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ABSTRACT

Learning, Cryptography, and the Average Case

Andrew Wan

This thesis explores problems in computational learning theory from an average-case

perspective. Through this perspective we obtain a variety of new results for learning theory

and cryptography.

Several major open questions in computational learning theory revolve around the prob-

lem of efficiently learning polynomial-size DNF formulas, which dates back to Valiant’s in-

troduction of the PAC learning model [Valiant, 1984]. We apply an average-case analysis

to make progress on this problem in two ways.

• We prove that Mansour’s conjecture is true for random DNF. In 1994, Y. Mansour

conjectured that for every DNF formula on n variables with t terms there exists a

polynomial p with tO(log(1/ε)) non-zero coefficients such that Ex∈{0,1}n [(p(x)−f(x))2] ≤

ε. We make the first progress on this conjecture and show that it is true for several

natural subclasses of DNF formulas including randomly chosen DNF formulas and

read-k DNF formulas. Our result yields the first polynomial-time query algorithm for

agnostically learning these subclasses of DNF formulas with respect to the uniform

distribution on {0, 1}n (for any constant error parameter and constant k). Applying

recent work on sandwiching polynomials, our results imply that t−O(log 1/ε)-biased

distributions fool the above subclasses of DNF formulas. This gives pseudorandom

generators for these subclasses with shorter seed length than all previous work.

• We give an efficient algortihm that learns random monotone DNF. The problem of

efficiently learning the monotone subclass of polynomial-size DNF formulas from ran-

dom examples was also posed in [Valiant, 1984]. This notoriously difficult question is

still open, despite much study and the fact that known impediments to learning the



non-monotone class (cf. [Blum et al., 1994; Blum, 2003a]) do not exist for monotone

DNF formulas. We give the first algorithm that learns randomly chosen monotone

DNF formulas of arbitrary polynomial size, improving results which efficiently learn

n2−ε-size random monotone DNF formulas [Jackson and Servedio, 2005b]. Our main

structural result is that most monotone DNF formulas reveal their term structure in

their constant-degree Fourier coefficients.

In this thesis, we also see that connections between learning and cryptography are naturally

made through average-case analysis. First, by applying techniques from average-case com-

plexity, we demonstrate new ways of using cryptographic assumptions to prove limitations

on learning. As counterpoint, we also exploit the average-case connection in the service of

cryptography. Below is a more detailed description of these contributions.

• We show that monotone polynomial-sized circuits are hard to learn if one-way func-

tions exist. We establish the first cryptographic hardness results for learning polynomial-

size classes of monotone circuits, giving a computational analogue of the information-

theoretic hardness results of [Blum et al., 1998]. Some of our results show the cryp-

tographic hardness of learning polynomial-size monotone circuits to accuracy only

slightly greater than 1/2 + 1/
√
n; this is close to the optimal accuracy bound, by

positive results of Blum, et al. Our main tool is a complexity-theoretic approach to

hardness amplification via noise sensitivity of monotone functions that was pioneered

by O’Donnell [O’Donnell, 2004a].

• Learning an overcomplete basis: analysis of lattice-based signatures with perturbations.

Lattice-based cryptographic constructions are desirable not only because they provide

security based on worst-case hardness assumptions, but also because they can be ex-

tremely efficient and practical. We propose a general technique for recovering parts of

the secret key in lattice-based signature schemes that follow the Goldreich-Goldwasser-

Halevi (GGH) and NTRUSign design with perturbations. Our technique is based on

solving a learning problem in the average-case. To solve the average-case problem,

we propose a special-purpose optimization algorithm based on higher-order cumu-

lants of the signature distribution, and give theoretical and experimental evidence of



its efficacy. Our results suggest (but do not conclusively prove) that NTRUSign is

vulnerable to a polynomial-time attack.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

1.1 Motivation

Average-Case Complexity Traditionally, a problem in computer science is considered

tractable if there is an efficient algorithm which solves any instance of the problem. But,

in practice, an algorithm may only see instances of a particular form or drawn according to

a particular distribution. From the algorithm designer’s perspective, this fact can make a

difficult problem solvable. On the other hand, if a problem’s hardness is the useful property,

such as in cryptography, one requires the ability to find hard instances in order to utilize

the problem’s hardness. Thus, there are compelling reasons to study the performance of

algorithms on instances drawn from fixed distributions, i.e. the performance of algorithms

on the average.

The average-case has been well-studied in complexity theory, ranging from the foun-

dational work on NP problems initiated by Levin [Levin, 1986; Impagliazzo and Levin,

1990; Ben-David and Chor, 1992], to the work on problems in EXP [Babai et al., 1993;

Impagliazzo, 1995; Impagliazzo and Wigderson, 1997] which show connections to worst-

case hardness. Although amplification of average-case hardness in NP is a fruitful area of

research [O’Donnell, 2004b; Trevisan, 2005; Healy et al., 2006], we do not expect to con-

nect this hardness to worst-case NP-hardness using current techniques [Akavia et al., 2006;

Bogdanov and Trevisan, 2003; Feigenbaum and Fortnow, 1993]. See the survey by Bogdanov

and Trevisan [Bogdanov and Trevisan, 2006] for an excellent treatment of average-case com-
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plexity.

Inspired by its usefuless in complexity theory, we apply the average-case perspective to

problems in computational learning theory to obtain new positive and negative results.

Average-Case Learning As in the complexity-theoretic setting, we are partially moti-

vated by the reality that algorithms may not encounter all instances of a learning problem.

Our study is driven by more concrete considerations as well; despite the many steps that

have been made in computational learning theory since Valiant introduced the PAC (proba-

bly approximately correct) learning model [Valiant, 1984] over 25 years ago, and despite the

rich set of tools, the deep connections to other areas of theoretical computer science, and

the clever approaches employed to make these steps, we are far from answering many basic

questions. For some of these questions, research has stagnated, and we will make progress

by studying them from the average-case perspective.

Learning and Cryptography Another motivation for looking at average-case learn-

ing comes from the connections between computational learning theory and cryptography.

These two fields seem to have antithetical high-level aims: the former seeks ways of extract-

ing information while the latter methods of hiding it. Many hardness of learning results are

obtained by exploiting this relationship: if a class of Boolean functions is shown to have

certain cryptographic properties, it will hide information essential to the learning process.

Perhaps less frequently, the connection is used to construct cryptographic primitives from

learning problems. In both cases, the learning problem is relaxed to the average case; that

is, the success of the learning algorithm is measured according to specific distributions over

the examples it sees and over the functions that label them (as opposed to arbitrary distri-

butions for both). By exploiting this connection, we can obtain new results for hardness of

learning and for cryptography.

1.2 Outline of Contributions

We organize the contributions of this thesis according to two categories: (1) efficient al-

grotihms for average-case learning and (2) connections between learning and cryptography.



CHAPTER 1. INTRODUCTION 3

Efficient algorithms for learning most DNF formulas: DNF formulas are an ex-

pressive (they can represent any Boolean function) and natural (bring an umbrella if: it

is cloudy and raining, or it is hot and sunny) form of knowledge representation for hu-

mans. For this reason, the study of DNF formulas has become central to areas in artificial

intelligence, from computational learning theory to automated theorem proving. The ques-

tion of their efficient learnability dates back to Valiant’s introduction of the PAC learning

model [Valiant, 1984], and has remained open despite intensive study. Uniform distribu-

tion learning, where the accuracy of the learner’s output is measured with respect to the

uniform distribution over {0, 1}n, has received considerable attention, both because it is

a natural formulation of the problem and because it facilitates the use of Fourier anal-

ysis. While important progress has been made [Linial et al., 1993; Blum et al., 1994;

Mansour, 1995b; Jackson, 1997a; Bshouty et al., 1999; Servedio, 2001; Bshouty et al., 2003;

Mossel et al., 2004a], research in this area has slowed in recent years.

