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ABSTRACT
In this paper, we consider a set of HTTP flows using TCP
over a common drop-tail link to download files. After each
download, a flow waits for a random think time before re-
questing the download of another file, whose size is also
random. When a flow is active its throughput is increas-
ing with time according to the additive increase rule, but
if it suffers losses created when the total transmission rate
of the flows exceeds the link rate, its transmission rate is
decreased. The throughput obtained by a flow, and the
consecutive time to download one file are then given as the
consequence of the interaction of all the flows through their
total transmission rate and the link’s behavior.
We study the mean-field model obtained by letting the

number of flows go to infinity. This mean-field limit may
have two stable regimes : one without congestion in the
link, in which the density of transmission rate can be ex-
plicitly described, the other one with periodic congestion
epochs, where the inter-congestion time can be character-
ized as the solution of a fixed point equation, that we com-
pute numerically, leading to a density of transmission rate
given by as the solution of a Fredholm equation. It is shown
that for certain values of the parameters (more precisely
when the link capacity per user is not significantly larger
than the load per user), each of these two stable regimes
can be reached depending on the initial condition. This
phenomenon can be seen as an analogue of turbulence in
fluid dynamics: for some initial conditions, the transfers
progress in a fluid and interaction-less way; for others, the
connections interact and slow down because of the result-
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ing fluctuations, which in turn perpetuates interaction for-
ever, in spite of the fact that the load per user is less than
the capacity per user. We prove that this phenomenon is
present in the Tahoe case and both the numerical method
that we develop and simulations suggest that it is present
in the Reno case too. It translates into a bi-stability phe-
nomenon for the finite population model within this range
of parameters.

Categories and Subject Descriptors
H.3.4 [Distributed systems, Performance evaluation]

General Terms
Performance, Theory

1. INTRODUCTION
Modeling TCP through the fairness it achieves (or equiv-

alently the utility functions that it optimizes) has been a
very active area of research since the work of Kelly in [15].
A general extension of this framework to dynamic traffic
with a large number of flows is described in [10]. In [18]
this framework is used to study the performance of net-
works with dynamic traffic (in [18] files to be transmitted
arrive according to a Poisson process), with several types
of fairness assumptions. In [12] the results proven in this
previous paper are extended to a Poisson arrival process
of sessions, each associated with a file download having a
general distribution. [12] contains a proof that if the net-
work can be modeled by a processor sharing (PS) queue -
or equivalently if instantaneous fair sharing can be assumed
in the network - then the mean throughput only depends
on the average requested size per session. Comparison with
simulations is provided but as the authors themselves re-
marked, this result might be challenged in real networks
either for very small flows, that do not last long enough
to benefit from their possible fair share in the network ca-
pacity, or for close to critical load where the discrimination
between flows and the unequal sharing due to TCP are
more frequent.
At the same time, a few papers focused on TCP band-

width sharing for dynamic traffic when taking into account
the AIMD rule. In [14], one of the first models developed on
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dynamic traffic, a version of the Engset model is proposed
and shown to be insensitive w.r.t the file size distribution.
TCP is modeled as a constant transfer rate calculated from
the study of TCP sharing for a fixed number of persistent
flows that are exactly in phase (increasing their window and
decreasing it by the same amount at the same time). This
model is extended by Kherani and Kumar under exponen-
tial assumptions in [16] where the inter-congestion period
and the increase of the total rate is now dynamically chang-
ing with the traffic. In this model the flows contributing
to the traffic are all in phase (they all react together at
the same time and in the same way); the analytical result
cannot be explicitly given in the general case but only in
the low load, large file case where TCP bandwidth can be
approximated by a completely fair allocation.
Our work extends these two papers and proposes a new

simple model for interacting HTTP flows sharing a com-
mon link. We are not assuming that the flows are in phase
or that they share the bandwidth equally. We study the
asymptotics of a model with N ON/OFF flows sharing
a link according to TCP, when N tends to infinity. In
the ON/OFF source model each source alternates between
OFF periods and file transfers where both the file sizes and
the OFF periods are independent random variables, with
given distribution functions on the positive real line. We
will consider two cases: the Reno case based on the addi-
tive increase multiplicative decrease (AIMD) rule for the
transmission rate and the Tahoe case (the Reno case will
be the default assumption throughout the paper).
It is well known that within the context of the Internet,

it is appropriate to assume that the distribution of file sizes
and OFF periods have heavy tails (e.g. Pareto file sizes and
Weibull or lognormal OFF periods, as for example in [10]).
However, in the mathematical part of the present paper, we
will assume heavy tails because we are unable to solve the
associated mathematics at this stage (nor can the rest of
the scientific community to the best of our knowledge). We
will rather concentrate on the version of the problem where
both file sizes and OFF periods are exponential random
variables and where all files and OFF times are mutually
independent.
Why study a model based on statistical assumptions that

are clearly inappropriate? The rationale is as follows: the
exponential case is tractable and allows one to identify and
prove the presence of phenomena that are also observed by
simulation in the heavy tailed case. So the mathematical
study based on the exponential case will be important step
in the direction of the understanding of the interaction of
HTTP flows with the more realistic statistics.
In the mathematical analysis, we assume the existence of

a stationary deterministic mean-field limit when the num-
ber of flows goes to infinity. In this deterministic limit
there are two possible stable regimes. If the file sizes are
small enough the link is able to carry all the traffic without
congestion. The average transmission rate stabilizes at a
value calculated below giving an overall utilization of the
link which is less than one. In the other stable regime there
is a series of congestion epochs where the buffer overflows
and the active flows experience losses and cut their trans-
mission rate in two. The main aim of this paper is to inves-
tigate these two regimes, and in particular the conditions

under which they appear and the stationary distributions
they lead to.
Section 2 gives a necessary condition for the existence of

stationary regimes with congestion epochs. This necessary
condition is based on the rate conservation principle which
allows one to pose a fixed point problem for the rate of con-
gestion epochs. The numerical aspects associated with this
fixed point equation are discussed in detail in this section:
the functions that are used in this fixed point equation are
obtained as the solutions of Fredholm integral equations
of the second kind, which are derived from a regenerative
analysis of the rate of a tagged flow. This leads to an ef-
ficient way of calculating the possible values of the period
of the mean-field model.
Section 3 focuses on a necessary and sufficient condi-

