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Abstract— We consider reliable multicast in overlay net-
works where nodes have finite-size buffers and are subject
to failures. We address issues of end-to-end reliability and
throughput scalability in this framework. We propose a
simple architecture which consists of using distinct point-
to-point TCP connections between adjacent pairs of end-
systems, together with a back-pressure control mechanism
regulating the transfers of adjacent TCP connections, as
well as a back-up buffering system handling node failures.
This architecture, that we call the One-to-Many TCP
Overlay, is a natural extension of TCP to the one-to-many
case, in that it adapts the rate of the group communication
to local congestion in a decentralized way via the window
back-pressure mechanism. Using theoretical investigations,
experimentations in the Internet, and large network simu-
lations, we show that this architecture provides end-to-end
reliability and can tolerate multiple simultaneous node fail-
ures, provided the backup buffers are sized appropriately.
We also show that under random perturbations caused
by cross traffic described in the paper, the throughput of
this reliable group communication is always larger than a
positive constant, that does not depend on the group size.
This scalability result contrasts with known results about
the non-scalability of IP-supported multicast for reliable
group communication.

I. INTRODUCTION

With the proliferation of broadband Internet access,
end-system multicast (also referred to as application-
level multicast) becomes a practically feasible and ap-
pealing alternative to IP-supported multicast which has
been experiencing deployment obstacles.

In the end-system multicast architecture, one forms an
overlay tree by establishing directed point-to-point con-
nections between end-systems, where each end-system
duplicates and forwards data to downstream end-systems
in a store-and-forward way. Note that the nodes of the
multicast tree are end-systems rather than routers as in
IP-supported multicast. Since this architecture may be
less efficient than IP-supported multicast in terms of
resource utilization, some protocols have been proposed
for the construction of efficient overlay trees [1]–[4].
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A natural way of improving the reliability and the
TCP friendliness of end-system multicast is to use point-
to-point TCP connections between nodes as proposed
in RMX [5], Overcast [6] and ROMA [7]. There is an
increasing interest in using TCP based multicast overlays
for real time applications (see studies on multimedia
streaming over TCP [8], [9]). TCP is indeed an appeal-
ing alternative of UDP for such applications due to a
number of advantages such as fair bandwidth sharing,
in-order delivery and passing through client imposed
firewalls. TCP is also the best candidate for point to
point connections for applications which require reliable
data delivery as it provides local recovery from packet
losses in network links.

An important remaining issue with such overlay net-
works is their end-to-end reliability. In case of a node
failure, the nodes in the subtree rooted at the failed node
need, on one hand, to be re-attached to the remaining tree
and, on the other hand, to get TCP sessions established
from where they are stopped. The former is referred to as
the resiliency issue in the literature (see e.g. [10]), which,
in this context, consists in the detection of failures and
in the reconstruction of trees. When using TCP point-to-
point connections, it is not clear how known resiliency
mechanisms can be extended to achieve reliability for
large groups. While it is relatively easy to find nodes
of re-attachment and thus to reconstruct the tree, it is
not guaranteed that the data flows can be restarted from
where they are stopped. As the forwarding buffers of
the nodes in the overlay network have finite size, it may
happen that the packets needed by the newly established
TCP sessions are no longer in the forwarding buffers.
Another important reliability issue stems from the fact
that even when nodes never fail, some packets may be
lost in a node due to buffer overflow.

In this paper, we consider reliable multicast in overlay
networks where nodes have finite-size buffers and can
fail. We propose a simple architecture which consists of
using distinct point-to-point TCP connections between
adjacent pairs of end-systems, together with a back-
pressure control mechanism (as in [11], [12]) regulating
the transfers of adjacent TCP connections, as well as
a back-up buffering system handling node failures. This
architecture, that we call the One-to-Many TCP Overlay,
is a natural extension of TCP to the one-to-many case,



in that it adapts the rate of the group communication to
local congestion in a decentralized way via the window
back-pressure mechanism. Using theoretical investiga-
tions and experimentations in the Internet, we show that
this architecture provides end-to-end reliability and can
tolerate multiple simultaneous node failures, provided
the backup buffers are sized appropriately.

The second issue that arises in reliable multicasting
pertains to performance when the group size is large.
Significant effort has been spent to evaluate the per-
formance of IP-supported reliable multicast transport
protocols [13]–[16]. In particular, it was shown in [15]
and [16] that for IP-supported reliable multicast schemes
using a TCP like control, the group throughput decreases
and tends to zero when the group size increases.

Within the context of end-system multicast, this issue
was studied in [17] for the case of infinite-size buffers
in end-systems. It was shown that such a end-system
multicast scales in the sense that the group throughput is
lower bounded by a positive constant independent of the
group size. In [7], the scalability issue is considered for a
similar case where the downstream TCP connections are
assumed not to affect the upstream TCP connections. The
case of finite-size buffers was first studied in [12], where
the authors investigated a TCP-friendly congestion con-
trol mechanism with fixed window-size for node-to-node
transfers. Simulation results were presented showing a
sharp decrease of throughput with the size of the group
for moderate group sizes. One of the conclusions drawn
from this observation is that the input/output buffer size
plays a key role and should perhaps be increased to
infinity with the size of the multicast group.

We prove that for finite node buffers, the group
throughput of the one-to-many TCP overlay is also
bounded from below by a strictly positive constant which
does not depend on the group size. The assumptions,
which are described in Section III-F, consist of statistical
guarantees on each point to point route and of the
boundedness of the fan-out degree of the multicast tree.
This contrasts with the known result established about
the non-scalability of IP-supported multicast based on
TCP-like control. It also shows that the unbounded
increase of the node buffer size which is suggested in
[12] in order to cope with larger and larger groups is
not necessary to guarantee a group throughput.

It is worthwhile noticing that in this One-to-Many
TCP architecture, nodes influence each other both down-
stream (when the slow down of a node slows downs its
offspring nodes through the delay incurred by forwarded
packets) and upstream (via the back-pressure mecha-
nism). This contrasts with the case without backpressure
where nodes influence downstream nodes only. A con-

sequence of this acyclicity is that the group throughput
is here a function of the parameters of the whole tree
(topology, buffer sizes, random packet ECN marking or
random packet losses and random effects of cross traffic).
Another new modeling difficulty comes from the fact that
packets need to be relayed in sequence by a node.