In this thesis we give efficient algorithms that (uniform distribution) learn the class

of polynomial-size DNF formulas on the average, i.e., we describe a natural distribution

over such formulas and show that our algorithms learn with high probability over the

distribution. Our approach is based on proving new structural theorems, which are of

independent interest, about most DNF formulas. Roughly speaking, we show that the

polynomial representations of DNF formulas have certain properties (e.g. sparsity) that

make learning feasible. This strategy has yielded landmark algorithms for learning in the

worst-case setting (cf. the seminal results [Kushilevitz and Mansour, 1993a; Linial et al.,

1993; Mansour, 1995b]).

Our results address learning polynomial-size DNF formulas in two different models.

The first result concerns the query model, in which the learning algorithm may query the

target function on points of its choosing (its success is still measured with respect to the

uniform distribution). A natural but extremely difficult variant of this model, which more

closely resembles real life machine learning settings, is one where the learner may query a

corrupted oracle, i.e., one which differs from the target function on a set of adversarially

chosen points. While polynomial-size DNF formulas were shown to be efficiently learnable

from queries in Jackson’s seminal work [Jackson, 1997a], no matching result exists for the
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noisy query model.

The second result concerns learning from labeled examples that are chosen uniformly

from the Boolean hypercube. The fastest known algorithm for learning poly(n)-size DNF

formulas in this model takes time nO(logn) [Verbeurgt, 1990]. We describe our contributions

to learning DNF formulas in these two models below.

1. Mansour’s conjecture is true for random DNF.

Linial et al. were the first to reduce the problem of learning DNF formulas to certain

properties of their representations as polynomials over the reals [Linial et al., 1993].

In 1994, Mansour showed that every t-term DNF formula on n variables could be

approximated by a sparse polynomial, i.e., a polynomial p : {+1,−1}n→{+1,−1},

that satisfies E[(p − f)2] ≤ ε and has at most tO(log log t log(1/ε)) non-zero coefficients.

He conjectured that the sparsity could be improved to tO(log 1/ε). In Chapter 3, we

make the first progress on this conjecture and show that it is true for several natural

subclasses of DNF formulas, including randomly chosen (see Chapter 2) and read-

k DNF formulas. Recent work [Gopalan et al., 2008b] shows that classes of Boolean

functions with sparse polynomial approximations can be learned even when the queries

are noisy. Thus, our result yields the first polynomial-time, noisy query algorithm

for learning random and read-k DNF formulas (for any constant error parameter and

constant k). Applying recent work on sandwiching polynomials, our results also imply

that t−O(log 1/ε)-biased distributions fool the above subclasses of DNF formulas. This

gives pseudorandom generators for these subclasses with shorter seed length than all

previous work.

2. Random monotone DNF are efficiently learnable from random examples.

The problem of efficiently learning the monotone subclass of polynomial-size DNF

formulas from random examples was also posed in [Valiant, 1984]. This notoriously

difficult question is still open, despite much study and the fact that known impedi-

ments to learning the non-monotone class (cf. [Blum et al., 1994; Blum, 2003a]) do

not exist for monotone DNF formulas. The best known algorithm [Servedio, 2004c] is

efficient for 2O(
√

logn)-size monotone DNF only. In Chapter 4 we give the first algo-
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rithm that learns randomly chosen monotone DNF formulas of arbitrary polynoimal

size, improving results which efficiently learn n2-size random monotone DNF formu-

las [Jackson and Servedio, 2005b]. Our main structural result is that most monotone

DNF formulas reveal their term structure in their constant-degree Fourier coefficients.

Connections between learning and cryptography: In this thesis, we see that con-

nections between learning and cryptography are naturally made through average-case anal-

ysis. First, by applying techniques from average-case complexity, we demonstrate new ways

of using cryptographic assumptions to prove limitations on learning. We show the first

computational hardness results for learning monotone Boolean functions. As counterpoint,

we also exploit the average-case connection in the service of cryptography. We scrutinize

the security of a cryptographic protocol, defining an average-case learning problem (that is

hard in the worst-case) and proposing an efficient algorithm. A more detailed description

of these contributions follows.

1. Monotone polynomial-sized circuits are hard to learn if one-way functions exist. Over

the years a wide range of positive and negative results have been established for

learning different classes of Boolean functions from uniformly distributed random

examples. Despite intensive efforts, various simple classes are without efficient learning

algorithms. Interestingly, for many of these classes, their monotone subclasses do

have efficient algorithms. Prior to our work, however, the only negative result for

learning monotone functions in this model is an information-theoretic lower bound

showing that certain super-polynomial-size monotone circuits cannot be learned to

accuracy 1/2 +ω(log n)/
√
n [Blum et al., 1998]. This is in contrast with the situation

for non-monotone functions, where a wide range of cryptographic hardness results

establish that various “simple” classes of polynomial-size circuits are not learnable by

polynomial-time algorithms.

In Chapter 5 we establish cryptographic hardness results for learning various “simple”

classes of monotone circuits, thus giving a computational analogue of the information-

theoretic hardness results of Blum, et al. mentioned above. Some of our results show

the cryptographic hardness of learning polynomial-size monotone circuits to accuracy
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only slightly greater than 1/2 + 1/
√
n; which is close to the optimal accuracy bound,

by positive results of Blum, et al. Other results show that under a plausible crypto-

graphic hardness assumption, a class of constant-depth, sub-polynomial-size circuits

computing monotone functions is hard to learn. This result is close to optimal in

terms of the circuit-size parameter by known positive results as well [Servedio, 2004a].

Our main tool is a complexity-theoretic approach to hardness amplification via noise

sensitivity of monotone functions that was pioneered by O’Donnell [O’Donnell, 2004a].

2. Learning an overcomplete basis: analysis of lattice-based signatures with perturba-

tions. Lattice-based cryptographic constructions are desirable not only because they

provide security based on worst-case hardness assumptions, but also because they

can be extremely efficient and practical. In 1997, Goldreich, Goldwasser and Halevi

(GGH) [Goldreich et al., 1997] proposed a lattice-based signature scheme and public-

key encryption scheme that were inspired by the breakthrough work of Ajtai [Ajtai,

2004] and the apparent hardness of well-studied lattice problems. Since then, numer-

ous variations of the GGH schemes have been proposed [Hoffstein et al., 1998; Hoffstein

et al., 2001; Gentry et al., 2008], including the commercial offering NTRUSign [Hoff-

stein et al., 2003], which applies the ideas of the GGH signature scheme to the compact

NTRU family of lattices. The NTRUSign scheme is reasonably efficient, but it has no

known security proof.

We propose in Chapter 6 a general technique for recovering parts of the secret key in

lattice-based signature schemes that follow the Goldreich-Goldwasser-Halevi (GGH)

and NTRUSign design with perturbations. Our technique is based on solving a learn-

ing problem in the average-case. Previously, Nguyen and Regev [Nguyen and Regev,

2009] cryptanalyzed GGH-style signature schemes (including NTRUSign) without per-

turbations; their attack was by reduction to a learning task they called the hidden

parallelepiped problem (HPP). The main problem left open in their work was to handle

schemes that use perturbation techniques.