tion for the existence of stationary regimes with conges-
tion epochs. For this, we first study the interaction-less
regime, for which we establish a partial differential equa-
tion. We give both an explicit solution of this PDE and an
efficient numerical way to solve it via yet another Fredholm
equation of the second type, which has a natural regener-
ative interpretation. We then establish an invariant equa-
tion describing, for a given inter-congestion period of the
mean-field process, the stationary distribution of rates at a
congestion epoch. The existence of a probability measure
solution of this invariant measure equation which satisfies
the certain conditions (explained in the paper) is a nec-
essary and sufficient condition for the existence of such a
periodic congestion regime. The associated integral equa-
tion is again a Fredholm integral equation of the second
kind.
One of the key observations is made in Section 3 : within

this setting, it is possible to have multiple stationary mean-
field regimes depending on the initial conditions: for cer-
tain values of the parameters, there exist both a ”fluid
regime” where flows do not interact at all and a ”turbulent
regime” where the fact that flows interact once implies a
slow down of the whole system that propagates interaction
forever.
Section 4 extends the approach to a model with a simple

representation of slow start. Section 6 gathers simulation
results on the bi-stability phenomenon and on the case with
heavy tailed file sizes and OFF-times. We show by simula-
tion and analysis that the phenomena that are identified in
the exponential model are also present in the heavy tailed
case. Section 5 focuses on the comparison of our results
with those of earlier models of the literature. In particular,
we compare this model to the PS Engset model.

2. A NECESSARY CONDITION FOR THE
EXISTENCE OF A REGIME WITH
PERIODIC CONGESTION

2.1 Model
We suppose N HTTP flows share a link which has no

buffer or rather a small buffer that cushions collisions. The
link rate is CN packets per second so the link drops packets
at random when the transmission rates of the flows exceed
the link rate. We assume each HTTP flow is silent for an
exponential time with a mean 1/β. After the silence period
the flow transmits a file where the distribution of file sizes
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is exponential with a mean 1/µ. The default option is
that each flow implements TCP Reno so the transmission
rate increases at rate 1/R2 during the transmission of a file
where R is the round trip time of packets. When the file
has been transmitted the transmission rate is reset to zero.
The interaction between flows is via the sum of their

rates. As long as this sum, which we refer to as the ag-
gregate rate, is less than NC, then there is no interaction
between the flows. When the aggregate rate reaches the
link capacity CN , an event that we call a congestion epoch
occurs. For the sake of tractability, we assume that all
losses taking place before the flows react take place instan-
taneously. This reaction consists in the fact that Reno may
cut the rate given to each of the N flows independently
with a probability p. The parameter p, which is the pro-
portion of flows that experience a loss at such a congestion
epoch, is called the synchronization rate of the model (this
parameter is evaluated from queueing theory by Baccelli
and Hong in [6]). After this reaction, the aggregate rate is
again less than C and a new interaction-less phase starts.
In the TCP-Tahoe case, the rate of flows that experienced
a loss is reset to 0.

2.2 Rate Conservation
Define X(t) to be the transmission rate of a tagged flow

participating in the steady state. Assume that there exists
a stationary regime for X(t), namely that it is a stationary
stochastic process defined on a probability space {Ω,F , P}.
The distribution of X(t) is therefore the distribution of all
the transmission rates in the steady state. X(t) increases
linearly at rate 1/R2 when it is active; i.e. with mean rate
P(X(0) > 0)/R2. This increase is counteracted by negative
jumps when a file finishes and the transmission rate drops
to zero. It is also counteracted by a reduction by one half
when a packet is lost at a congestion epoch.
The following point processes will be useful:

• T , the point process of congestion epochs, with inter-
arrival times τ , with Palm expectation E

τ
0 ; let τ̄ de-

note the expectation of the inter-congestion times
w.r.t. P

τ
0 ;

• D, the point process of file completions of the tagged
flow, with intensity λδ and with Palm expectation E

δ
0.

When a file is completely downloaded, the throughput
is reset to zero. Hence, with the introduced notation, the
rate of decrease of the transmission rate due to file com-
pletions is λδE

δ
0(X(0

−)). In addition to that, the mean
rate at which the tagged flow suffers a packet loss is p/τ̄ ,
and the tagged flow divides its transmission rate by 2 for
each loss. Consequently the rate of decrease of the trans-
mission rate due to packet loss is p

τ̄
E
τ
0 [X(0−)/2]. Since the

utilization is exactly one when the congestion epoch begins
it follows that E

τ
0 [X(0−)] = C so the rate of decrease of

the transmission rate due to packet loss is pC/(2τ̄).
By the rate conservation principle (RCP, see e.g. [4],

Chapter 1), the mean rate of increase equals the mean rate
of decrease. So

P(X(0) > 0)

R2
=
pC

2τ̄
+ λδE

δ
0[X(0

−)]. (1)

On the left hand side the unknown quantity is the steady
state probability that a flow is active while on the right

hand side we have λδ, the rate at which file completions
occur and E

τ
0 [X(0

−)], the mean transmission rate observed
when the file is completely downloaded.
In the Tahoe case, the RCP equation reads

P(X(0) > 0)

R2
=
pC

τ̄
+ λδE

δ
0[X(0

−)]. (2)

In what follows, the RCP will be used as a way to de-
termine the possible values of τ . As we shall see in §2.3
below the expressions that show up in the RCP equation,
namely P(X(0) > 0) and E

δ
0[X(0

−)] can be computed as a
function of τ , so that this equation can be seen as a fixed
point equation for τ .

2.3 The Fredholm Equations
In this section and in the rest of the paper, we let the

parameter N tend to ∞ and we assume the existence of a
stationary mean-field limit as N → ∞ in the same spirit
as in [7], [10] or [6]. In such a mean-field regime the inter-
congestion times become deterministic and we have prop-
agation of chaos; i.e. each flow becomes independent. We
will concentrate on the case where the stationary regime of
the mean-field limit has inter-congestion times are all equal
to some constant τ .
We will see below that when assuming τ known, all quan-

tities in Equation (1) can be computed as the solutions of
certain Fredholm integral equations, and that (1) can be
used as fixed point for determining τ .
In this section, we assume τ to be given. We define a

cycle to start at a congestion epoch where the tagged flow
is idle. The cycle ends at the first congestion epoch when
the flow is idle again. We use the following notation :

• Σ is the point process of congestion epochs where the
tagged flow is idle, with inter-arrival times σ and with
Palm expectation E

σ
0 .

The rationale for defining such cycles is that the sequence
of successive cycles associated with the tagged flow is i.i.d.
or in other words that the beginning of cycles are regener-
ation times for the tagged flow.

