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Abstract—Opportunistic mobile networks take advantage of in time, each pair of nodes may met, independently of others,
local opportunities of wireless communication between déves according to a fixed probability. We focus on large networks,
(cellphones, etc.) to construct a path over time between a ge where the number of nodes grows arbitrarily large, while

and a destination. This paper uses a model of random temporal K ina th tof | | tact b h
network to study the existence of those paths that use a small eeping the amount o local contacts seen on average by eac

number of time slots and a small number of steps. It establighs Nnode fixed.
that a phase transition occurs as time and hops are jointly i paper, we establish that the presence of successful

increase according to the logarithm of the network size. For th in oth ds. the ch that soluti ist f
a given intensity of contact, as time grows the network abrufly paths, or, In other words, the chance that solutions exist 1o

change from a regime where almost surely no path exists to a the “routing over time” problem is tightly coupled to a phase
regime where paths exist with a positive probability. Our proof transition occurring around the logarithm of the size of the
illustrates a strong correlation close to the critical poirt between network. Preliminary results about this phase transitiameh

nearby paths (those who share a prefix and suffix term), which poan reported in [2], where similar results have been coetpar

explain the relatively high value of the variance. We identiy . - L . ) .
combinatorial properties specific to temporal paths, whichare with empirical findings. This work confirms rigorously that

critical to characterize the phase transition and impact tre the “small world phenomenon” applies to random temporal
estimation of the probability of success. We believe that iis networks in the following sense: paths exist according to a

the first rigorous proof that a phenomenon recalling the smal  positive probability between two arbitrary nodes when theet
world effect may be found in dynamic random graphs. and the number of hops are scaled properly as the logarithm

l. INTRODUCTION of the network size.

The proliferation of mobile devices with increasing capaci  OUr work sheds new light on the nature of dynamic graphs
for storage and communication brings new networking o’ temporal _networks that mclud_e ran<_jom I_mks. _Temporal
portunities. For delay tolerant applications, one coule-co€WOrks, which are graphs featuring a time dimension, @her
sider using the opportunistic bandwidth available while twPaths should follow a chronological property, have beed-stu
devices are co-located, and some of their local data stpra§é from an algorithmic standpoint for several decadesdFin
to transport data over time between devices that are offfd @ maximum flow, a shortest path or checking connectivity
erwise disconnected. This forwarding method, which allow¥eré shown to be significantly different problem than their

to communicate possibly without using any infrastructur§t@tic counterpart [2]. However, we are not aware of any
relies on the construction of a path over time, which shoulfork studying properties of random temporal networks. As we

implicitly uses the diversity and fluctuation of mobility todemonstrate rigorously for the first time in this paper, phas
find a way towards a particular point. Several research worl{@nsition occurs in random temporal networks according to

recently consider such networking option as an alternatve threshold that depends on both time and hops. To our belief, i
infrastructure or capacity limitation of traditional neivks Proves thatthis modelwe introduced is worth being consder

which use a contemporaneous path. "Routing over time”, far future investigation on the properties of random suiuet

contrast with routing at a fixed time, appears as a probleim wif/ith time.
new constraints which in turn call for different solutiortrsan The proof of the main result relies on an application of the
existing routing protocols, in particular when some uraiety well known second moment method, which shows that, with a
is found in the network and links that are difficult to predictpositive probability, the number of paths remains closeugho
Following a recent research direction [1], [2], [3], thisgea to its expectation to be positive. However, a few technical
studies the properties of the paths available between nodesults found in the proof are surprising: First, it provest the
in an opportunistic context where links created by mobilityariation of these number of paths remains of the same order
follows unpredictable pattern. In contrast with other werkas the expectation. Hence we can only conclude thanks to an
in the area, we do not focus on the performance of omelvanced second moment method deduced by Janson, tuczak
or several forwarding algorithms. We would rather like tand Rucihski from the Fortuin-Kasteleyn-Ginibre inedtyal
identify important properties generally present in suchtert, Second, this variation comes only from the correlation of a
and which are relevant to design and understand how asmall neighborhood around each path: those paths sharing a
forwarding technique behaves. To make the problem egsiefix and suffix. It indicates that the solutions to the “iogt
to capture, we consider a nominal case corresponding deer time” problem are to be found in small clusters of paths
a uniform random temporal network, where we will applyhich are locally highly correlated, whereas the realmatf
combinatorial techniques. We assume that, at a given posaiutions outside these clusters occur almost indepelydent



I[I. RANDOM TEMPORAL NETWORKS ¢) Number of successful pathEinally we define byX
e number of paths ii$' which are occurring in the network.