We observe that in such schemes, recovery of the secret key may be modeled as the

problem of learning an overcomplete basis, a generalization of the HPP in which the
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number of secret vectors exceeds the dimension. While HPP was solvable in the worst-

case, it is easy to see that the problem of learning an overcomplete basis can not have a

worst-case algorithm. To solve the average-case problem, we propose a special-purpose

optimization algorithm based on higher-order cumulants of the signature distribution,

and give theoretical and experimental evidence of its efficacy. Our results suggest (but

do not conclusively prove) that NTRUSign is vulnerable to a polynomial-time attack.

1.3 Organizational Notes

In Chapter 2 we present the models, definitions, and standard tools used throughout this

thesis. Some definitions and concepts are introduced in the specific chapters that they

are used in. The results on efficiently learning DNF formulas follow in Chapters 3 and 4.

We explore connections between learning and cryptography in the two following chapters.

Chapter 5 contains the hardness result for polynomial-size monotone circuits, and Chapter

6 contains our analysis of lattice-based signature schemes. Finally, we conclude in Chapter

7 with suggestions for future work.
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Chapter 2

Definitions and Preliminaries

2.1 Boolean Functions and Fourier Analysis

The concept classes we study will be subclasses of Boolean functions f : {0, 1}n→{0, 1}. We

often refer to classes of Boolean functions by their particular representations. Any Boolean

function f : {0, 1}n → {0, 1} can be expressed as a disjunction of conjunctions of Boolean

literals, i.e. as an OR of ANDs. Such a logical formula is said to be a disjunctive normal

form or DNF formula. Each AND in the formula is called a term, and the size of the

DNF formula is measured by the number of terms it has. A read-k DNF formula is one

in which the maximum number of variable occurences is bounded by k. Boolean functions

may also be represented by decision trees, which are directed trees with variable nodes

and arcs which represent assignments to a variable. See [Kushilevitz and Mansour, 1993a]

for a formal definition. A Boolean function having at most k relevant variables is called

a k-junta. For any class of Boolean functions, we may consider the subclass of functions

that are monotone, i.e. those functions satisfying f(x) ≥ f(y) whenever xi ≥ yi for all i.

Recall that every monotone Boolean function f has a unique representation as a reduced

monotone DNF. We say that a term T of such a monotone DNF is uniquely satisfied by

input x if x satisfies T and no other term of f.

In addition to the uniform distribution over the Boolean hypercube, we sometimes con-

sider product distributions, i.e., a product of n independent random variables in {0, 1},

where the i’th variable takes the value 1 with probability pi for i = 1, · · · , n. The following
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consequence of the Four Functions Theorem [Kleitman, 1966] will be useful in our study of

monotone functions over product distributions.

Theorem 1. Let e, f , ¬g, and ¬h be monotone Boolean functions over {0, 1}n. Then

for any product distribution D over {0, 1}n, PrD[e ∧ f ] ≥ PrD[e] PrD[f ], PrD[g ∧ h] ≥

PrD[g] PrD[h], and PrD[f ∧ g] ≤ PrD[f ] PrD[g].

The application of discrete Fourier Analysis to Boolean functions is by now standard in

theoretical computer science. We only mention a few concepts here to establish notation;

see these surveys [De Wolf, 2008; O’Donnell, 2008] for excellent introductions to the topic.

It is convenient to view functions with Boolean outputs as having outputs in the range

{+1,−1}, with −1 signifying TRUE and +1 signifying FALSE. (A function whose output

is in the standard range {0, 1} can be considered via the conversion 1− 2f(x).) Real-valued

functions over the domain {+1,−1}n form a 2n-dimensional vector space with inner product

〈f, g〉 = Ex[f · g] = 2−n
∑

x∈{+1,−1}n
f(x)g(x).

For a set S ⊆ [n], let χS =
∏
i∈S xi. It is easy to see that these 2n different func-

tions, also called parity functions, form an orthonormal basis for the space of functions

f : {+1,−1}n→R.

The Fourier inversion theorem says that every function f : {+1,−1}n → R can be

uniquely expressed by its Fourier expansion, i.e., a polynomial over {+1,−1}n:

f(x) =
∑
S

f̂(S)χS(x),

where f̂(S) = E[f · χS ], the coefficient of χS is called a Fourier coefficient. Functions over

{0, 1}n may be thought of as ranging over {+1,−1}n via the conversion xi→1 − 2xi. In

some settings we will consider instead the vector space over functions f : {0, 1}n→R and

redefine the basis functions to be χS(x) =
∏
i∈S(−1)xi .

2.2 Learning

We consider problems where a learning algorithm has some type of access to the input-

output behaviour of an unknown function f . The function will come from the class C of
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concepts to be learned, which will be a set of functions over a domain X (typically {0, 1}n).

The goal of the algorithm is to output a representation which approximates the behavior

of the target function f . The learning model specifies the nature of the access to f as well

as the criterion a successful algorithm must satisfy, such as efficiency and quality of the

output.

2.2.1 Uniform Distribution Learning

In this thesis we focus on the uniform distribution PAC (Probably Approximately Correct)

model, a well-studied variant of the prevalent PAC model introduced by Valiant ([Valiant,

1984]). Access to the target function f may be in the form of a random example oracle

EX(f, Un), which, when queried generates a random labeled example (x, f(x)), where x

is drawn uniformly at random from X . Alternatively, access to f may be in the form of

a query oracle, Q(f), which receives as input any x from the domain and outputs a label

f(x).

In the uniform distribution PAC learning model (with queries or random examples) the

performance of the learning algorithm is measured according to the uniform distribution

over the domain. After interacting with its oracle, the learning algorithm will output a

hypothesis h, and the error of h is defined to be Pr[h(x) 6= f(x)] where x is drawn uniformly

at random from X . We say that A learns C if for any f ∈ C and every 0 < ε, δ < 1, with

probability at least 1 − δ (over the randomness of A and any randomness used by the

oracle), algorithm A outputs a hypothesis h which has error at most ε. The efficiency of A

is measured with respect to the domain of the concepts C and the parameters ε and δ, and

A is considered efficient if it learns C in time p(n, 1/ε, 1/δ) for some polynomial p where n

is the size of the input to f .

Algorithms and hardness results in the uniform distribution learning framework have

interesting connections with topics such as discrete Fourier analysis [Mansour, 1994], circuit

complexity [Linial et al., 1993], noise sensitivity and influence of variables in Boolean func-

tions [Kahn et al., 1988; Benjamini et al., 1999; Klivans et al., 2004; O’Donnell and Servedio,

2007], coding theory [Feldman et al., 2006], privacy [Blum et al., 2008; Kasiviswanathan et

al., 2008], and cryptography [Blum et al., 1993; Kharitonov, 1995].
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2.2.2 Average-case Learning

The previous models admit a natural relaxation to the average-case in analogy with average-

case complexity. For any concept class C, we may define a distribution ensemble D = {Dn},

where each Dn is a distribution over those concepts c ∈ C with c : {0, 1}n→{0, 1}. We

say that A average-case learns C with respect to D if for every n and any 0 < ε < 1, with

probability at least 1 − n−Ω(1) (over a random draw of f from Dn, the randomness of A,

and any randomness used by its example oracle), the hypothesis output by A satisfies:

Pr
x∈{0,1}n

[A(x) 6= f(x)] ≤ ε.