2.3.1 Expected number of files in a cycle
Define f(t) to be the expected number of files that will

be transmitted by the end of the current cycle given that
the tagged flow is inactive at the current time t (where
0 ≤ t < τ ). Also define g(z) to be the expected number
of files that will be transmitted by the end of the current
cycle given that the current transmission rate of the tagged
flow is z packets per second and that the current time is
immediately after a congestion epoch.
Our goal is to evaluate f(0) but we find f(t) for all

t ∈ [0, τ [. Since the silence period has an exponential dis-
tribution we can condition on the time when the flow has
a new file to transmit. There are two possibilities. Either
the file arrives before the next congestion epoch at some
time r where t ≤ r ≤ τ or it does not. If it has not arrived,
the current cycle ends and f(t) = 0.
If it does, for a time r where t ≤ r ≤ τ , we condition on

the size y of the arriving file. There are again two cases.
Either the transmission of this file is completed before the
next congestion or there is some remaining data to be trans-
mitted after the next congestion epochs. We are in the first
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case if we can transmit y packets in τ − r time units given
that the flow starts out with transmission rate zero. Since
the transmission rate increases at rate 1/R2 it will take t′

time units to transmit y packets if y = (t′/2)(t′/R2), ; i.e.
if t′ = R

√
2y. Consequently y packets can be transmitted

before the next congestion epoch only if y ≤ (τ−r)2/(2R2).
In this case we add one to the number of files transmitted
during the current cycle plus a renewal term. We can sum-
marize this first case by∫ τ

t

βe−β(r−t)

∫ (τ−r)2

2R2

0

µe−µydy(1 + f(r +R
√
2y)

 dr.
In the second case the y packets cannot be transmitted

before the next congestion epoch. In this case, which oc-
curs with probability exp(−µ(τ − r)2/(2R2)), we do not
add one to the number of files transmitted, but only the
expected number of files transmitted after the next con-
gestion epochs. It depends on the throughput seen after
congestion : by the congestion epoch the transmission rate
of the tagged flow is (τ − r)/R2. There is probability p
that the tagged flow suffers a packet loss which reduces the
transmission rate to (τ − r)/(2R2).
We can summarize the expected number of files that will

be transmitted by the end of the current cycle given we are
in this second case as∫ τ

t
βe−β(r−t)e−µ

(τ−r)2

2R2
(
pg( τ−r

2R2 ) + (1− p)g( τ−r
R2 )

)
dr.

We conclude that f(t) is given by :∫ τ

t

βe−β(r−t)
{∫ (τ−r)2

2R2

0

µe−µy(1 + f(r +R
√
2y))dy

+e
−µ (τ−r)2

2R2
(
pg(
τ − r
2R2

) + (1− p)g(τ − r
R2

)
)}
dr. (3)

By similar arguments (see [5]), g(z) can be written :∫ zτ+ τ2

2R2
0 µe−µy(1 + f(R

√
R2z2 + 2y −R2z))dy

+e
−µ(zτ+ τ2

2R2 )
(
pg(

z+ τ
R2
2

) + (1− p)g(z + τ
R2 )

)
. (4)

Equations (3) and (4) constitute an integral equation of the
Fredholm type for the pair (f, g).

2.3.2 The three unknowns of the RCP equation
One can get similar Fredholm equation for determining

the pairs of functions (h, i), (j, k) and (l,m) where:

• h(t) is the expected cumulative time that the flow is
active in the remaining time of the current cycle given
that the tagged flow is inactive at the current time t
with 0 ≤ t < τ .

• i(z) is the expected cumulative time that the flow
is active in the remaining time of the current cycle
given that the current time is immediately after a
congestion epoch, and that the tagged flow is active
with a transmission rate of z.

• j(t) is the expected residual time before the end of the
current cycle given that the tagged flow is inactive at
the current time t with 0 ≤ t < τ .

• k(z) is the expected residual time before the end of
the current cycle given that the current time is imme-
diately after a congestion epoch, and that the tagged
flow is active with a current transmission rate of z.

• l(t) is the expected cumulative throughput reductions
due to file completions from now to the end of the
cycle given that the tagged flow is inactive at the
current time t with 0 ≤ t < τ .

• m(z) is the expected cumulative throughput reduc-
tions due to file completions from now to the end of
the cycle given that the current time is immediately
after a congestion epoch, and that the tagged flow is
active with a rate of z.

The knowledge of

• E
σ
0 [KB ] := f(0), the mean number of births during a

cycle (which is also the mean number of file comple-
tions during a cycle;

• E
σ
0 [
∫ σ
0
1X(t)>0dt] = h(0), the mean cumulative ON

time over a cycle;

• E
σ
0 [σ] = j(0), the mean duration of a cycle and

• E
σ
0 [
∫ σ
0
X(t−)D(dt)] = l(0), the mean cumulative through-

put reductions due to file completions over a cycle

in turn determines the 3 unknowns of (1) since:

λδ =
E

σ
0 [KB ]

Eσ
0 [σ]

= f(0)
j(0)

E
δ
0[X(0−)] =

E
σ
0 [
∫ σ
0 X(t−)D(dt)]

Eσ
0 [KB ]

= l(0)
f(0)

P(X(0) > 0) =
E

σ
0 [
∫ σ
0 1X(t)>0dt]

Eσ
0 [σ]

= h(0)
j(0)
.

Notice that the product λδE
δ
0[X(0−)] which is used in (1) is

equal to l(0)
j(0)

so that the (f, g) pair is actually not required

for solving this fixed point equation.

2.4 Numerical Evaluation of the Fixed Point
In this section we present the method that we developed

to numerically study the fixed point equation satisfied by τ .
The main result is a common linear equation describing the
integral equations for the pairs (f, g), (h, i), (j, k), (l,m).
Each of the pairs of functions (f, g), (h, i), (j, k), (l,m)

satisfies a Fredholm equation of the second type where all
equations share some common terms. It is shown in [5]
that the general form of these equations is as follows: we
look for a functions A, defined on [0; τ ] and a function B
defined on [0; +∞[ such that they verify Equation (5). In
this equation, κ = µ/(R2) and the functions U and V are
given in the following table for all 4 cases:

A(t) B(r) U(r) V (r)
f(t) g

(
r
R2

)− 1 1 0
h(t) i

(
r
R2

)
aτ (r) bτ (r)

j(t) k
(
r
R2

)
aτ (r)

1
β
+ bτ (r)

l(t) m
(
r
R2

)− r
R2

aτ (r)+ p
2 cτ (r)

R2
bτ (r)+ p

2 dτ (r)

R2

with the functions aτ , bτ , cτ , dτ defined as:

aτ (r) =
∫ τ
r
e−κ

(s−r)2

2 ds ; bτ (r) =
∫ τ
0
e−κ

s2+2sr
2 ds

cτ (r) = (τ − r)e−κ (τ−r)2

2 ; dτ (r) = (r + τ )e−κ
τ2+2τr

2 .
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A(t) =

∫ τ

t

βe−β(r−t)
(
U(r) +

∫ τ

r

κ(s− r)e−κ (s−r)2

2 A(s)ds+ e−κ
(τ−r)2

2

(
pB(

τ − r
2

) + (1− p)B(τ − r)
))
dr .