In order to address these modeling and performance
evaluation issues, we introduce a new class of random
graphs with random weight in vertices and a random set
of edges and we show that the group throughput can be
interpreted in terms of first passage percolation in such a
random graph. The main practical conclusion concerning
performance is based on experiments and simulation. It
bears on the actual value of the group throughput that is
achieved inside a group of large size. We compare this
to some reference throughput, defined as the worst long
term average rate which can be separately achieved by
TCP on a route between two end-systems in a stand-
alone mode. Compared to this reference, and for a
wide range of parameters, the degradation of the group
throughput induced by back-pressure is less than 20%.

The paper is organized as follows. The next section de-
scribes the multicast overlay architecture. The through-
put scalability results are presented in §III. Section IV
describes the algorithms ensuring overall reliability and
gives a proof of their end-to-end reliability properties.
Simulation results and Planet-Lab experiments aiming
at showing the joint scalability and reliability properties
of this kind of architecture are gathered in §V.

II. THE ONE-TO-MANY TCP OVERLAY

A. Multicast Overlays

In contrast to native reliable IP multicast where the
nodes of the tree are Internet routers and where specific
routing and control mechanisms are needed, overlay mul-
ticast uses a tree where the nodes are end-systems and
where the currently available point to point connections
between end-systems are the only requirement. An arc
in the overlay network represents the path between the
two nodes that it connects. While this path may traverse
several routers in the physical network (see Figure 1
(left and center), and the models introduced in §III), this
level of abstraction considers the path as a direct link in
the overlay network. The point-to-point communication
between a mother node and a daughter node is carried
out by TCP. We shall assume that in all TCP connections,
Fast Retransmit Fast Recovery [18] is implemented.
We consider both situations with and without Selective
Acknowledgment (SACK). In the scalability analysis of
Section III, we also consider the case of Early Conges-
tion Notification (ECN) as an intermediate step.
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Fig. 1. An overlay multicast tree: physical topology (left) and abstract topology (center), description of node with index (1, 0) (right).

On each node (except for the root node), there is
an input buffer, corresponding to the receiver window
of the upstream TCP, and, except for the leaf nodes,
there are several output buffers, also referred to as
forwarding buffers, one for each downstream TCP con-
nections. There is also a backup buffer in each of these
intermediate nodes storing copies of packets which are
copied out from the input buffer (receiver window) to
the output (forwarding) buffers. These backup buffers
are used when TCP connections are re-established for
the daughter nodes after their mother node fails. Figure 1
(right) illustrates these buffering mechanisms. Through-
out this paper we shall assume that all these buffers have
finite sizes BIN, BOUT, BBACK (for, respectively, input
buffer, output buffer and backup buffer).

In this paper, we do not consider the tree construc-
tion/optimization issue. Rather, we assume that the tree
topology is given, and that the out-degrees (or fan-out)
are bounded by a constant D.

We consider several tree topologies, for which we
introduce the following generic notation: we number
end-systems by a pair (k, l). The first index k gives
their distance to the root of the tree (or level). The
second index l allows one to number end-systems with
the same level. For the case of a complete binary tree,
the end-systems with the same distance k from the root
are labeled by numbers l = 0, . . . , 2k−1. An example of
complete binary tree with height equal to 2 is described
on Figure 1 (middle). The mother node of end-system
(k, l) is denoted (k − 1,m(k, l)). The daughter nodes of
end-system (k, l) is labeled (k + 1, l′) with l′ ∈ d(k, l).
For a complete binary tree, m(k, l) = b l

2c and d(k, l) is

{2l, 2l + 1}. For end-system (k, l) we denote by B
(k,l)
IN

the size (measured in packets; we assume that all packets
have the same size for the sake of simple exposition,
although this is not an essential assumption) of its input
buffer. We denote by B

(k,l)
OUT,(k′,l′) the size (also measured

in packets) of the output buffer of end-system (k, l) in
the socket corresponding to the TCP connection to the
daughter end-system (k′, l′).

B. Reliable Transfer and Forwarding via Back-Pressure

There can be three different types of packet losses
in the overlay multicast: (1) losses that occur in the
path in-between the nodes (sender and receiver); and
losses due to overflow in (2) input buffer and (3) output
buffer. The first type of losses are recovered by the TCP
acknowledgment and retransmit mechanisms (see §II-C)

The second type of losses will not occur thanks to the
back-pressure mechanism of TCP. Indeed, the available
space in the input buffer at the receiver node is advertised
to the sender through the acknowledgments of TCP. The
acknowledgment packet sent by the receiver of the TCP
connection contains the space currently available in the
receiver window. The sender will not send a new packet
unless the new packet and those “in-fly” packets will
have room in the receiver window. In addition, when
the available input buffer space differs from the last
advertised size by two Maximal Segment Size (MSS)
or more, which can occur when packets are copied to
the output buffers, the receiver sends a notification to
the source via a special packet.

The last type of loss is avoided in our architecture.
Indeed, a packet will be removed from the input buffer
only when it is copied to all of the output buffers. The
copy process is blocked when an output buffer is full
and is resumed once there is room for one packet in
that output buffer. Thus, due to this “blocking” back-
pressure mechanism, there will be no overflow at the
output buffers. In order to help the reader to identify
the mechanisms used in end-systems, we have depicted
(in Figure 1 (right)) a zoom of an end-system and of
the information exchanged with its mother and daughter
nodes. Each bar on this figure represents a sequence of
events of a certain type (for instance the sequence of
packets departure times from a buffer) and the labels on
the arcs represent the lag in the packet sequence number
between the events connected by this arc. The interpre-
tation is as follows: for a bar with several incoming arcs,
the m-th event takes place as soon as for all upstream
bar, the event of order m minus the lag has taken place.



For instance packet m leaves the input buffer at the latest
of the following 3 events: packet m arrived in the input
buffer; packet m − B

(1,0)
OUT,(2,0) has been acknowledged;

packet m − B
(1,0)
OUT,(2,1) has been acknowledged. These

two types of back-pressure mechanisms guarantee that
there will be no losses at the overlay nodes even if they
have finite-size buffers. However, these mechanisms will
also reduce the throughput of the group communication.
It is crucial to understand the scalability issue, namely
to check whether the throughput would vanish when the
group size grows.