Our model of random temporal network is a variant of the, ~ . .
P his is a random variable that may be written as follows:

model described in [1]. It follows simplifying assumptions
about mobility of human that are in general not met in practic ¥ — Z 7
. . . . = A -

However, the qualitative conclusion can be expressed with
regard to a new definition of diameter in temporal network,
and it appears valid in several empirical findings. More @boli enumerates exactly the number of successful paths thyat ma
this point may be found in [1]. be constructed froma to d if ¢(N) time slots can be used and

a) Nodes, contactsWe consider a network made &f %(V) hops are allowed. The goal of the next section is to show
nodes, generally denoted by indéx We assume that thethat, whent andk are of the order of a logarithm, the variable
network lasts fort(IV) time slots. We define the set of allX can be in two possible regimes depending on the constant
possible opportunistic contacts: involved. This characterizes a phase transition occuatrigis

scale jointly with time and hops.

AeS

C={(ijt) |1<i,j<N,i#j, 1<t<t(N)}.

Note that we consider here directed contacts whéseble to l1l. PHASE TRANSITION

transmit to; at time¢ although; may not necessarily be able The main result of this paper is the following:
to transmit toi at the same time. The undirected case can béThegrem 1:Let ¢(N) = |[r-In(N)| and k(N) =
considered as well in the same framework, but we will ignorLeYT -In(N)|, wherey < ), then asN grows large
it in this paper.

We assume that all contacts occur independently and wifh P [X = 0] — 1 if 1/7>~In(A) +h(y),
the same probability. We denote by\ the average number  p— —
of contacts made by each node in a single time slot. We cqll P[X =0] <e @~ if 1/7 <~yIn(\) +h(7),
this number the intensity of the network, and we will assume
that it remains constant a§ grows. In other words, we will Where’ is the entropy function that is defined ¢ 1] by
choosep = 3. h:ye —yln(y) = (1 —v)In(l — )

Let us denote by, the subset which contains all contacts Before proving the theorem, we would like to make some
actually occurring in the network. It is a binomial randommportant remarks:
subset capturing all the information about the network. For
any subset of contactd C C, according to a usual notation,
we denote byl 4 the indicator that this subset of contacts are

« The conditiony < A is not restricting, as the maximum
value of the RHS in the inequality of the phase transition

is obtained fory = ﬁ In other words, this theorem

all occurring: / I proves that the delay optimal path occurs with probability
= . +1n?2
47 AL atleast!~ 37 Moreover, whenever the condition<
b) Paths: A path of lengthk, for any £ > 1 is simply A is not verified, we can still deduce that paths exist with

defined as a subset Gfwith some property: it should contain & positive probability and ahorter length. _
sequence of contacts forming a paths among the nodes (ne The_ proof of the subcritical regime is not new. In this
nodes is allowed to appear twice), and it should satisfy a regime, almost surely no path exists, as it was already

chronological property. shown in [2] from an estimation of the expectatiBfX].
o o ' ' The proof of the supercritical regime (where a path exist
A ={ (io,i1,t1), (i1,02,t2), .., (i—1,0k,tk) } with positive probability) is significantly more involved
- it requir nd the variation and hen r
such thats,i1,...,i,_1,d, are all distinct nodes ant, < as it requ es to bound the a ation and hence c_aptu_ €
b < <t the correlation between the different terms summing in
g < oo < 1.

Hence a path of lengtlk is characterized by a subset of
k transition times chosen among1,2,...,¢(N) } and a
sequence ok + 1 distinct nodes. If the source and destination
have been already fixed, there remains 1 distinct nodes to
choose in the sequence.

