buffer scalability of wireless net-
works. In: Proceedings of IEEE INFOCOM. (2006) 1–12

6. Xia, C., Liu, Z., Towsley, D., Lelarge, M.: Scalability of fork/join queueing networks
with blocking. In: Proceedings of ACM Sigmetrics. (2007) 133–144

7. Chen, L., Reddy, K., Agrawal, G.: Gates: A grid-based middleware for processing
distributed data streams. In: HPDC ’04: Proceedings of the 13th IEEE Interna-
tional Symposium on High Performance Distributed Computing. (2004) 192–201

8. Kingman, J.: Subadditive ergodic theory. Annals of Probability 1(6) (1973) 883–
909

9. Karp, R.M., Miller, R.E., Winograd, S.: The organization of computations for
uniform recurrence equations. J. ACM 14(3) (1967) 563–590

10. Gandolfi, A., Kesten, H.: Greedy lattice animals II: linear growth. Annals Appl.
Prob. 1(4) (1994) 76–107

11. Martin, J.: Linear growth for greedy lattice animals. Stochastic Processes and
their Applications 98(1) (2002) 43–66

12. Chaintreau, A.: Sharpness: a tight condition for scalability. Technical Report
CR-PRL-2008-04-0001, Thomson (2008)

	Sharpness A Tight Condition for Scalability
	Augustin Chaintreau