C. Packet Losses and Re-sequencing

Another factor that could significantly impact the
throughput of the group communication is the packet
re-sequencing delay due to losses. In case of a packet
loss along a path, TCP retransmits the packet eventually.
However, some packets with larger sequence number
arrive before the duplicate (of the lost packet) arrives.
These packets are not copied out to forwarding buffers
until the duplicate arrives. Such a delay in packet
processing has negligible impact to the throughput of
the TCP connection in question thanks to the window
inflation implemented by Fast Retransmit Fast Recovery
[18]. However, it can create extra burstiness in packet
arrival process of the downstream TCP connections.
Such perturbations can cause significant performance
degradation in these downstream TCP connections and
has ripple effects in the corresponding subtrees. In turn,
due to the back pressure mechanisms, these performance
degradations impact the root sending rate, and therefore
the group communication throughput. Thus, it is very
important to understand how the scalability is affected
by possible packet losses in the network.

D. End-to-End Reliability and Backup Buffers

With end-system multicast scheme, an important issue
to address is resiliency, i.e., handling node failures and/or
departures (possibly without prior notice). For this, one
first needs to detect failures. Unfortunately TCP does not
provide a reliable and efficient mechanism for detecting
nodes that are not responding. Different methods can
however be deployed for this purpose, e.g. heartbeat
probes, keep-alive signals, etc. A heartbeat message is
sent using UDP at regular time intervals to all neighbors
of a node, and missing heartbeats from a neighbor indi-
cate a failure. The keep-alive messaging system can be
established in a similar way. In this paper, we assume that
one of such mechanisms is deployed. The comparison of
their efficiency is out of the scope of this paper.

Once a failure is detected, the tree needs to reconfigure
in such a way that the daughter nodes of the failed node,
as well as the subtrees they are rooted at, are re-attached
to the original tree. A new TCP connection is established
for each re-attachment. In other words, we need to find
“step-mothers” for the daughter nodes of the failed node.
There are a variety of ways to reconfigure the tree. We
proposed and evaluated an algorithm in [19]. We will not
discuss this issue in this paper due to space constraint.

In order to achieve end-to-end reliability, we need
to ensure the data integrity while providing resiliency.
In other words, we need to make sure that when these
daughter nodes (of the failed node) are attached to the
remaining tree, the new mother nodes have the data that
are old enough so that these daughter nodes, as well as
their offspring, receive the entire sequence of packets
that the root sends out. For this purpose, we implement
backup buffers in the end-systems so that whenever a
new TCP connection is established, the packets in the
backup buffer of the sender are sent out first via this
new connection. In this way, the sender starts with these
packets that have smaller sequence numbers than those
in the input buffer of the sender.

We show in Section IV that if the size of the backup
buffer is large enough compared to those of input and
output buffers, then the end-to-end reliability is guaran-
teed even if there are multiple simultaneous failures.

III. MODELING AND SCALABILITY ANALYSIS

The aim of this section is to prove that the reliable
overlay multicast architecture described above is scalable
in the sense that the throughput of the group is lower
bounded by a positive constant irrespective of the size
of the group. We show that even in a multicast tree
of infinite size with the back-pressure mechanisms, the
group throughput is positive, provided certain statistical
assumptions hold on the individual point to point routes
that basically guarantee the good behavior of each TCP
connection in a stand-alone situation (e.g. bound on the
number of hops, bound on the packet loss probability
etc.). This is an unexpected result in view of the pre-
liminary simulation results reported in [12], and also
contrasts with the non-scalability results reported in the
literature on IP-supported reliable multicast.

The packets of the multicast flow compete with those
of other flows for the resources of each router-link
in each TCP connection. On each such resource, this
competition creates additional queuing delays between
the processing of successive packets of the multicast
flow. We model routers as single server queues with
FIFO discipline and infinite buffer (losses are taken into
account as an exogenous process, which controls the



window evolution). In these queues, we only consider
the packets of the multicast flow but we expand their
processing times to random aggregated service times in
order to take this effect into account (see [20], [16], [17]
for more details on this representation of the influence
of cross-traffic). The processing of packets inside the
overlay network and the mechanisms already described
can then be all explicitly described in a global discrete
event dynamical systems, which is defined below.

The proof is made under a set of stochastic assump-
tions described below which covers both the case of
ECN packet marking, as well as packet losses. We first
present the model in the former case, and introduce later
the more complex packet losses, retransmission and re-
sequencing phenomena described in §II-C.

A. The Model for the ECN Packet Marking Case

We introduce the following notation:
• The TCP connections to end-system (k, l) is labeled

with the index (k, l). It has a route that consists of
a sequence of H(k,l) routers in series.

• Routers of TCP connection (k, l) are labeled by the
index h = 1, 2, . . . ,H(k,l). We denote accordingly
the buffer for router h of connection (k, l) by
(k, l, h). Each router is modeled as a single server
queue containing only packets from the reference
connection. The service time for these packets in
this queue is a random variables describing the im-
pact of cross traffic, also called Aggregated Service
Time. It is denoted by σ

(k,l,h)
m for packet m through

router with index h in connection (k, l).
• We also introduce labels for the other buffers used

by TCP connection (k, l): label (k, l,beg) denotes
the output buffer of node (k − 1,m(k, l)) on the
socket corresponding to TCP connection (k, l) ;
label (k, l,end) denotes the input buffer of node
(k, l), that is the destination of this connection.

TCP Window flow control: Let (W
(k,l)
m )m≥1 denote

the window size sequence for TCP connection (k, l).
More precisely, W

(k,l)
m is the window size seen by

packet m. This sequence takes its values in the set
{1, 2, . . . ,Wmax}, where Wmax is the maximal window
size. We assume the following random evolution (corre-
sponding to TCP RENO’s congestion avoidance AIMD
(Additive Increase Multiplicative Decrease) rule) for this
sequence: when it is equal to w, the window increases
of a size corresponding to one MSS after w packets
(additive increase rule), if there is no packet marked with
ECN ; when a packet is marked by one of the routers, the
window is halved (multiplicative decrease rule); actually,
an integer approximation of halving is used so as to keep

the window in the set {1, 2, . . . ,Wmax}; similarly, if the
window is equal to Wmax, it remains equal to this value
until the next packet marking. If one assumes packets
to be marked independently with probability p(k,l), then

(W
(k,l)
m )mis an aperiodic and ergodic Markov chain [20].