We will consider A to be efficient if it runs in time polynomial in n and 1/ε.

For size-t DNF formulas, we consider the distribution Dt
n over t-term DNF formulas

on n variables induced by the following process: each term is independently and uniformly

chosen at random from all t ·
(

n
blog tc

)
ANDs of size exactly blog tc over x1, . . . ,xn. A notion

of random DNF formulas was first considered in [Aizenstein and Pitt, 1995] and later in

[Jackson and Servedio, 2006]. We follow the definition from [Jackson and Servedio, 2006],

which contains a discussion of the factors considered in the choice of the model. We briefly

discuss here the choice of the term size. Consider drawing terms randomly from the space

of terms of size exactly k instead of log t. If k is too large relative to t, then a random

f ∈ Dt
n will likely have Prx∈Un [f(x) = 1] ≈ 0, and if k is too small relative to t then a

random f ∈ Dt
n will likely have Prx∈Un [f(x) = 1] ≈ 1; such functions are trivial to learn

to high accuracy using either the constant-0 or constant-1 hypothesis. A straightforward

analysis shows that for k = blog tc we have that Ef∈DC,n [Prx∈Un [f(x) = 1]] is bounded away

from both 0 and 1, and thus we feel that this is an appealing and natural choice.

2.2.3 Agnostic Learning

Agnostic models of learning [Kearns et al., 1994b] attempt to weaken or eliminate assump-

tions on the target function. Removing assumptions about the target function reflects our

belief that data encountered in the real world may not have a succinct explanation, but

it also makes learning more difficult. We first describe the traditional framework for ag-

nostically learning concept classes with respect to the uniform distribution and then give
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a slightly modified definition for an “average-case” version of agnostic learning where the

unknown concept (in this case a DNF formula) is randomly chosen.

Definition 1 (Standard agnostic model). Let U be the uniform distribution on {+1,−1}n,

and let f : {+1,−1}n → {+1,−1} be an arbitrary function. Define

opt = min
c∈C

Pr
x∼U

[c(x) 6= f(x)].

That is, opt is the error of the best fitting concept in C with respect to U . We say that an

algorithm A agnostically learns C if the following holds for any f : if A is given black-box

access to f then with high probability A outputs a hypothesis h such that Prx∼U [h(x) 6=

f(x)] ≤ opt + ε.

The intuition behind the above definition is that a learner—given access to a concept

c ∈ C where an η fraction of c’s inputs have been adversarially corrupted—should still be

able to output a hypothesis with accuracy η + ε (achieving error better than η may not be

possible, as the adversary could embed a completely random function on an η fraction of

c’s inputs). Here η plays the role of opt.

This motivates the following definition for agnostically learning a randomly chosen con-

cept from some class C:

Definition 2 (Agnostically learning random concepts). Let C be a concept class and D be

a distribution ensemble over C. We say that an algorithm A agnostically learns random

concepts from C (with respect to D) if with probability at least 1 − n−Ω(1) over the choice

of c according to D the following holds: if the learner is given black-box access to c′ and

Prx∈{+1,−1}n [c(x) 6= c′(x)] ≤ η, then A outputs a hypothesis h such that Prx∈{+1,−1}n [h(x) 6=

c′(x)] ≤ η + ε.

We are unaware of any prior work defining an agnostic framework for learning randomly

chosen concepts.

The main result we use to connect the approximation of DNF formulas by sparse poly-

nomials with agnostic learning is due to Gopalan et al. [Gopalan et al., 2008b]:

Theorem 2 ([Gopalan et al., 2008b]). Let C be a concept class such that for every c ∈ C

there exists a polynomial p such that ‖p‖1 ≤ s and Ex∈{+1,−1}n [|p(x)− c(x)|2] ≤ ε2/2. Then



CHAPTER 2. DEFINITIONS AND PRELIMINARIES 13

there exists an algorithm B such that the following holds: given black-box access to any

Boolean function f : {+1,−1}n→{+1,−1}, B runs in time poly(n, s, 1/ε) and outputs a

hypothesis h : {+1,−1}n→{+1,−1} with

Pr
x∈{+1,−1}n

[h(x) 6= f(x)] ≤ opt + ε.

2.3 Cryptography

We also work with one-way functions, pseudorandom generators and pseudorandom func-

tions which are by now standard notions in theoretical computer science. The appropriate

definition for these cryptographic primitives varies according to the setting. We give general

definitions here and postpone formal definitions until the need arises.

One-way Functions. A function f : {0, 1}∗→{0, 1}∗ is a one-way function if it is efficiently

computable (by some family of circuits or a deterministic Turing Machine) and for any

efficient adversary A (which, depending on the context may be a circuit or randomized

TM), it holds that Pr[A(f(x)) ∈ f−1(x)] is small, where the probability is taken over a

random input x and the randomness of A.

Pseudorandom Generators A function G : {0, 1}n→{0, 1}m is a pseudorandom generator

if it is computable in polynomial time and the distribution G(x) (where x is uniform random

from {0, 1}n) is pseudorandom, i.e. no adversary (adversaries may be small circuits or

PPTs) can distinguish G(x) from the uniform distribution over {0, 1}m. The stretch of G

is l(n) = m(n)− n > 0.

Pseudorandom functions. A family of functions F = {Fn} is a pseudorandom function

family if for every n, Fn is comprised of functions haveing polynomial-size representations,

and no PPT oracle algorithm A can distinguish a random f drawn from Fn and a truly

random function over {0, 1}n.

It is well known (cf. [H̊astad et al., 1999; Goldreich et al., 1986]) that the existence of

pseudorandom generators and pseudorandom function families follows from the existence

of one-way functions.
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Chapter 3

Mansour’s Conjecture is True for

Random DNF

We now present our results on efficiently learning polynomial-size DNF formulas. In this

chapter, we apply average-case analysis to the problem of learning DNF formulas from noisy

queries. The main technical contribution of this chapter is to prove that the conjecture of

Mansour [Mansour, 1995b] is true for most DNF formulas and for read-k DNF formulas.

3.1 Introduction

Let f : {0, 1}n → {0, 1} be a DNF formula, i.e., a function of the form T1 ∨ · · · ∨ Tt where

each Ti is a conjunction of at most n literals. In this chapter, we are concerned with

the following question: how well can a real-valued polynomial p approximate the Boolean

function f? This is an important problem in computational learning theory, as real-valued

polynomials play a critical role in developing learning algorithms for DNF formulas.

Over the last twenty years, considerable work has gone into finding polynomials p with

certain properties (e.g., low-degree, sparse) such that

Ex∈{0,1}n [(p(x)− f(x))2] ≤ ε.

In 1989, Linial et al. [Linial et al., 1993] were the first to prove that for any t-term

DNF formula f , there exists a polynomial p : {0, 1}n → R of degree O(log(t/ε)2) such
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that Ex∈{0,1}n [(p(x) − f(x))2] ≤ ε. They showed that this type of approximation implies

a quasipolynomial-time algorithm for PAC learning DNF formulas with respect to the uni-

form distribution. Kalai et al. [Kalai et al., 2008] observed that this fact actually implies

something stronger, namely a quasipolynomial-time agnostic learning algorithm for learning

DNF formulas (with respect to the uniform distribution). Additionally, the above approxi-

mation was used in recent work due to Bazzi [Bazzi, 2007] and Razborov [Razborov, 2008]

to show that bounded independence fools DNF formulas.