B(r) = V (r) +

∫ τ

0

κ(r + s)e−κ
s2+2sr

2 A(s)ds+ e−κ
τ2+2τr

2

(
pB(

τ + r

2
) + (1− p)B(τ + r)

)
. (5)

Let (Γ(t), Γ̃(r)) be the solution (A,B) of Equation (5)

for (U, V ) = (1, 0), let (Θ(t), Θ̃(r)) denote the solution for

(U, V ) = (aτ , bτ ), and let (∆(t), ∆̃(r)) be the solution of
this equation for (U, V ) = (cτ , dτ ). According to the last
table, we have :

Γ(t) = f(t) ; Θ(t) = h(t) and, as Equation (5) is linear,

1

β
Γ(t) + Θ(t) = j(t) and

Θ(t)− p
2
∆(t)

R2
= l(t).

We numerically solve Equation (5) in the following way.
First, we set B(r) = 0 for x > Kτ . This is motivated by
the fact that for physical reasons B(r) has to decrease as
r increases, a fact that can be proved mathematically, but
we omit the proof here. Second, we discretize the functions
A(t) and B(r) uniformly with a density of M samples per
interval of length τ . So, the function A(t) is approximated
by a vector of M samples and B(r) by a vector of KM
samples. We stack both vectors and hence obtain a vector
of dimension (K+1)M . Approximating the integrals in (5)
by weighted sums of the samples of the functions, Equa-
tion (5) reduces to a matrix equation. Solving this matrix
equation involves the inversion of a (K +1)M × (K +1)M
matrix. The numerical error introduced in this procedure
can be controlled by the choice of the parameters K and
M (see [5]).

2.5 Determination of τ
As shown above, τ satisfies the following equation :

pC

2τ
+
l(0)

j(0)
=

1

R2

h(0)

j(0)
i.e. C =

(
∆(0)

1
β
Γ(0) + Θ(0)

)
τ

R2
.

(6)
This form is valid both for the Reno and the Tahoe cases,
for appropriate definitions of Θ and Γ. In Figure 1, we have
computed the right-hand side of the rightmost equation in
(6), which does not depend on C, as a function of τ for a
fixed setting of the parameters 1/β = 2s, 1/µ = 2000 Pkts,
R = 100ms, p = 0.8 On this plot we can see that if the
link capacity is large enough there is no value of τ making
this function vanish (here for C = 290 Pkts/s.). In this
case, the only possible stable regime is congestionless. For
smaller values of the capacity, we observe either two fixed
points (e.g. for C=270 Pkts/s.) or one (e.g. for C=250
Pkts/s.). In the case with two solutions, we have several
candidates for a stable regime, with different periods. In
the next section we will present a method helping to distin-
guish between solutions that may be the inter-congestion
time of a stable regime and other solutions. From Figure
1 we can conclude more:

• for all C-values above 273.4 Pkts/s. (283.3 in the
Tahoe case), there are no intersections;

• for 263 < C < 273.5 Pkts/s. (263 < C < 283.3 in the
Tahoe case), there are two intersections and

• for C < 263 Pkts/s., there is only one intersection.

Figure 1: The RHS of (6) as a function of τ ; the
fixed points are the intersections of this RHS with
the horizontal line C, in the Reno and the Tahoe
cases.

2.6 The Tahoe Case
Given τ , the rate of the tagged flow is again a regenera-

tive process with the same cycle structure as in the Reno
case, namely starting with a congestion period when the
rate of the tagged flow is 0 and ending at the next conges-
tion is again 0. Using the same notation as in the Reno
case, we now get

f(t) =

∫ τ

t

βe−β(r−t) (7)

·
{∫ (τ−r)2

2R2

0

µe−µy(1 + f(r +R
√
2y)dy

+e
−µ (τ−r)2

2R2

(
pg(0) + (1− p)g( (τ − r)

(R2)
)

)}
dr

and

g(z)=

∫ zτ+ τ2

2R2

0

µe−µy(1 + f(R
√
R2z2 + 2y −R2z))dy

+e
−µ(zτ+ τ2

2R2 )
(
pg(0) + (1− p)g(z + τ

R2
)
)
. (8)

All other pairs can be analyzed in the same way (see [5]).

3. A NECESSARY AND SUFFICIENT CON-
DITION FOR THE EXISTENCE OF A
CONGESTION REGIME WITH A GIVEN
PERIOD

We start with a detailed study of the interaction-less
regime (this is the free regime, i.e. the regime when C =
∞), which will be an essential ingredient of the analysis of
the congestion regime which may occur when C < ∞ as
we shall see in §3.2 below.
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3.1 The Free Regime

3.1.1 The free regime regenerative rate process
In the case without congestion, each flow increases its

transmission rate linearly at rate 1/R2 and can transmit a
file of size y packets in time t where y = t2/(2R2); i.e. in
time t = R

√
2y. The density of the transmission time of a

file is µ t
R2 e

− µt2

2R2 (as easily seen by the change of variable

t → v = t2/2R2) and the mean file transmission time is
therefore

TON = R

∫ ∞

0

µ exp(−µy)
√
2ydy = R

√
π

2µ
. (9)

A tagged flow alternates between periods composed of a si-
lence period of exponential duration with parameter β and
a active period of mean duration TON, distributed according
to the above density.
The rate X(t) of the tagged flow at time t is a regenera-

tive process that stays equal to 0 during OFF periods and
increases linearly with time during activity periods. This
stochastic process regenerates after the completion of one
OFF and one ON period. The point process of regeneration
epochs of a tagged flow will be denoted by S.
During each ON period a flow transmits on average 1/µ

packets. Consequently the average transmission rate per
flow is

ρ = (1/µ)/(1/β + TON)). (10)