Remark: In this model, we are not including the Slow-
Start phase, and Time-Outs that occur and reinitialize the
window after a source starvation or a large variation of
delay. Both can be taken into account in simulations but
for the cases that we are presenting in this paper, we have
observed that they do not impact the long-term through-
put. Also, we assume that each packet is acknowledged.
In TCP implementations, an acknowledgment is sent for
every second segment. This is taken into account by
saying that a packet transmission in the model represent
the transmission of two MSS in the TCP connection.

B. Evolution Equation

The system that we described above can still be
represented exactly using (max,plus) linear recursions,
that we know discuss in detail. We shall see that they
are instrumental for the scalability analysis and for
simulations of large networks presented in §V-A.

Let Tm, m ≥ 0, denote the time when packet m
is available at the root node. In this work we assume
a saturated root, where all packets are ready at the
root from the beginning of the communication; namely
Tm = 0 for all m. Let x

(k,l,h)
m denote the time when

m has completed its transmission and leave the buffer
with label (k, l, h). In particular for h = 1, . . . ,H(k,l),
this is the time when router h in connection (k, l) has
completed the service for packet m. x

(k,l,beg)
m is the time

when packet m departs from the output buffer of the
source node of TCP connection (k, l), and arrives in
the input buffer of router h = 1. Finally x

(k,l,end)
m is

the time when packet m departs from the input buffer
of the receiver node of TCP connection (k, l), and is
transmitted into each output buffer of node (k, l).

The network (except for the root) is assumed to be
empty initially of any packets of the communication.
This can be represented by taking x

(k,l,h)
m = −∞ for any

m < 0. Then, with the above assumptions, the dynamics
of the model presented in the last subsection is given by
the following evolution equations at the root node :

x(0,0,beg)
m = Tm ∨ x

(0,0,end)

m−B
(0,0)
IN

x(0,0,end)
m = x(0,0,beg)

m ∨
(

∨

l∈d(0,0)

x
(1,l,H(1,l′))

m−B
(0,0)

OUT,(1,l)

)

where ∨ denotes the maximum.



For a node (k, l), k ≥ 1, l ≥ 0:

x
(k,l,beg)
m = x(k−1,m(k,l),end)

m ∨ x
(k,l,end)

m−B
(k,l)
IN

∨ x
(k,l,H(k,l))

m−W
(k,l)
m

x
(k,l,1)
m =

(

x(k,l,beg)
m ∨ x

(k,l,1)
m−1

)

+ σ
(k,l,1)
m

. . .

x
(k,l,H(k,l))
m =

(

x
(k,l,H(k,l)−1)
m ∨ x

(k,l,H(k,l))
m−1

)

+σ
(k,l,H(k,l))
m

x
(k,l,end)
m = x

(k,l,H(k,l))
m ∨

∨

l′∈d(k,l)

x
(k+1,l′,H(k+1,l′))

m−B
(k,l)

OUT,(k+1,l′)

.

C. Path of Maximal Weight in a Random Graph
Let G be the graph where the set of vertices is:
V = {(0, 0, beg, m), (0, 0, end, m), m ∈ Z} ∪ {(k, l, h, m),

k ≥ 1, l ≥ 0, h ∈ {beg, 1, . . . , H(k,l),end}, m ∈ Z}

and the set of edges E is: E1∪E2∪E3∪E4∪E5 with:
E1 = {(0, 0, end, m) → (0, 0,beg, m)|∀m ∈ Z} ∪ {(k, l, 1, m)

→ (k, l,beg, m), (k, l,end, m) → (k, l, H(k,l), m)

|∀k ≥ 1, l ≥ 0, m ∈ Z} ∪ {(k, l, h, m) → (k, l, h − 1, m)

|2 ≤ h ≤ H(k,l), k ≥ 1, l ≥ 0, m ∈ Z} ∪ {(k, l,beg, m)

→ (k − 1, m(k, l),end, m)|∀k ≥ 1, l ≥ 0, m ∈ Z}

E2 = {(k, l, h, m) → (k, l, h, m − 1)|∀h, k ≥ 1, l ≥ 0, m ∈ Z}

E3 = {(k, l,beg, m) → (k, l, H(k,l), m − W
(k,l)
m )

| ∀k ≥ 1, l ≥ 0, m ∈ Z}

E4 = {(k, l,beg, m) → (k, l,end, m − B
(k,l)
IN )

| ∀k ≥ 0, l ≥ 0, m ∈ Z}

E5 = {(k, l,end, m) → (k + 1, l
′

, H,m − B
(k,l)

OUT,(k+1,l′)
)

| ∀l
′ ∈ d(k, l) and ∀k ≥ 0, l ≥ 0, m ∈ Z} .

The weight of vertex (k, l, h,m) is given by σ
(k,l,h)
m for

h∈
{

1, 2, ...,H(k,l)

}

and m ∈ Z, and is equal to zero for
h∈{beg,end}. The weight Wei(π) of a path π in G
is defined as the sum of the weights of the vertices of π.

All the buffers in the end-systems are initially empty.
We define accordingly the restriction of this graph de-
noted by G[0], in which the weight of vertex (k, l, h,m)
is taken equal to −∞ for all vertices with m < 0. It is
then possible to show by an induction argument based
on Equations shown in §III-B that for all k, l, h,m

x(k,l,h)
m = max

π a path in G[0], (k,l,h,m) (0,0,beg,0)
{Wei(π)} .

D. Model for Packet Losses

Our aim in this section is not to build an exact model
for the case with packet losses, but rather to describe
a simplified and tractable model obtained via a set of
conservative transformations. For proving the scalability
in this case (namely the positiveness of throughput in the
exact model for an infinite tree), it will hence be enough
to prove that the simplified conservative model scales in
the same sense.