Three years later, building on the work of Linial et al. Mansour [Mansour, 1995b] proved

that for any DNF formula with t terms, there exists a polynomial p defined over {0, 1}n

with sparsity tO(log log t log(1/ε)) such that Ex∈{0,1}n [(p(x) − f(x))2] ≤ ε (for 1/ε = poly(n)).

By sparsity we mean the number of non-zero Fourier coefficients of p. This result implied

a nearly polynomial-time query algorithm for PAC learning DNF formulas with respect to

the uniform distribution.

Mansour conjectured [Mansour, 1994] that the bound above could improved to tO(log 1/ε).

Such an improvement would imply a polynomial-time query algorithm for learning DNF

formulas with respect to the uniform distribution (to within any constant accuracy), and

learning DNF formulas in this model was a major open problem at that time.

In a celebrated work from 1994, Jeff Jackson proved that DNF formulas were learnable

in polynomial time (with queries, with respect to the uniform distribution) without proving

the Mansour conjecture. His “Harmonic Sieve” algorithm [Jackson, 1997b] used boosting

in combination with some weak approximation properties of polynomials. As such, for

several years, Mansour’s conjecture remained open and attracted considerable interest, but

its resolution did not imply any new results in learning theory.

In 2008, Gopalan et al. [Gopalan et al., 2008b] proved that a positive resolution to

the Mansour conjecture also implies an efficient query algorithm for agnostically learning

(see Section 2.2.3) DNF formulas (to within any constant error parameter). The agnostic

model of learning is a challenging learning scenario that requires the learner to succeed

in the presence of adversarial noise. Roughly, Gopalan et al. showed that if a class of

Boolean functions C can be ε-approximated by polynomials of sparsity s, then there is a

query algorithm for agnostically learning C in time poly(s, 1/ε) (since decision trees are
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approximated by sparse polynomials, they obtained the first polynomial-time query algo-

rithm for agnostically learning decision trees with respect to the uniform distribution on

{0, 1}n). Whether DNF formulas can be agnostically learned (with queries, with respect to

the uniform distribution) still remains a difficult open problem [Gopalan et al., 2008a].

3.1.1 Our Results

We prove that the Mansour conjecture is true for several well-studied subclasses of DNF

formulas. As far as we know, prior to this work, the Mansour conjecture was not known to

be true for any interesting class of DNF formulas.

Our first result shows that the Mansour conjecture is true for the class of randomly

chosen DNF formulas:

Theorem 3. Let f : {0, 1}n → {0, 1} be a DNF formula with t = nO(1) terms where each

term is chosen independently from the set of all terms of length blog tc. Then with probability

1− n−Ω(1) (over the choice of the DNF formula), there exists a polynomial p with sparsity

tO(log 1/ε) such that E[(p(x)− f(x))2] ≤ ε.

For t = nΘ(1), the conclusion of Theorem 3 holds with probability at least 1−n−Ω(log t).

Our second result is that the Mansour conjecture is true for the class of read-k DNF formulas

(for constant k):

Theorem 4. Let f : {0, 1}n → {0, 1} be a DNF formula with t terms where each literal

appears at most k times. Then there exists a polynomial p with sparsity tO(24k log 1/ε) such

that E[(p(x)− f(x))2] ≤ ε.

Even for the case k = 1, Mansour’s conjecture was not known to be true. Mansour

[Mansour, 1995b] proves that any polynomial that approximates read-once DNF formulas

to ε accuracy must have degree at least Ω(log t log(1/ε)/ log log(1/ε)). He further shows that

a “low-degree” strategy of selecting all of a DNF’s Fourier coefficients of monomials up to

degree d results in a polynomial p with sparsity tO(log log t log 1/ε). It is not clear, however,

how to improve this to the desired tO(log 1/ε) bound.

As mentioned earlier, by applying the result of Gopalan et al. [Gopalan et al., 2008b],

we obtain the first polynomial-time query algorithms for agnostically learning the above
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classes of DNF formulas to within any constant accuracy parameter. We consider this an

important step towards agnostically learning all DNF formulas.

Corollary 1. Let C be the class of DNF formulas with t = nO(1) terms and define Dt as

in Section 2.2.2. Then there is a query-algorithm for agnostically learning C with respect to

Dt to accuracy ε in time poly(n) · tO(log 1/ε) with probability 1− n−Ω(1) (over Dt).

We define the notion of agnostic learning with respect to randomly chosen concept classes

in Chapter 2. For t = nΘ(1), Corollary 1 holds for a 1−n−Ω(log t) fraction of randomly chosen

DNF formulas. We also obtain a corresponding agnostic learning algorithm for read-k DNF

formulas:

Corollary 2. Let C be the class of read-k DNF formulas with t terms. Then there is

a query-algorithm for agnostically learning C with respect to the uniform distribution on

{0, 1}n to accuracy ε in time poly(n) · tO(24k log 1/ε).

Our sparse polynomial approximators can also be used in conjunction with recent work

due to De et al. to show that for any randomly chosen or read-k DNF f , 1/tO(log 1/ε)-biased

distributions fool f (for k = O(1)):

Theorem 5. Let f be a randomly chosen DNF formula or a read-k DNF formula. Then

(with probability 1−n−Ω(1) for random DNF formulas) there exists a pseudorandom gener-

ator G such that ∣∣∣∣ Pr
x∈{0,1}s

[f(G(x)) = 1]− Pr
z∈{0,1}n

[f(z) = 1]
∣∣∣∣ ≤ ε

with s = O(log n+ log t · log(1/ε)).

Previously it was only known that these types of biased distributions fool read-once

DNF formulas [De et al., 2009].

3.1.2 Related Work

As mentioned earlier, Mansour, using the random restriction machinery of H̊astad and

Linial et al. [H̊astad, 1986; Linial et al., 1993] had shown that for any DNF formula f , there

exists a p of sparsity tO(log log t log 1/ε) that approximates f . The approximating polynomial
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is constructed by the “low-degree” strategy of selecting all of the DNF’s Fourier coefficients

up to degree O(log t/ε · log 1/ε). A much simpler analysis, essentially observed in [Boppana,

1997], shows that the low-degree strategy yields an ε-approximation with degree O(log t/ε ·

1/ε). Later work [H̊astad, 2001] shows that taking coefficients of degree up to O(log t/ε) ·

min{log t, log 1/ε} suffices, which improves on Mansour’s bound for 1/ε > t.

The subclasses of DNF formulas that we show are agnostically learnable have been well-

studied in the PAC model of learning. Monotone read-k DNF formulas were shown to be

PAC-learnable with respect to the uniform distribution by Hancock and Mansour [Hancock

and Mansour, 1991b], and random DNF formulas were recently shown to be learnable on

average with respect to the uniform distribution in the following sequence of works [Jackson

and Servedio, 2005b; Jackson et al., 2008b; Sellie, 2008b; Sellie, 2009].

Recently (and independently) De et al. proved that for any read-once DNF formula

f , there exists an approximating polynomial p of sparsity tO(log 1/ε). More specifically, De

et al. showed that for any class of functions C fooled by δ-biased sets, there exist sparse,

sandwiching polynomials for C where the sparsity depends on δ. Since they show that

1/tO(log 1/ε)-biased sets fool read-once DNF formulas, the existence of a sparse approximator

for the read-once case is implicit in their work.

3.1.3 Our Approach

As stated above, our proof does not analyze the Fourier coefficients of DNF formulas, and

our approach is considerably simpler than the random-restriction method taken by Mansour

(we consider the lack of Fourier analysis a feature of the proof, given that all previous work

on this problem has been Fourier-based). Instead, we use polynomial interpolation.