The proportion ν of flows which are idle is (1/β)/(1/β +
TON)). Notice that the transmission rate equals νβ/µ. This
is intuitively obvious since νβ is the rate at which new flows
come on-line and each new flow must transmit on average
1/µ packets.
Hence when the regime without congestion occurs, the

average transmission rate per flow ρ is less than C; i.e.
νβ/µ < C and

ρ =
νβ

µ
=

(
µ

(
1/β +R

√
π

2µ

))−1

< C. (11)

3.1.2 The free regime PDE
Let ν(t) be the proportion of idle flows at time t. Let

s(z, t) be the density of the transmission rates of active
flows in the mean-field regime (we consider first the case
with a density for the sake of clear exposition). Conse-
quently, ∫ ∞

0

s(z, t)dz = 1− ν(t). (12)

From the partial differential evolution equation intro-
duced by Baccelli et al. in [7] we can see that the density
function verifies the PDE:

∂s

∂t
(z, t) +

1

R2

∂s

∂z
(z, t) = −µzs(z, t). (13)

Multiplied by dz, the second term on the left hand side
represents the rate of change of the proportion of trans-
mission rates in [z, z+ dz] due to the linear increase in the
transmission rate. The right hand side represents the rate
at which files complete transmission since s(z, t)dz is the
proportion of flows with transmission rates in the interval

[z, z+dz] and flows with transmission rates in this interval
complete transmission at a rate µz.
The rate at which flows become active is βν(t) hence in

time dt the area βν(t)dt is added under the graph of s(z, t)
between 0 and dt/R2 because this area is cleared out by the
additive increase in the transmission rates. The area under
the graph of s(z, t) between 0 and dt/R2 is s(0, t)dt/R2 to
first order. Hence,

s(0, t)/R2 = βν(t). (14)

It is shown in [5] using Laplace transform arguments that
s(z, t) satisfies the following Fredholm equation for s(z, t):

s(z, t) = s(z − t

R2
, 0) e

−µ
(
tz− t2

2R2

)
+ e−µR

2 z2
2 R2β(

1−
∫ ∞

0

s(x, t− zR2)dx

)
(15)

which turns out to be quite handy for numerical exploita-
tion as we shall see below. Equation (15) is easy to inter-
pret when considering the two cases: for the rate to be z
at time t, either the transfer of the file transmitted at time
0 is not yet completed at time t, which requires that the
rate was z − t/R2 ≥ 0 at time 0, or it is completed, which
requires that the flow was inactive at time t− zR2 > 0 and
there was a transition from inactive to active at that time.
In fact it is clear that (15) can be generalized to describe
the evaluation of a measure S(dz, t) representing the dis-
tribution of transmission rates at time t starting from an
arbitrary measure S(dz, 0):

S(dz, t) = R2β

(
1−

∫ ∞

x=0

S(dx, t− zR2)

)
e−µR

2 z2
2 dz

+S(dz − t

R2
, 0) e

−µ(zt− t2

2R2 )
. (16)

Let

α(t) =

∫ ∞

0

zs(z, t)dz. (17)

The function α(t) represents the aggregate rate (sum of
the transmission rates at time t where the sum is over all
flows).

Lemma 1. The Laplace transform of α(t),

α̂(u) =

∫ ∞

0

e−utα(t)dt. (18)

is

α̂(u) =
ν(0) β

β+u
Î(u) + Ĵ(u)

1− µ β
β+u
Î(u)

, (19)

where

Î(u) = R2

∫ ∞

0

xe−R
2ux−R2µx2/2dx (20)

and Ĵ(u) is given by

R2

∫ ∞

z=0

eR
2uz+ R2µz2

2 s(z, 0)

∫ ∞

x=z

xe−R
2ux− R2µx2

2 dxdz.

(21)
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Lemma 2. The stationary distribution of the rates is:

ν(∞) =

1
β

1
β
+R

√
π
2µ

, s(z,∞) =
R2e−R

2µz2/2

1
β
+R

√
π
2µ

. (22)

The stationary aggregate rate is:

α(∞) =
1

µ

1
1
β
+R

√
π
2µ

= ρ. (23)

The proofs of these lemmas can be found in [5] where we
also give an interpretation of the transforms of Lemma 1
in terms of renewal theory and a closed form expression for
the solution of the PDE in the time domain.

3.2 The Interaction Regime(s)

3.2.1 The invariant measure equation
Assume there exists a periodic regime of period τ . Then

τ should be a solution of (1). In addition the couple (ν0, S0(dz))
that gives the proportion of OFF sources and the distribu-
tion of rates just after congestion epochs should be invari-
ant w.r.t. the shift that moves from a congestion epoch to
the next.
First τ and (ν0, S0(dz)) should be such that the aggregate

rate function α0 obtained when taking S(dz, 0) = S0(dz)
is such that α0(τ ) = C and α0(t) < C for all 0 < t < τ .
In addition, given that at congestion epochs, a propor-

tion p of the windows are halved, the (ν0, S0(dz)) should
satisfy the integral equation (which will be referred to as
the invariant measure equation)

S0(dz) = (1− p)S(dz, τ ) + pS(d2z, τ ), (24)

where S(dz, t) is the solution of (16) with the initial con-
dition S(dz, 0) taken equal to S0(dz).
When using the explicit solution of the PDE given in the

appendix of [5], one gets that the last integral equation for
S0(.) can also be seen as a Fredholm type integral equation
of the second kind.
In the Tahoe case the transmission rates of active sources

has a measure which must have a point mass at zero at con-
gestion epochs; the invariant measure equation then reads

S0(dz) = (1− p)S(dz, τ ) + pδ0(dz)
∫ ∞

0

S(dv, τ ). (25)

A few remarks are in order before addressing numerical
issues:

• The existence of a couple (ν0, S0(dz))) solution of (24)
and such that the α0(τ ) = C and α0(t) < C for all
t < τ is necessary and sufficient for the existence of a
congestion periodic regime of period τ . Using this, it
is easy for instance to check that in the region where
the RCP equation has two fixed points, the rightmost
fixed point is spurious. This immediately follows from
the fact that the condition α0(t) < C for all t < τ is
not satisfied for this other fixed point.

• The more general problem of finding all possible pe-
riodic regimes can be stated as follows: find all pairs
made of a real number 0 < τ < ∞ and of a cou-
ple (ν0, S0(dz))) such that (24) (or (25) in the Tahoe

case) holds and such that α0(τ ) = C and α0(t) < C
for all t < τ .

• Of course, other stationary regimes are possible like
e.g. periodic regimes where the aggregate rate has
a period that consists of k > 1 congestions, or even
non periodic regimes (although we did not find such
regimes by simulation).