Imagine packet with index m is lost. Before TCP is
aware of this loss, some of the packets m + 1, . . . ,m +
Wm might have left from the source. They have been
in fact allowed by the congestion window mechanism,
but they may not have left the source due to the back-
pressure mechanism, or because they are not available
at this time in the source node. In all cases, one can see
that the following simplified window evolution:

• the window is set to max((Wm − 1)/2, 1) for m +
1,m+2, . . . , ...,m+Wm+max((Wm−1)/2, 1)−1;

• the additive increasing evolution of the window
is resumed from packet m + Wm + max((Wm −
1)/2, 1) on

is then conservative in that the true system using Fast
Retransmit Fast Recovery (see [18]) will have larger
windows at all times and hence better throughput than
this considered simplified model (more details in [19]).

In addition to that, the loss of packet with index
m has two major impacts. First, retransmissions are
sent by the sources. We can choose to include them at
the last possible step of the communication (between
packet m + Wm and m + Wm + 1). This tends to
overload the network at intuitively the worst time (after
the self clocking mechanism have resumed with a half
window), and this is what is done in our simulations.
Another even more conservative choice is to include
retransmissions at every possible step (after each packet
m,m + 1, . . . ,m + Wm) to cover each possible case of
the exact model. This is what we choose in our model,
as the scalability result can still be proven under this
assumption. The number of retransmissions at each step
is Wm in our model by default, again corresponding to a
conservative assumption, it is only one packet if SACK is
implemented by TCP. The second consequence of packet
m being lost is that some packets m + 1,m + 2, . . . are
blocked in the input buffer of the destination node, as
packets need to be processed by the node according to
the order defined by the sequence number. In our model,
we have chosen to include this blocking for all possible
packets involved (i.e. packets m,m + 1, . . . ,m + Wm

are not processed in the destination node until packet
m + Wm, and the retransmissions, arrive).

1) Random Graph Model: In this section, vertices of
the graph associated with the index m will refer either
to packet m itself, or to a retransmitted packet that was
sent after packet m and before packet m + 1. In the
random graph associated with the loss model, we denote
the vertex for end-system (k, l), packet m and index h
by v(k, l, h,m). For all k, l,h = 1, . . . ,H(k,l) and m, we
add a vertex v′(k, l, h,m) on top of v(k, l, h,m), which
represents the potential retransmissions of packets just
between packets m and m + 1. The weight associated



with this vertex is independent with the same law than
σ

(k,l,h)
m in the case where TCP is implementing SACK.

If this is not the case, it should be equal to a sum of
2 × Wm independent variables with this law, as several
packets may be retransmitted.

We also add the following edges to link this vertex to
the vertical and horizontal structure.

• Horizontal edges: v′(k, l, 1,m) → v(k, l,beg,m)
and v′(k, l, h,m) → v′(k, l, h − 1,m) for h =
2 . . . H ,

• Vertical edges: v′(k, l, h,m) → v(k, l, h,m) for
h = 1 . . . H .

and, to represent the effect of the loss and the retrans-
mission of packet m on the TCP connection (k, l) :

• Edge E6: v(k, l,end,m) → v′(k, l,Hk,l,m +
Wm − 1) in order to represent the re-sequencing
constraints on packets m,m + 1, . . . ,m + Wm − 1.

• Edges E7: v(k, l, h,m′′ + 1) → v′(k, l, h,m′′) for
all h = 1, . . . ,Hk,l and m′′ = m, . . . ,m + Wm

to represent the retransmission of packet m (as the
extra packet in between indices m + Wm − 1 and
m + Wm) which delays the following packets.

The complete graph (including all types of edges
E1, . . . , E7) is presented in Figure 2 in the case of two
TCP connections in tandem with BIN = BOUT = B..
Edges belonging to E7 are the vertical local edges in red.
For readability purpose, edges belonging to other classes
than E1 and E2 have been represented only when they
depart from station k and packet m.

E. The Last-Mile Effect

The following issue should be taken into account
in the models: if the out-degree of some node of the
tree is large, then the access link from this node may
become the actual bottleneck due to the large number of
simultaneous transfers originating from this node. Hence
the throughput of the transfers originating from this node
may in fact very well be significantly affected by the
other transfers originating from the very same node. This
”last-mile link” effect can be incorporated in our model.
The extra traffic created by the transfers not located on
the reference path can be represented by an increase of
the aggregated service times (we remind that aggregated
service times represent the effect of cross traffic on the
reference TCP transfer). In order to keep this under
control, the general idea is then to keep a deterministic
bound, say D, on the out degree of any node in the tree.
Using arguments similar to those in [17], it is easy to
show that provided bandwidth sharing is fair on the last-
mile link, then the system where all aggregated service
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Fig. 2. Random Graph Representing two TCP Connections in
tandem with Back-Pressure and Re-sequencing Constraints

times on this link are multiplied by D is a conservative
lower bound system in terms of throughput.

Hence, whenever the out-degree of any node is
bounded by a constant, the proof of the scalability of
throughput for the case without this last-mile effect
extends to a proof of scalability with this effect taken
into account.

F. Throughput Scalability Result

In this section we are interested in the throughput of
the group communication when the size of the tree gets
large. For this, we directly consider infinite trees.

We call the homogeneous model (resp. the non-
homogeneous model) the case where: Each node in
the tree has a fan-out degree fixed D (resp. bounded
from above by D); All back-pressure buffers have the
same size for any end-system in the tree (resp. they are
bounded from below by constants BIN and BOUT); The
routes used by all TCP connections are structurally and



statistically equivalent (resp. offer minimal structural and
statistical guarantee). More precisely, the number of hops
H is the same for all connections (resp. bounded from
above by H) ; the ECN packet marking or packet losses
process is independent and identically distributed in all
connections with probability p (resp. independent with
a probability that is smaller than p) ; and finally the
aggregated service times are independent in all routers,
and identically distributed with law σ (resp. it is bounded
in the strong ordering sense from above by a random
variable σ) with a finite mean.