A Basic Example. Consider a DNF formula f = T1 ∨ · · · ∨ Tt where each Ti is on a

disjoint set of log t variables (assume t is a power of 2). The probability that each term is

satisfied is exactly 1/t, and the expected number of satisfied terms is one. Further, since the

terms are disjoint, with high probability over the choice of random input, only a few—say

d—terms will be satisfied. As such, we construct a univariate polynomial p with p(0) = 0

and p(i) = 1 for 1 ≤ i ≤ d. Then p(T1 + · · · + Tt) will be exactly equal to f as long as at
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most d terms are satisfied. A careful calculation shows that the inputs where p is incorrect

will not contribute too much to E[(f − p)2], as there are few of them. Setting parameters

appropriately yields a polynomial p that is both sparse and an ε-approximator of f .

Random and read-once DNF formulas. More generally, we adopt the following strat-

egy: given a DNF formula f (randomly chosen or read-once) either (1) with sufficiently high

probability a random input does not satisfy too many terms of f or (2) f is highly biased.

In the former case we can use polynomial interpolation to construct a sparse approximator

and in the latter case we can simply use the constant 0 or 1 function.

The probability calculations are a bit delicate, as we must ensure that the probability

of many terms being satisfied decays faster than the growth rate of our polynomial approx-

imators. For the case of random DNF formulas, we make use of some recent work due to

Jackson et al. on learning random monotone DNF formulas [Jackson et al., 2008b].

Read-k DNF formulas. Read-k DNF formulas do not fit into the above dichotomy, so

we do not use the sum T1 + · · · + Tt inside the univariate polynomial. Instead, we use a

sum of formulas (rather than terms) based on a construction from [Razborov, 2008]. We

modify Razborov’s construction to exploit the fact that terms in a read-k DNF formula do

not share variables with many other terms. Our analysis shows that we can then employ

the previous strategy: either (1) with sufficiently high probability a random input does not

satisfy too many formulas in the sum or (2) f is highly biased.

3.2 Preliminaries

See Chapter 2 for a treatment of the learning models and various properties of Boolean

functions used in this chapter.

3.2.1 Sparse Polynomials

Every function f : {0, 1}n → R can be expressed by its Fourier expansion: f(x) =∑
S f̂(S)χS(x) where χS(x) =

∏
i∈S(−1)xi for S ⊆ [n], and f̂(S) = E[f ·χS ]. The Fourier ex-

pansion of f can be thought of as the unique polynomial representation of f over {+1,−1}n
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under the map xi 7→ 1− 2xi.

Mansour conjectured that polynomial-size DNF formulas could be approximated by

sparse polynomials over {+1,−1}n. We say a polynomial p : {+1,−1}n→R has sparsity s

if it has at most s non-zero coefficients. We state Mansour’s conjecture as originally posed

in [Mansour, 1994], which uses the convention of representing false by +1 and true by

−1.

Conjecture 1 ([Mansour, 1994]). Let f : {+1,−1}n → {+1,−1} be any function com-

putable by a t-term DNF formula. Then there exists a polynomial p : {+1,−1}n → R with

tO(log 1/ε) terms such that E[(f − p)2] ≤ ε.

We will prove the conjecture to be true for various subclasses of polynomial-size DNF

formulas. In our setting, Boolean functions will output 0 for false and 1 for true. However,

we can easily change the range by setting f± := 1− 2 · f . Changing the range to {+1,−1}

changes the accuracy of the approximation by at most a factor of 4: E[((1−2f)−(1−2p))2] =

4E[(f − p)2], and it increases the sparsity by at most 1.

Given a Boolean function f , we construct a sparse approximating polynomial over

{+1,−1}n by giving an approximating polynomial p : {0, 1}n→R with real coefficients

that has small spectral norm. The rest of the section gives us some tools to construct such

polynomials and explains why doing so yields sparse approximators.

Definition 3. The Fourier `1-norm (also called the spectral norm) of a function p :

{0, 1}n→R is defined to be ‖p‖1 :=
∑

S |p̂(S)|. We will also use the following minor variant,

‖p‖ 6=∅1 :=
∑

S 6=∅ |p̂(S)|.

The following two facts about the spectral norm of functions will allow us to construct

polynomials over {0, 1}n naturally from DNF formulas.

Fact 1. Let p : {0, 1}m→R be a polynomial with coefficients pS ∈ R for S ⊆ [m], and

q1, . . . , qm : {0, 1}n→{0, 1} be arbitrary Boolean functions. Then p(q1, . . . , qm) =
∑

S pS
∏
i∈S qi

is a polynomial over {0, 1}n with spectral norm at most

∑
S⊆[m]

|pS |
∏
i∈S
||qi||1.



CHAPTER 3. MANSOUR’S CONJECTURE IS TRUE FOR RANDOM DNF 21

Proof. The fact follows by observing that for any p, q : {0, 1}n→R, we have ||p + q||1 ≤

||p||1 + ||q||1 and ||pq||1 ≤ ||p||1||q||1. �

Fact 2. Let T : {0, 1}n→{0, 1} be an AND of a subset of its literals. Then ||T ||1 = 1.

Finally, using the fact below, we show why approximating polynomials with small spec-

tral norm give sparse approximating polynomials.

Fact 3 ([Kushilevitz and Mansour, 1993b]). Given any function f : {0, 1}n→R and ε > 0,

let S =
{
S ⊆ [n] :

∣∣∣f̂(S)
∣∣∣ ≥ ε/‖f‖1}, and g(x) =

∑
S∈S f̂(S)χs(x). Then E[(f − g)2] ≤ ε,

and |S| ≤ ‖f‖21/ε.

Now, given functions f, p : {0, 1}n→R such that E[(f − p)2] ≤ ε, we may construct a

4ε-approximator for f with sparsity ||p||21/ε by defining p′(x) =
∑

S∈S p̂(S)χS(x) as in Fact

3. Clearly p′ has sparsity ||p||21/ε, and

E[(f − p′)2] = E[(f − p+ p− p′)2] ≤ E[2((f − p)2 + (p− p′)2)] ≤ 4ε,

where the first inequality follows from the inequality (a + b)2 ≤ 2(a2 + b2) for any reals a

and b.

3.3 Approximating DNFs using univariate polynomial inter-

polation

Let f = T1 ∨ T2 ∨ · · · ∨ Tt be any DNF formula. We say Ti(x) = 1 if x satisfies the term Ti,

and 0 otherwise. Let yf : {0, 1}n → {0, . . . ,t} be the function that outputs the number of

terms of f satisfied by x, i.e., yf (x) = T1(x) + T2(x) + · · ·+ Tt(x).

Our constructions will use the following univariate polynomial Pd to interpolate the

values of f on inputs {x : yf (x) ≤ d}. For illustrations of Pd for small values of d, see

Figures 3.1 and 3.2 by Li-Yang Tan.

Fact 4. Let

Pd(y) := (−1)d+1 (y − 1)(y − 2) · · · (y − d)
d!

+ 1. (3.1)
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Figure 3.1: The polynomial P6

Then, (1) the polynomial Pd is a degree-d polynomial in y; (2) Pd(0) = 0, Pd(y) = 1 for

y ∈ [d], and for y ∈ [t] \ [d], Pd(y) = −
(
y−1
d

)
+ 1 ≤ 0 if d is even and Pd(y) =

(
y−1
d

)
+ 1 > 1

if d is odd; and (3) the sum of the magnitudes of Pd’s coefficients is d.