• Injecting the couple (ν0, S0(dz))) as an initial condi-
tion into Equation (15) determines the proportion of
active flows and the throughput distribution of active
flows S(dz, t) for all 0 ≤ t < τ . The mean station-
ary throughput obtained from this function averaged
over continuous time is given by the following cycle
mean:

1

τ

∫ τ

t=0

∫ ∞

z=0

zS(dz, t)dt. (26)

3.2.2 Numerical solution
We have chosen a numerical procedure to find an approx-

imation for s(z, t) based on Equations (15) and (24). We
discretize the function s(z, t) with L + 1 samples over its
time domain (an interval of length τ ) and with a density of
L samples per interval of length τ

R2 over its space domain
(i.e. the z variable). We use L + 1 samples in the time
domain as there is a crucial difference between the time in-
stant just before a congestion epoch (the L-th sample) and
the time instant just after (the 0-th sample). We truncate
the s(z, t) function in the z direction by putting s(z, t) = 0
for z > K τ

R2 . This truncation is motivated by the solution
of the interaction-less system where this function decays
like the tail of a Gaussian distribution.
The discretized version of Equations (15) and (24) define

a matrix equation. Notice that in this case (in contrast
to the case of solving for A(t) and B(r) in §2.4) there are
L2K unknowns and the matrices involved may become very
large. Therefore, we used Equation (15) and (24) as a
recursive rule to calculate an approximation for s(z, t). The
larger L and K are chosen the better the approximation
(but more computations are needed). For the examples
considered in this paper K=5 and L=200 turned out to be
adequate values.

3.2.3 The multiple stationary regime region
In this section, we give both numerical and simulation

evidence showing that the condition that the load factor

ρ = (1/µ)/(1/β + TON))

is less than C (namely the capacity per user is more than
the mean load per user) is not sufficient for having an
interaction-less mean-field regime for all initial conditions.
The numerical part is based on the solution of the set of
Fredholm equations of the last subsections. The simulation
is based on the N2N code [2], a discrete event simulator
which computes the AIMD sharing for a finite number of
ON/OFF flows, interacting through the sum of their rates,
as described in Section 2.1.
We also show that there exist values of the parameters

such that depending on the initial condition describing the
rates of the various flows, one may enter either into an
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interaction-less stationary regime or into a stationary con-
gestion regime.
In the case considered here 1/µ = 2000 Pkts, 1/β = 2 s.,

p = 0.8 and R = 0.1 s. The load factor ρ is then around
263 Pkts/s. We take C = 270 Pkts/s.

• When the initial condition is chosen according to the
stationary law given in (22), then α(t) = ρ for all t
and no congestions occur at all since ρ < C.

• As already shown in Section 2.5, the rate conservation
principle gives two values of τ solution of the fixed
point equation (1), the smallest of which is τ ∼ 3.7s.
Using the solution of the invariant measure equation
of Section 3.2.1, we find that for this value of τ , there
exists a probability measure satisfying the integral
equation (24) and satisfying the key condition that
the associated α function first reaches C at time τ .
The p.d.f of this distribution as obtained by two dif-
ferent methods is depicted in Figure 2 for Reno. The
existence of such a regime is confirmed by the N2N
simulation ([2]) of 1 Million HTTP users with the
above characteristics and sharing a link of capacity
270 Pkts/s. Moreover, the steady state distributions
found by simulation match quite precisely those ob-
tained numerically.

In other words, depending on the initial phases of the flows,
one either enters into a congestionless regime or into a pe-
riodic regime with infinitely many congestions. The first
case occurs when the initial conditions are chosen inde-
pendently for all flows, and each flow is in the stationary
regime it would reach if there were no interaction at all.
The second case occurs if the flows are more in phase: here
all start inactive at time 0.
Here are a few remarks of interest:

• The same period and periodic regime are reached
when the initial condition is that with all flows ini-
tially active and with null rate;

• The largest value of C for which we observe these two
possible stationary regimes is approximately 273.5
Pkts/sec as shown independently by the N2N sim-
ulator and the fixed point method;

• the second solution of the RCP happens to be spuri-
ous. There exists a probability solution of (24) but
the associated α function crosses the C level before
this value of τ .

• Similar results hold for Tahoe. The associated distri-
butions are given in [5].

3.2.4 Dependence of bi-stability region w.r.t. the
parameters

Let CT be the maximum C for which there is an inter-
action regime, ρ be given as in (10) and define the over-
provisioning ratio (for guaranteeing the absence of interac-
tion) to be ω = CT /ρ. Here are a few data on this ratio in
the exponential case with p = 0.8 and 1

µ
= 2000 Pkts.

• 1/β = 2 s., R = 0.1 s.: ω = 1.04;

• 1/β = 4 s., R = 0.1 s.: ω = 1.06;
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Figure 2: Distributions obtained for Reno. 1/µ =
2000 Pkts, 1/β = 2 s., p = 0.8 and R = 0.1 s. and
C = 270 Pkts/s. In red, steady state probability
distribution function of the rate just after a con-
gestion epoch; in green, continuous time stationary
rate distribution. Top: numerical solution of the
invariant measure equation; Bottom: N2N simula-
tion of 1 Million HTTP flows.

• 1/β = 8 s., R = 0.1 s.: ω = 1.09;

• 1/β = 2 s., R = 0.05 s.: ω = 1.06;

• 1/β = 8 s., R = 0.05 s.: ω = 1.12;

• 1/β = 2 s., R = 0.025 s.: ω = 1.09;

• 1/β = 8 s., R = 0.025 s.: ω = 1.15.

The region is larger for small RTTs and for short think
times.

3.2.5 Proof of the existence of congestion regimes
with load less than capacity

Let us consider the Tahoe case with an initial condi-
tion consisting of all sources active and with 0 rate. The
functions α(t) (the aggregate rate defined in (17)) and
γ(t) = 1− ν(t) (the proportion of active flows) associated
with this initial condition play a key role in the construc-
tion of this section. They are depicted in Figure 3 in the
case 1/µ = 2000, 1/β = 2 and R = 0.1.
Let M denote the maximum of α(t) over all t > 0, θ the

argmax of α(t), m the minimum of α(t) over all t > τ and
let γ denote the minimum of γ(t) over all t > 0. In the
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Figure 3: The α (left) and the γ (right) functions.

particular case of Figure 3, we have M = 301.8, θ = 5.5,
m = 258.1 and γ = 0.723. Let C̃ = pγM + (1− pγ)m.