1) Definition of Group Throughput: Using Kingman
subadditive ergodic theorem, it can be shown (see [19])
that in the homogeneous case, there exists a constant γ ∈
R ∪ {+∞} such that the almost sure (a.s.) convergence
holds for any (k, l, h): lim

m→∞

m

x
(k,l,h)
m

= γ .

We call γ the asymptotic (long-term) group throughput.
For the non-homogeneous case, we can show that

lim inf
m→∞

m

x
(k,l,h)
m

≥ γ, where γ is the group throughput

of the homogeneous model defined with the bounds.
2) Scalability under Light Tailed Assumptions: We

consider the non-homogeneous model, and we assume
that the random variable σ is light tailed, i.e. such that
∃τ > 0 such that ∀0 ≤ t ≤ τ, E[etσ ] ≤ A(t) < +∞.

The next result is based on the following fact : for a
given (k, h), the length of any path of G[0] involved in
the computation of x

(k,l,end)
m is bounded from above by

a linear function of m. As the number of neighbors of
any node in the graph is uniformly bounded, this leads
to an exponential bound on this number of paths, and
hence on the weight of the maximal weight path. The
complete argument can be found in [19].

Theorem 1 Consider an overlay multicast tree with
infinite height k = 0, 1, 2, . . .. Under the assumptions
that the law of σ is light tailed, we have

lim inf
m→∞

m

x
(k,l,end)
m

≥ Const(H,D) > 0 a.s. .

uniformly in (k, l), both for the ECN and packet losses
cases, where D is the bound on the degree and H that
on the hop number. In the particular case of a homoge-
neous network, the group communication throughput γ
is bounded from below by a positive constant that does
not depend on the size of the tree.

IV. END-TO-END RELIABILITY

As we mentioned in Section III, using TCP for
point-to-point connections guarantees reliable transfers
between the nodes of the group, but does not provide
uninterrupted transmission in cases when a transit node

suddenly stops functioning. Daughter nodes of the failing
node must restore connection to the multicast group, and
they should receive all stream packets.

Avoiding interruption in packet sequence may not
be trivial, especially for nodes distant from the root,
since the packets that these nodes were receiving at the
time of failure may have been already processed and
discarded by all other group members, except for the
failed node. We employ backup buffers to create copies
of stream content which could be otherwise lost during
node failure. Figure 1 (right) illustrates our approach.
While data is moved from the input buffer to the output
buffers, a copy of data leaving input buffer is saved in
the backup buffer. The backup buffer can then be used
to restore packets which were lost during node failure.

We will show below that this end-to-end reliability
can be achieved through the backup buffers, provided
they are sized appropriately. We will formally derive a
formula for the size of the backup buffer. We shall also
present leave/join algorithms so as to keep the group
throughput scalable.

Definition of End-to-End Reliability. We define
overlay multicast system to be end-to-end reliable with
tolerance to r failures, if after removing simultaneously r
nodes from the multicast tree and restoring connectivity,
transmission can be continued, and all remaining nodes
receive entire transmission in the same sequence. In other
words, failure of r nodes does not lead to any changes
in the sequence or content of the stream received at the
remaining nodes. However recovering from failure may
incur a delay, which is required to restore connectivity.

During the time when the system is recovering from
r failures, it is not guaranteed to recover correctly from
any additional failures. However if l, for some 1 ≤ l ≤ r,
failures occur, the system will be able to recover from
additional (r − l) failures even if the failures happen
before the system has completely recovered. In such
situations new failures occurring during recovery will
increase total recovery time.

Let Bmax
OUT and Bmax

IN be the maximum sizes of output
and input buffers in the system, respectively. A backup
buffer of order r has size (r · (Bmax

OUT + Bmax
IN ) + Bmax

OUT ).

Failure Recovery and Leave/Join Operations. We
use the following simple algorithm to recover from
failures and restore connectivity when nodes leave. We
shall call node (k′, l′) surviving ancestor of node (k, l), if
the mother of node (k, l) did not survive the failure, and
(k′, l′) is the first surviving node on the path from (k, l)
to the root. Each disconnected end-system (k, l) must be
reconnected to a node that belongs to the subtree of the
surviving ancestor (k′, l′). After connection is restored,



the node (k′, l′) stops receiving and retransmits all pack-
ets contained in its backup buffer. Then it continues the
transmission as usual. Intermediate nodes on the new
path from (k′, l′) to (k, l), as well as all nodes in the
entire subtree of (k, l), must be able to ignore the packets
that they have already received, and simply forward them
to downstream nodes. Proof of the following theorem
and a more detailed description of leave/join procedures
are presented in [19].

Theorem 2 An overlay multicast system with backup
buffer of size (r · (Bmax

OUT + Bmax
IN ) + Bmax

OUT ) is end-to-end
reliable with tolerance to r simultaneous and consecutive
failures in a chain of the tree.
Note that this result is slightly stronger than the tolerance
to r failures. A backup buffer of order r can tolerate r
consecutive failures in a chain.

In the case with random failures, an interesting ques-
tion is that of the evaluation of the stationary probability
of network failures (defined as node failures which
cannot be recovered), in function of the backup buffer
size (r), the node failure rate and the recovery rate. The
simplest model is when we assume that the times in
between node failures are independent and identically
distributed (i.i.d.) exponentials, and that node recovery
times are i.i.d. exponentials too, then the network failure
probability can be upper bounded by the loss probability
in the M/M/r/r queue, where the service times are the
recovery times and the arrivals correspond to node fail-
ures. Of course, a realistic model would have an arrival
rate that depends on the size of the tree, and possibly
more general statistics than exponential. The analysis of
such scenarios will be the topic of a companion paper.

V. SIMULATION AND EXPERIMENTAL RESULTS

We have carried out extensive simulations and a num-
ber of experiments in order to support and complement
our theoretical investigations presented in the previous
two sections. In this section, we report and comment on
these empirical results.

A. Scalability Analysis using Simulation

We first report the simulation studies on the scalability
issue. In particular we analyze the throughput obtained
for long file transfers in large groups. We use for this
purpose a (max,plus) simulator based on the evolution
equations of §III-B. Its main advantage of this equation-
based simulator compared to the traditional discrete-
event simulators is that it allows one to handle much
larger trees.