Proof. Properties (1) and (2) can be easily verified by inspection. Expanding the falling

factorial, we get that (y − 1)(y − 2) · · · (y − d) =
∑d

j=0(−1)d−j
[
d+1
j+1

]
yj , where

[
a
b

]
denotes a

Stirling number of the first kind. The Stirling numbers of the first kind count the number

of permutations of a elements with b disjoint cycles. Therefore,
∑d

j=0

[
d+1
j+1

]
= (d + 1)!

[Graham et al., 1994]. The constant coefficient of Pd is 0 by Property (2), thus the sum of

the absolute values of the other coefficients is ((d+ 1)!− d!)/d! = d. �

For any t-term DNF formula f , we can construct a polynomial pf,d : {0, 1}n→R defined

as pf,d := Pd ◦ yf . A simple calculation, given below, shows that the `1-norm of pf,d is

polynomial in t and exponential in d.
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Figure 3.2: The polynomial P5

Lemma 1. Let f be a t-term DNF formula, then ‖pf,d‖1 ≤ tO(d).

Proof. By Fact 4, Pd is a degree-d univariate polynomial with d non-zero coefficients of

magnitude at most d. We can view the polynomial pf,d as the polynomial P ′d(T1, . . . , Tt) :=

Pd(T1+· · ·+Tt) over variables Ti ∈ {0, 1}. Expanding out P ′d gives us at most dtd monomials

with coefficients of magnitude at most d. Now each monomial of P ′d is a product of Ti’s, so

applying Facts 2 and 1 we have that ‖pf,d‖1 ≤ tO(d). �

The next section will show that the polynomial pf,d (for d = Θ(log 1/ε)) is in fact a good

approximation for random DNF formulas. As a warm-up, we will show the simple case of

read-once DNF formulas.

3.3.1 A Simple Case: Read-Once DNF Formulas

For read-once DNF formulas, the probability that a term is satisfied is independent of

whether or not any of the other terms are satisfied, and thus f is unlikely to have many
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terms satisfied simultaneously.

Lemma 2. Let f = T1∨· · ·∨Tt be a read-once DNF formula of size t such that Pr[f ] < 1−ε.

Then the probability over the uniform distribution on {0, 1}n that some set of j > e ln 1/ε

terms is satisfied is at most
(
e ln 1/ε
j

)j
.

Proof. For any assignment x to the variables of f , let yf (x) be the number terms satisfied

in f . By linearity of expectation, we have that Ex[yf (x)] =
∑t

i=1 Pr[Ti = 1]. Note that

Pr[¬f ] =
∏t
i=1(1−Pr[Ti]), which is maximized when each Pr[Ti] = E[yf ]/t, hence Pr[¬f ] ≤

(1−E[yf ]/t)t ≤ e−E[yf ]. Thus we may assume that E[yf ] ≤ ln 1/ε, otherwise Pr[f ] ≥ 1− ε.

Assuming E[yf ] ≤ ln 1/ε, we now bound the probability that some set of j > e ln 1/ε

terms of f is satisfied. Since all the terms are disjoint, this probability is
∑

S⊆[t],|S|=j
∏
i∈S Pr[Ti],

and the arithmetic-geometric mean inequality gives that this is maximized when every

Pr[Ti] = E[yf ]/t. Then the probability of satisfying some set of j terms is at most:(
t

j

)(
ln 1/ε
t

)j
≤
(
et

j

)j ( ln 1/ε
t

)j
=
(
e ln 1/ε
j

)j
,

which concludes the proof of the lemma. �

The following lemma shows that we can set d to be fairly small, Θ(log 1/ε), and the

polynomial pf,d will be a good approximation for any DNF formula f , as long as f is

unlikely to have many terms satisfied simultaneously.

Lemma 3. Let f be any t-term DNF formula, and let d = d4e3 ln 1/εe. If

Pr[yf (x) = j] ≤
(
e ln 1/ε
j

)j
for every d ≤ j ≤ t, then the polynomial pf,d satisfies E[(f − pf,d)2] ≤ ε.

Proof. We condition on the values of yf (x), controlling the magnitude of pf,d by the un-

likelihood of yf being large. By Fact 4, pf,d(x) will output 0 if x does not satisfy f , pf,d(x)
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will output 1 if yf (x) ∈ [d], and |pf,d(x)| <
(yf
d

)
for yf (x) ∈ [t] \ [d]. Hence:

‖f − pf,d‖2 <
t∑

j=d+1

(
j

d

)2(e ln 1/ε
j

)j

<
t∑

j=d+1

22j

(
e ln 1/ε

4e3 ln 1/ε

)j

< ε

t∑
j=d+1

1
ej
< ε.

�

Combining Lemmas 1, 2, and 3 gives us Mansour’s conjecture for read-once DNF for-

mulas.

Theorem 6. Let f be any read-once DNF formula with t terms. Then there is a polynomial

pf,d with ‖pf,d‖1 ≤ tO(log 1/ε) and E[(f − pf,d)2] ≤ ε for all ε > 0.

3.4 Mansour’s Conjecture for Random DNF Formulas

In this section, we establish various properties of random DNF formulas and use these

properties to show that for almost all f , Mansour’s conjecture holds. Roughly speaking,

we will show that a random DNF formula behaves like a read-once DNF formula, in that

any “large” set of terms is unlikely to be satisfied by a random assignment. This notion is

formalized in Lemma 5. For such DNF formulas, we may use the construction from Section

3.3 to obtain a good approximating polynomial for f with small spectral norm (Theorem

7).

We introduced the notion of a random DNF in Chapter 2; for convenience, we repeat the

formal definition here. Let Dtn be the probability distribution over t-term DNF formulas

induced by the following process: each term is independently and uniformly chosen at

random from all t
(
n

log t

)
possible terms of size exactly log t over {x1, . . . ,xn}. For convenience,

we assume that log t is an integer throughout our discussion, although the general case is

easily handled by taking terms of length blog tc.

If t grows very slowly relative to n, say t(n) = no(1), then with high probability (1−nΩ(1))

a random f drawn from Dtn will be a read-once DNF formula, in which case the results of
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Section 3.3.1 hold. Therefore, throughout the rest of this section we will assume that

t = nΘ(1).

To prove Lemma 5, we require two Lemmas; these have a similar flavor to lemmas we

will prove in Chapter 4. Lemma 4 shows that with high probability the terms of a random

DNF formula are close to being disjoint, and thus cover close to j log t variables.

Lemma 4. With probability at least 1− tjej log t(j log t)log t/nlog t over the random draw of

f from Dtn, at least j log t − (log t)/4 variables occur in every set of j distinct terms of f .

The failure probability is at most 1/nΩ(log t) for any j < c log n, for some constant c.

Proof. Let k := log t. Fix a set of j terms, and let v ≤ jk be the number of distinct

variables (negated or not) that occur in these terms. We will bound the probability that

v > w := jk − k/4. Consider any particular fixed set of w variables. The probability that

none of the j terms include any variable outside of the w variables is precisely
((
w
k

)
/
(
n
k

))j .
Thus, the probability that v ≤ w is by the union bound:(

n

w

)((w
k

)(
n
k

))j < (en
w

)w (w
n

)jk
=
ejk−k/4(jk − k/4)k/4

nk/4
<
ejk(jk)k/4

nk/4
.