Lemma 3. For the above initial condition, if C̃ > ρ,
then the Tahoe version of the model experiences an infinite
number of congestion epochs for all C in the interval ρ ≤
C ≤ C̃.
For the proof, see [5]. So in our example, when p = 0.8, we
are sure that Tahoe exhibits infinitely many congestions as
soon as C ≤ C̃ = 283.38. Notice that this is only a suffi-
cient condition for congestion, namely C̃ > CT in general.
From our numerical and simulation estimates, it seems

that the bi-stability region for Tahoe is larger than for Reno
(see Figure 1).
Of course, under the assumption of the last lemma, if the

initial condition for the flows is that of the steady state of
the interaction-less regime, then one remains in this regime
forever.
We have no analogue of Lemma 3 in the Reno case at this

stage. The fact that Reno could have a turbulent regime
when the load per user is less than the capacity per user
is hence only backed by simulation and numerical evidence
at this stage.

3.3 Properties of the Stationary Rate
We observe that a sharp decrease of the mean perfor-

mance takes place at a value of the mean file size that is
significantly smaller than that obtained by a mean load
analysis. This sharp decrease is that due to the jump from
the congestionless to the congestion stationary regimes de-
scribed above (see the AIMD curve of Figure 5).
We now study more detailed properties of the station-

ary throughput. Figure 4 gives the stationary rate pdfs
obtained by simulation and numerically in the case C=250
Pkts/sec, p=.4, 1/µ=2200 Pkts, 1/β=2 s., R=.1 s. The
fractal and intricate structure of the pdf of the rate at
congestion epochs should not come as a surprise (similar
shapes were obtained for long lived sessions by Chaintreau
and De Vleeschauwer in [9]). Compared to the case of
Figure 2 the irregularities of the pdf are enhanced by the
smaller value of p. The continuous time stationary rate has
a more regular rate pdf.

4. EXTENSION OF THE APPROACH TO
THE SLOW START

4.1 Mathematical Analysis
The simplest way to represent slow start within this

framework is via the an instantaneous jump of some ran-

Figure 4: Reno case, C=250 Pkts/s., p=.4,
1/µ=2200 Pkts, 1/β=2 s. Pdfs as obtained by the
numerical method.

dom size at the birth of a flow. The rationale for this is
that the associated exponential growth phase is quite quick
compared to the congestion avoidance phase and that it can
hence in a first approximation be seen as a jump from 0 to
some random value H .
The RCP equation of Section 2.2 then becomes

pC

2τ
+ λδE

δ(X(0−)) = P (X(0) > 0)

R2
+ λδE

B(H). (27)

It is also easy to extend the integral equations of Section
2.3 from knowledge of the distribution η(z) of H . The re-
generative cycles admit the very same definition as in the
case without slow start. The integral equations giving the
expressions of (f(.), g(.)) and the other pairs can be found
in [5]. So the fixed point equation based on the RCP can
be extended almost directly to the case with this simpli-
fied representation of slow start. By arguments similar to
the ones of §3.1 one gets (see [5]) that the solution of the
associated PDE satisfies the Fredholm integral equation

s(z, t) = R2β

∫ z

v=0

(
1−

∫ ∞

x=0

s(x, t−R2(z − v))dx
)

e
−µR2

(
z2
2 − v2

2

)
η(v)dv

+ s(z − t

R2
, 0) e

−µ
(
tz− t2

2R2

)
. (28)

The invariant measure equation keeps the same form as
(24) but with s0(., .) now obtained from the last equation
rather than from (15). The same machinery can then be
used, in particular for the necessary and sufficient condition
for the existence of a periodic regime of period τ , which is
the direct analogue of what was done above in the case
without slow start.
The numerical methods used for solving the RCP and the

invariant measure equation and the simulation methodol-
ogy are direct extensions of those used in the case without
slow start.
Consider the case where H is deterministic and equal to

C/2 (see §4.2 below).
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Consider, for instance, the case where the parameters
are still C = 270 Pkts, 1/β = 2 s., p=0.8, R=0.1 s. and
1/µ=2000 Pkts. Both the N2N simulator and the RCP
equation (27) give and a period of τ = 1.89 s. The numeri-
cal solution of (28) leads to an aggregate rate function α(.)
that satisfies the required property of first hitting C = 270
Pkts at τ = 1.89 sec, so that this solution of the RCP is
non-spurious.

4.2 HTTP 1.1 Example
We propose to focus on HTTP 1.1 where the files suc-

cessively downloaded by a flow use the same TCP connec-
tion. This assumes of course that the successive downloads
of this user are made from the same server and that the
Keepalive Timer (usually 15 s.) does not expire (for the
last point, see [1]).
We then refer to IETF RFC 2581 [3] to state the following

concerning TCP:

• When the TCP connection is idle for more than one
retransmission timeout (RTO, roughly a few RTTs),
CWND is reduced to IW (initial window), which we
will assume to correspond to decreasing the rate to 0.

• SSTHRESH is however kept to save information on
the previous value of the congestion window. We pro-
pose here to take SSTHRESH= C/(2(1− ν)), where
ν denotes the stationary probability that a flow is
idle at a congestion epoch. The rationale for this is
as follows: when the last loss occurred (a loss always
occurs for each flow in the finite population model),
the proportion of active flows was 1−ν and the aver-
age rate was per flow was C; hence due to symmetry,
each active flow had an average of C/(1−ν); so it in-
deed makes sense to take SSTHRESH= C/(2(1−ν)).

Hence in our slow start model, the rate of a flow jumps
to C/(2(1 − ν)) at the beginning of each file transfer, and
a congestion avoidance phase then starts until file comple-
tion. This is one model among many other possibilities,
which has engineering meaning under the above assump-
tions (all flows access the same server, HTTP 1.1 is used,
and the Keepalive Timer is large) and provided CWND-
MAX is large and the exponential phase of the slow start
is fast enough to be neglected.
Of course ν is unknown. To cope with this, in a first step

we solve the model of §4.1 with H = C/2. This determines
τ1 and ν1. In a second step, we solve the model again
with H = C/2(1− ν1) and so on until convergence. When
applying this procedure to the example of the last section,
τ1=1.89 s. and ν1=0.226 at the first step and τn=1.73 s.
and νn=0.225 for all n ≥ 2. The regime associated with the
last values is such that the α function first reaches C = 270
Pkts at τ=1.73 s.
The basic observation is the same as in the case without

slow start: in cases where the load per user is less than
the capacity per user, one can get a turbulent mean-field
limit with infinitely many congestions for appropriate ini-
tial conditions. Here is an example of such a turbulent
regime: C=364 Pkts/s., p=.8, 1/µ=2000 Pkts, 1/β=2 s.
One gets a period of τ=5.568 s. and a load per user of
356.618 Pkts/s. Here, the load per user is defined using
the same ideas as above: when the transfer of a file starts,

the rate jumps from 0 toH = C/(2(1−ν)) and then evolves
according to the congestion avoidance AIMD rules. In this
last expression, ν is the continuous time probability that a
flow is active in the interaction-less regime. Notice that de-
termining ν requires the solution of a fixed point equation
(as this probability depends on H which itself depends on
ν).