We have chosen MSS=100B, so that a packet is
200B (see the discussion at the end of §III-A). In each

simulation run, we simulate the transmissions of 10M
packets (or 2GB of data). We only report results on
the complete binary tree case. Each TCP connection
involved goes through 10 routers in series, and all the
packets transmitted on this connection have an indepen-
dent probability p to get a negative feedback (loss or
ECN marking). By default, p = 0.01.

In this paper we choose BIN = 50 packets (i.e. 10KB),
and BOUT varies as 50,100,1000 and 10 000 packets
(resp. 10KB, 20KB, 200KB, 2MB). Consequently, for
each connection Wmax = min(BIN, BOUT) = 50 packets.

As is described in § III, the cross traffic is character-
ized by the Aggregated Service Times in each router. In
these simulations we have considered both exponential
(the default option) and Pareto random values with mean
equal to 10ms for each router/link.

Throughput Scalability. We have simulated complete
binary trees of sizes up to 1023 nodes, with different
variants of handling of losses: TCP RENO type (with
fast retransmit), TCP SACK and TCP over ECN. We
also considered the impact of output buffer size. Figure 3
(left) illustrates the throughput as a function of the group
size in the case of TCP SACK. It is easy to see that, quite
intuitively, the group throughput is a decreasing function
of the group size and an increasing function of the
output buffer size. Observe that when the output buffer
is large (say more than 1000 packets), the throughput
flattens out very quickly with small groups (less than 10
nodes). For smaller output buffers, the convergence to the
asymptotic throughput can be observed when the group
size reaches 100 nodes. The two other variants of TCP
exhibit similar behavior: with the same configuration,
TCP without SACK has a throughput that is about 8%
less than that of TCP SACK; whereas TCP over ECN has
slightly better throughput with about 2% improvement
over TCP SACK.

Comparison between Asymptotic Throughput and
Single Connection Throughput. In [17] it was shown
for the case without back pressure that the group
throughput is equal to the minimum of those of the
single connections without constraint on the packet avail-
ability at the senders (such throughput is referred to
as local throughput). Thus, for the homogeneous case,
this translates into the fact that the group throughput
is identical to the local throughput. In our case, there
is no hope that such a relation holds due to the back
pressure mechanisms. It is however interesting to know
how far the group asymptotic throughput is from the
local throughput. In the following table, we report the
ratio of these two quantities:



Buffer (Pkts) 50 100 1,000 10,000
TCP RENO .83 .90 .98 .99
TCP SACK .86 .92 .99 .99
TCP ECN .87 .92 .99 .99

It is worthwhile observing that the group throughput
with large output buffers is very close to the local
throughput. In other words, large output buffers alleviate
in a very significant way the effect of the back pressure
mechanisms. Even if the output buffer is small, say 50
packets (identical to the input buffer), the degradation of
the group throughput due to back pressure mechanisms
is moderate (less than 18%).

Remark: The previous result, which shows that back-
pressure leads to moderate throughput degradation, is
not restricted to the homogeneous case. Under the
heterogeneous model assumptions, a simple stochastic
monotonicity argument shows that the group throughput
is larger than that of the homogeneous case where each
connection is replaced by a connection stochastically
equivalent to the one with the worst long term average.
So, if we consider the same metric as above, namely the
group throughput degradation compared to the reference
throughput (the minimum long term average throughput
among all point to point connections in a stand-alone
mode), then the degradation in the heterogeneous case
is less than that of the homogeneous one.

Impact of Cross Traffic Distribution. In our model,
cross traffic at the routers is represented through aggre-
gated service times. The impact of the distribution of
aggregated service times is studied in Figure 3 (mid-
dle) via simulation. In this figure, we plot the group
throughput as a function of the group size for exponential
and Pareto distributions with different parameters. We
can see that the heavier the tail of this distribution,
the smaller the throughput. We also observe that even
for heavy tail distributions like Pareto, when the second
moment is finite (e.g. for the case with parameter 2.1)
the throughput curve has a shape similar to that of
the exponential distribution. However, when the second
moment no longer exists, the throughput curve decays
much faster. This suggests that the light tail distribution
assumption in Theorem 1 might possibly be relaxed and
replaced by some moment conditions (see §VI).

Impact of Packet Loss Probability. As we pointed
out earlier in this section, the asymptotic group through-
put is relatively close to the throughput of a single con-
nection (i.e. local throughput) when the output buffer is
large. We have done extensive simulations which suggest
that, even with the back pressure mechanisms, the group
throughput has a similar shape as that of the single-
connection throughput. Figure 3 (right) illustrates the

group throughput as a function of packet loss probability
in a particular case. One immediately notices that the
single connection throughput (i.e. local throughput) is
very close to those of the group of size 126.

B. Experimental Results of Scalability and Reliability

In order to evaluate practicality of our models, we have
implemented a prototype of TCP overlay multicasting
system. We used Planet-Lab network [21] which gives
access to computers located in universities and research
centers over the world. Our implementation runs a sepa-
rate process for each output and input buffer, which are
synchronized via semaphores and pipes. As soon as data
is read from input buffer, it is available for outgoing
transmissions. A separate semaphore is used to ensure
that data is not read from input socket, if it can not be
sent to output buffers, which creates back-pressure. A
dedicated central node was used to monitor and control
progress of experiments.

Scalability Analysis. To analyze scalability of
throughput, we constructed a balanced binary tree of
63 nodes connected to the Internet. We started simul-
taneously transmissions in balanced sub-trees of sizes
15, 31 and 63 with the same root. Running experiments
simultaneously allowed us to avoid difficulties associated
with fluctuation of networking conditions. In this way,
link capacities are always shared between trees of differ-
ent sizes in roughly equal proportions across the trees.
We measured throughput in packets per second, achieved
on each link during transmission of 10MB of data.
Throughput of a link was measured by receiving node.
In the following table, we summarize group throughput
measurements for 3 different tree sizes and 3 different
settings for output buffer size. Group throughput is com-
puted as the minimum value of link throughput observed
in the tree. Similarly to our simulations presented above,
size of each packet is 200 bytes, size of the input buffer
is 50 packets, and size of the output buffer is variable.