Let us fix two distinct nodes and d arbitrarily. In the
following of this article, we denote by, the set of paths . ) ]
leading froms to d, between time = 1 andt = ¢(N), and Flg_L_lre 1 plots as a function efthe value of the RHS in thg
that are of lengthk(V). Based on the remark above, one cafondition, for three values ok. As can be observed on this

X.

o The bound on the probability in the supercritical regime
may not be tight. In particular, it is possible that the
transition is sharp and this probability is 1. However, we
prove that such result cannot be simply derived from the
second moment method, as shown by a lower bound on
the variance ofX.

deduce: plot, a maximum exist that correspond to the path of minimum
delay. For any value of above a minimum value, there exists
|S| = (N —2)...(N — k(N)) x _ a range of possible value farwhere paths exist with positive
k(N) probability.



The goal of this section is to upper bound the contribution
in the sumA of the terms where3 is chosen inS such that
AN B is exactlyC. Note first that under this condition,

A\ 2R-C]
E[lalp] =P[AUBCT,] = (N) )

This comes from the fact thatlu B| = |A| + |B| — |AN B
and thatA and B containsk contacts each.

Since all pathsB as defined above contributes the same
expectation inA, we only need to count the amount of such
subset. The originality of the proof is on the method used to
control these subsets. Let us start with a simple case, &sgum
C contains a single element, that is a given transitior4of
One can see that there are two possible cases:

« If, on the one hand; contains an extremal transition (i.e.

YIn(A) +h(7)

g C contains(s,i1,t1) or (ix—1,d,t;)), then there exist
approximately
Fig. 1. Phase transition (short contact case) t—1
Nk—2
(1)
A. First and second moment method pathsB such thatAnB = C. Indeed, since,d and either

11 Orig_1 are all already fixed, it remairist-1—3 = k—2
vertexes to be chosen to construgt We also have to
choosgk—1) times for transition, in at most-1 possible
times (since the transition time selected 6Yyis now

1) Expectation, and the subcritical regiméet us denote
by 1 the expected number of successful paths= E [X].
Note that a given pathd occurs with probability given by

(A/N)FV) [ 'so that asV grows forbidden).
v L (H) « If, on the other hand(’ contains a internal transition of
o AN <I<:(N)) 1) A (i.e. C = {(ij—1,ij,t;)} with 2 < j < k — 1), then

the number of possible pattis such thatAN B = C'is
It is a rather easy application of Stirling formula (see [2])  at most

that, asN grows, NE3 (]1; 11> .
AF(N) N =1t (N)R(7) N—1+7(vyIn(N)+h(v))
o~ ~ . Note that it is a coefficient strictly less than the one
V2rry(1 =) In(N)  \/277y(1 — ) In(N) above, since the vertexes already fixed ®yin B are
This proves that, under the condition of the subcritical ~ $:d;%j—-1,i;, and there remain only +1—4 =k —3 to
regime,u. goes to zero ad&/ grows. SinceX takes only integer be chosen.

values, an immediate application of Markov inequality ssow As a conclusion, the amount of possible paths intersecting
that P[X > 0] vanishes asV grows, proving the first half of A exactly onC is smaller if intersection are avoiding extremal
the theorem. case. This following generalizes this remark.

2) Variance, and the second moment inequalitye define ~ We denote bye; = (i;_1,i;,¢;) the j_th edge of the path
A. We can decompos€ C A as: there exist8 x [ integers
A= > E [I415]

A.B distinct, ANB#0 I1<ai<bi<ay<by<---<a <b < k, such that

e ¢; € Cifandonlyif 3m j € [am, by,

o [bm-1+1,a, — 1] is non-empty (i.ean, — b1 > 2),
and any index contained in this interval verifies; ¢ B.