5. COMPARISON TO THE PS-ENGSET
MODEL

An interesting issue concerning non persistent flows is
the comparison of the bandwidth sharing that results from
the AIMD induced dynamics of the present paper to that
of the processor sharing (PS) approximations proposed in
the literature (see Section 1). The closest large population
PS model would be the Engset model with N users, where
N is large. In this model the active sessions generate 1/µ
packets which are queued at a single server processor shar-
ing node serviced with rate CN packets per second. Once
served, these sessions move to an infinite server think time
node where they stay for a duration of 1/β seconds. It is
shown in [5] that when N tends to infinity, the mean rate

obtained by each flow is x = βmin
(

1
µ
, C
β

)
. Figure 5 below

compares this to the expressions obtained from our AIMD
model, with and without slow start. In the case without
slow start, the rate in the increasing part of the curve of the
AIMD model (i.e. the part where no congestion occurs) is
obtained from (10). As one can check, the match is not so
good unless the load is small. Notice that there is actually
no reason for these models to be close because, in the PS
formula, there is no dependence on the RTT.

Figure 5: The average rate as predicted by the PS
and the AIMD models.

The qualitative properties found in the present study
have no analogues in these PS models:

• There are no multiple stationary regimes depending
on the initial condition: above, we looked at the
steady state of the Engset model and then let N (pop-
ulation) go to infinity. That is we let first time go to
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infinity (to get steady state) and we then let N to to
infinity. Had we started the Engest model in some
transient state (e.g. all users thinking, rather than in
steady state), the steady state obtained when letting
first N go to infinity and then letting time go to infin-
ity is the same as the one obtained above as is easily
seen by a direct analysis of the transient mean-field
Engset model. Notice that these multiple regimes ap-
pear in the vicinity of critical load, which is precisely
a region where PS is not expected to provide an ac-
curate model for TCP bandwidth sharing anyway.

• The rightmost part of the PS curve postulates full
bandwidth sharing whereas the AIMD dynamics does
not. The rightmost part of the AIMD curve has an
horizontal asymptote of app. C(1−p/4) (that is here
.8×C) as predicted by the long lived flow theory (see
[6]). The abrupt drop in performance of about 15%
when moving from the congestionless to the conges-
tion regime is another qualitative feature (that is a
consequence of the partial synchronization of flows)
which is not present in the PS Engset model.

6. SIMULATION
The simulation results of this section are based on the

N2N simulation tool [2].

6.1 Meta-stability
The fact that the mean-field limit has two stationary

regimes for some values of the parameters translates into
the existence of two meta-stable regimes for any finite stochas-
tic system with the same mean parameters, with rare os-
cillations from one regime to the other. This phenomenon
(see e.g. [13] for another example pertaining to protocols)
is depicted in Figure 6 which features the Tahoe case with
1/µ = 2000 Pkts, 1/β = 2 s. and R = 0.1 s.
In Figure 6, the number of sources is rather small (1000)

and the capacity is approximately the critical value above
which the mean-field system has only one uncongested mode.
The two modes are clearly visible in the trajectories. The
fluctuations are high enough to make the system move fre-
quently enough from one mode to the other.

6.2 Heavy Tailed Case
The setting is the same as that of the previous sections

with lognormal distribution functions for the file size and
the OFF-time. The scenario is the following: TCP Reno,
with RTT R = 30 ms. and with synchronization rate
p = 0.8; the file size and the OFF-period follow lognor-
mal distributions: the file size has mean value 2000 Pkts
and standard deviation 8669 Pkts, and the OFF-period
has a mean value of 2 sec and a standard deviation of 8.7
s. Variance is much higher than in the exponential case.
Simulations (or direct calculations) show that the mean

load per source is appr. ρ = 620 Pkts/s. Figure 7 gives the
aggregate rate when C = ∞ for the initial condition with
all sources active and with null rate. We observe the same
phenomenon as in the exponential case, with a first maxi-
mum at 717 Pkts/sec, significantly larger than the horizon-
tal asymptote at ρ, though with a shape that is different
from that in the exponential case.
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Figure 6: Bi-stability: 1000 Tahoe flows with C =
282, p = .8.
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Figure 7: The mean-field aggregate rate of Reno
when C = ∞ and all flows are initially active and
with 0 rate.

Our simulation suggests that as in the exponential case,
congestion regimes show up for values of C larger than
ρ. Here, such regimes are possible for all C between a
threshold that seems to be located between 670 and 680.

7. CONCLUSION
The main achievement of the present paper is an interac-

tion model for TCP controlled dynamic flows that is based
on the AIMD dynamics of TCP rather than on the fre-
quently made assumption that TCP bandwidth sharing is
well described by the PS discipline. Thanks to a mathe-
matical model based on the mean-field limit, some unex-
pected qualitative results are found. In particular the sys-
tem may enter into a congestion regime for loads that are
significantly smaller than the link capacity. Also multiple
stationary regimes may be reached depending on the ini-
tial phases of the ON-OFF flows. These phenomena, which
translate into a bi-stability property for systems with finite
population, are absent in the PS model.
Another interesting property is the fractal nature of the

p.d.f of the stationary rates as already observed in the long-
lived flow case by Chaintreau and De Vleeschauwer in [9]:
the randomness and the mixing of the ON-OFF structure

353



seems to be compatible with a complex self-similar struc-
ture for the rates. Even for the (rather unrealistic) ex-
ponential model analyzed here, several important theoret-
ical questions have to be solved to complete the present
study. These include the proof of the mean-field limit
(which should be feasible along the lines of what was al-
ready done for the long lived flow case) and the mathe-
matical confirmation of the numerical findings presented
in Section 3 in the Reno case.
The main step after that is of course to extend the ap-

proach to non exponential file sizes and particularly to
heavy tailed distributions. Other interesting extensions
along the lines of what is already known for the long lived
flow case would address the multiple link case and the non-
linear dynamics induced by a large tail-drop buffer. Finally,
it should be possible to mix this HTTP traffic model with
the model for long lived flows to give a single interactive,
dynamical system.
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