Group size: 15 31 63
Buffer=50 Pkts 95 86 88

Buffer=100 Pkts 82 88 77
Buffer=1000 Pkts 87 95 93

One can observe that the group throughput changes
very little in the group size. This is consistent with the
simulation results reported above, although as is quite
expected, the absolute numbers are different.

Reliability Analysis. To verify our approach to re-
covery after failures, we implemented a failure-resistant
chain of 5 nodes running on Planet-Lab machines. Dur-
ing the transmission of 10 megabytes of data, two of
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5 nodes fail. The failures are not simultaneous, and
the system needs only to be resistant to one failure. In
this experiment we limit both input and output buffer
size to 50 packets. As in the previous experiment, size
of each packet is 200 bytes (MSS=100 bytes). Our
failure recovery algorithm needs a backup buffer of size
150 in this case. We have performed 10 runs of this
experiment and measured group throughput, reconnec-
tion time and the number of redundant packets that
are retransmitted after the connection is restored. Recall
that in our architecture, the packet sequence numbers
do not need to be advertised during the re-attachment
procedure. Thus the daughter nodes of the failed node
may receive duplicated packets after the connections are
re-established. These redundant transmissions can impact
the group throughput.

In our implementation, the failing node closes all
its connections, and failure is detected by detecting
dropped connections. After the failure is detected, the
orphaned daughter node listens for an incoming con-
nection from the surviving ancestor. We measure the
interval between the time when failure is detected, and
the time when connection is restored. This time interval
is measured separately at the two participating nodes:
surviving mother (M), and daughter (D). The results of
our measurements are summarized in Figure 4 (top).
The average reconnection time in seconds and number
of retransmitted packets per one failure are given per
one failure. The average group throughput is given per
experiment. In these experiments, the average number
of retransmitted packets is about half of the backup
buffer size. The TCP sessions are re-established in a
few seconds, in the same order as the TCP timeout. As
the failure detection can be achieved in a few seconds
as well, our experiment results show that the entire
procedure of failure detection and reconnection can be
completed in a few seconds.

Scalability vs. Reliability. Simulation results pre-
sented above have shown that when there are no fail-
ures, the larger the buffers the more scalable the group
throughput is. However, with larger buffers, the backup
buffer size has to be increased proportionally in order to
guarantee the end-to-end reliability. The above experi-
ment showed that when failures do occur, the redundant
transmissions will be increased as a consequence of
larger backup buffers. These redundant transmissions
will in turn reduce the group throughput. We here inves-
tigate into this issue. We consider a chain of 10 nodes
and we generate 2, 4 and 6 failures (in a sequential way,
so that the system just need to tolerate 1 failure). Figure 4
(bottom) reports the throughput measurements obtained
with these settings and with different output buffer sizes.
The backup buffer size is set to the input buffer size and
twice the output buffer size. It is interesting to see that
when the buffer sizes increase, the group throughput can
actually decrease. While we cannot make general claims
based on these observations alone, these experiments do
show that the throughput monotonicity in buffer size
no longer holds in the presence of failures. The more
frequent the failures are, the more severe (negative)
impact large buffers would have on the group throughput.

min average max
Thput (Pkts/sec) 49.05 55.24 57.65

# of Retransmitted Pkts 34 80.5 122
Reconnection time (D) 0.12 3.53 5.2
Reconnection time (M) 0.27 3.81 5.37

Buffer (Pkts) 50 200 500 1000
for 2 failures 25.6 26.8 45.2 31.5
for 4 failures 29.2 28.8 36.4 27.2
for 6 failures 30.9 28.8 30.8 24.0

Fig. 4. End-to-End Reliability Experiments in Planet-Lab (top),
Scalability vs End-to-End Reliability: Throughput in KB/s (bottom).



VI. CONCLUSIONS

Our first conclusion is that reliable multicast overlays
can be deployed on top of the current TCP/IP by adding
a light set of application layer back-pressure mechanisms
that guarantee both end-to-end flow control and reliabil-
ity. The one-to-many TCP overlay architecture is TCP
based and hence TCP friendly; in particular it adapts
the local rate in each part of the tree to the state of
congestion of this part. It is also fully decentralized in
that the control actions taken by any given point to
point TCP connection propagate to the whole tree via
neighboring end-systems only; in particular, there is no
need for end-systems to send information back to the
root of the tree as in rate control based architectures.

A second important observation concerns the fear that
as more and more TCP connections get interconnected
in such a multicast overlay, some slow down experienced
by distant connections might propagate to the root via
back-pressure, leading the group throughput to vanish
as the number of end-system grows. We have shown
that such a fear has no grounds, provided all point to
point connections that are used within the overlay use
routes that offer minimal quality guarantees and provided
the fan-out degree of the multicast tree is bounded.
Such architectures can be used for group communica-
tions of arbitrarily large sizes and still provide a group
throughput that is close to that of a single point to point
connection with these minimal guarantees.

Surprisingly, this conclusion holds true even in the
case of moderate input and output buffers. Moderate
buffers even seem to be a good tradeoff within this con-
text: they allow more efficient recovery mechanisms in
case of failures and, according to our simulation results,
they do not affect too severely the group throughput if
not too small. An optimal buffer size offering a good
compromise between throughput and reliability could in
principle be advertised to the group.

One possible extension of this work is to consider
structures other than a single multicast tree to achieve
higher throughput and resiliency. Multiple distribution
trees can be used simultaneously, see for example Split-
Stream [22] and CoopNet [23]. SplitStream splits the
data into a number of sections and dispatches the sections
to different edge-disjoint trees. Indeed, the framework
that we propose can readily be applied in this context.
Each multicast tree can be implemented using the one-to-
many TCP Overlay, thus reaching throughput larger than
that of a single tree, while preserving the scalability and
reliability characteristics of our architecture.

Another direction of future investigation is the relax-
ation of the light-tail assumption made in Theorem 1.
Indeed, in the case of an infinite chain (a special case of

tree), it can be shown, by applying a result of [24], that
when the aggregated service times have finite moments
of order more than two, then the group throughput is
lower bounded by a strictly positive constant. Our simu-
lation results also suggest that such a moment condition
might be sufficient for the scalability in the tree case.
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