The number of interval above depends o6 and is the

number of fragments made of contiguous index of transitions

The following inequality applies to all variables definedtwi
a binomial random subset, like the variable It combines the
FKG inequality and Chernoff bound to prove that an upper
bound on the ratia\ /x? is sufficient to prove that a variable
is non-null with positive probability. The proof may be falin

in [4] (Theorem 2.18 p.33): in A. We define th_e_numbc_er of fragments that are internal as
112 the one not containing neither the indéxnor k. It may be
Lemma 1P[X = 0] < exp (‘u n A) . defined as

B. The weight of fixed intersection lint (€) =1 = Iay=1y = L=y -

During all this section, we fix a path chosen inS, and ~ -emma 2:ForanyAd € S andC C A, [C] = ¢, we have

C C A a subset ofd that we suppose non-empty. To avoid

_ k—1—c—lin (C) t—c
unnecessary notation, we denot@V) by ¢ andk (V) by k. {BesS|ANB=C} <N ( ) :

k—c



Proof: We have by definition of the decomposition This lemma shows that a bound which features jointly the
. . size of the intersection and the number of internal fragment
Z |[@m, bm]| = Z (b — am +1) = c. may b_e a very solid tool to counterweight the combinatorial
o o explosion of the number of subset df
The result comes from the following observation. Given Note that sinced coptainsk;(N)_contacts, for a fixed size
that A is fixed, and that3 share all contacts i@’ with 4, a ¢ and largeN there exists approximately:(N'))¢/(c!) many

. . subsetC of a given sizec, so that each term of this series
number of vertexes appearing I are already chosen. I:IrSt’diver e asN grows if one forgets the coefficient includin
it is obvious thats and d has been fixed in advance to b 9 g g 9

She number of internal fragments. Accordingly, if one fdsge

included in B. ; .
: . the dependence on the size @fas one can build an order
Any fragment [a,,,b,,] involves the vertexes given by 9 . . .
A A A k(N)* of subsetC' with no internal fragment at all, again the
G 150y oo 0y, atotal ofby, —(am —1)+1 = by, —am+2.

series diverge.
Proof: We treat separately the case whérg (C) = 0
g{]d lin(C) > 10 If l! nt (C) = j > 1, note first that there
éxists at mostk(N))* 2 subset which verifies this condition.
! ! This is because an intersection with internal fragment
> (bm—am+2) = (bm—am+1)+1=c+] vertexes. may be characterized by the choice f integer in k()
m=1 m=1 (corresponding to the numbeis,, b,, of internal fragments,
We should adds (respectively/d) to the union of this subset, and at most two others (in case of external fragment). Since
if it has not already been included before, which is the ca#iee left coefficient is upper bounded hy we have:

Note that these subset of vertexes are disjoint for two idiffe
fragments, because by definiti@in, + 1, a,,, 1 — 1] should not
be empty. Hence, the union of these subsets of vertexesigon

if and only if a; > 1 (resp.b; < k). Hence the total number In(N))2i+2
of vertexes already determined B is > (})‘C‘N*li @<y %
CCAlim (C)>1 i>1
c+l4+ (1 —Tga1y) + (L —Tgppy) =c+2+1int . < (a2 (mln(jv))g/N (5)
T7y In .
The lemma follows the fact that the path involves exactly = 1= (ryIn(N))?/N

k+1 vertexes in total (when we includeandd). In addition, This term goes to zero a¥ becomes large.
k — c transition times remain to be chosen, and none of themassuming nowi; o, (C)) = 0, let us observe that there exists

can take any of the transition times already contain @i. B 5t mostj+1 subset ofA satisfying this condition anl’| = j,

Lemma 2 and Eq.(2) implies for ang, C hence we have
— ’Y VAT
> Eliazg s ey (71 3 QIS 3040G) < el @
BES, ANB=C k—1C| lint (C)=0 J>1
3) n
C. Decomposition of\ IV. CONCLUSION

The conltribution of the pathd to the sumA/u?, may be e prove that random temporal network exhibits a phase
written as—z > 4npg E[LaI5]. Combining Eq.(1) and (3) transition phenomenon for the existence of solution to @out
we can show that is less than a function which is equivalegiser time between two arbitrary nodes: with a positive proba

asN grows, to bility a path exist within logarithmic number of hops and &m
1 . Lo (t—1C] N The constants should satisfy a joint condition betweentteng
— > AN i@ <k: B |C|) (k) (4) and time, which derive from the entropy function.
Nk—1 (k) CCA Our results demonstrate that random temporal networks

feature specific combinatorial properties. We hope that thi
Note thatk and¢ are function ofN, although we did not write example will motivate other researcher to investigate tiogp
that explicitly to keep notation readable. The denominaterties of large random structures that include time exgpfici
before the sum is equivalent to the number of pathsn
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