Taking a union bound over all (at most tj) sets, we have that with the correct probability

every set of j terms contains at least w distinct variables. �

We will use the method of bounded differences (a.k.a., McDiarmid’s inequality) to prove

Lemma 5.

Proposition 1 (McDiarmid’s inequality). Let X1, . . . ,Xm be independent random variables

taking values in a set X , and let f : Xm → R be such that for all i ∈ [m], |f(a)− f(a′)| ≤ di,

whenever a, a′ ∈ Xm differ in just the ith coordinate. Then for all τ > 0,

Pr [f > Ef + τ ] ≤ exp
(
− 2τ2∑

i d
2
i

)
and Pr [f < Ef − τ ] ≤ exp

(
− 2τ2∑

i d
2
i

)
.

Lemma 5 below shows that with high probability over the choice of random DNF for-

mula, the probability that exactly j terms are satisfied is close to that for the basic example

we considered in Section 3.1.3:
(
t
j

)
t−j(1− 1/t)t−j .
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Lemma 5. There exists a constant c such that for any j < c log n, with probability at

least 1 − 1/nΩ(log t) over the random draw of f from Dtn, the probability over the uni-

form distribution on {0, 1}n that an input satisfies exactly j distinct terms of f is at most

2
(
t
j

)
t−j(1− 1/t)t−j.

Proof. Let f = T1 ∨ · · · ∨ Tt, and let β := t−j(1 − 1/t)t−j . Fix any J ⊂ [t] of size j, and

let UJ be the probability over x ∈ {0, 1}n that the terms Ti for i ∈ J are satisfied and no

other terms are satisfied. We will show that UJ < 2β with high probability; a union bound

over all possible sets J of size j in [t] gives that UJ ≤ 2β for every J with high probability.

Finally, a union bound over all
(
t
j

)
possible sets of j terms (where the probability is taken

over x) proves the lemma.

Without loss of generality, we may assume that J = [j]. For any fixed x, we have:

Pr
f∈Dtn

[x satisfies exactly the terms in J ] = β,

and thus by linearity of expectation, we have Ef∈Dtn [UJ ] = β. Now we show that with high

probability that the deviation of UJ from its expected value is low.

Applying Lemma 4, we may assume that the terms T1, · · · , Tj contain at least j log t−

(log t)/4 many variables, and that J∪Ti for all i = j+1, · · · , t includes at least (j+1) log t−

(log t)/4 many unique variables, while increasing the failure probability by only 1/nΩ(log t).

Note that conditioning on this event can change the value of UJ by at most 1/nΩ(log t) < 1
2β,

so under this conditioning we have E[Pj ] ≥ 1
2β. Conditioning on this event, fix the terms

T1, · · · , Tj . Then the terms Tj+1, · · · , Tt are chosen uniformly and independently from the

set of all terms T of length log t such that the union of the variables in J and T includes at

least (j + 1) log t− (log t)/4 unique variables. Call this set X .

We now use McDiarmid’s inequality where the random variables are the terms Tj+1, . . . , Tt

randomly selected from X , letting g(Tj+1, · · · , Tt) = UJ and g(Tj+1, · · · , Ti−1, T
′
i , Ti+1, · · · , Tt) =

U ′J for all i = j + 1, . . . ,t. We claim that:

∣∣UJ − U ′J ∣∣ ≤ di :=
t1/4

tj+1
.

This is because U ′J can only be larger than UJ by assignments which satisfy T1, · · · , TJ and

Ti. Similarly, U ′J can only be smaller than UJ by assignments which satisfy T1, · · · , TJ and
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T ′i . Because Ti and T ′i come from X , we know that at least (j + 1)t − (log t)/4 variables

must be satisfied.

Thus we may apply McDiarmid’s inequality with τ = 3
2β, which gives that Prf [UJ > 2β]

is at most

exp

(
−29

4β
2

t3/2/t2j+2

)
≤ exp

(
−9
√
t(1− 1/t)2(t−j)

2

)
.

Combining the failure probabilities over all the
(
t
j

)
possible sets, we get that with probability

at least (
t

j

)(
1

nΩ(log t)
+ e−9

√
t(1−1/t)2(t−j)/2

)
=

1
nΩ(log t)

,

over the random draw of f from Dtn, UJ ≤ 2β for all J ⊆ [t] of size j. Thus, the probability

that a random input satisfies exactly some j distinct terms of f is at most 2
(
t
j

)
β. �

Using these properties we can now show a lemma for random DNF formulas analgous

to Lemma 3.

Lemma 6. Let f be any DNF formula with t = nO(1) terms, and let ε > 0 which satisfies

1/ε = o(log log n). Then set d = d4e3 ln 1/εe and ` = c log n, where c is the constant in

Lemma 5. If

Pr[yf (x) = j] ≤
(
e ln 1/ε
j

)j
for every d ≤ j ≤ `, then the polynomial pf,d satisfies E[(f − pf,d)2] ≤ ε.

Proof. We condition on the values of yf (x), controlling the magnitude of pf,d by the un-

likelihood of yf being large. By Fact 4, pf,d(x) will output 0 if x does not satisfy f , pf,d(x)

will output 1 if yf (x) ∈ [d], and |pf,d(x)| <
(yf
d

)
for yf (x) ∈ [t] \ [d]. Hence:

‖f − pf,d‖2 <

`−1∑
j=d+1

(
j

d

)2(e ln 1/ε
j

)j
+
(
t

d

)2

· Pr[yf ≥ `]

<

`−1∑
j=d+1

22j

(
e ln 1/ε

4e3 ln 1/ε

)j
+ n−Ω(log logn)

< ε
`−1∑

j=d+1

1
ej

+ n−Ω(log logn) < ε.

�
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We can now show that Mansour’s conjecture [Mansour, 1994] is true with high proba-

bility over the choice of f from Dtn.

Theorem 7. Let f : {0, 1}n → {0, 1} be a t = nΘ(1)-term DNF formula where each term is

chosen independently from the set of all terms of length log t. Then with probability at least

1 − n−Ω(log t) over the choice of f , there exists a polynomial p with ‖p‖1 ≤ tO(log 1/ε) such

that E[(p(x)− f(x))2] ≤ ε.

Proof. Let dd := 4e3 ln(1/ε)e and pf,d be as defined in Section 3.3. Lemma 1 tells us that

‖pf,d‖1 ≤ tO(log 1/ε). We show that with probability at least 1− n−Ω(log t) over the random

draw of f from Dtn, pf,d will be a good approximator for f . This follows by Lemma 5; with

probability at least 1− (c log(n)− d− 1)/nΩ(log t) = 1− n−Ω(log t), we have Pr[y = j] for all

d < j ≤ c log(n). Thus for such f Lemma 3 tells us that E[(f − pf,d)2] ≤ ε. �

3.5 Mansour’s Conjecture for Read-k DNF Formulas

In this section, we give an ε-approximating polynomial for any read-k DNF formula and

show that its spectral norm is at most tO(24k log 1/ε). This implies that Mansour’s conjecture

holds for all read-k DNF formulas where k is any constant.

Read-k DNF formulas may not satisfy the conditions of Lemma 3, so we must change

our approach. Instead of using
∑t

i=1 Ti inside our univariate polynomial, we use a different

sum, which is based on a construction from [Razborov, 2008] for representing any DNF

formula. We modify this representation to exploit the fact that for read-k DNF formulas,

the variables in a term can not share variables with too many other terms. Unlike for

read-once DNF formulas, it is not clear that the number of terms satisfied in a read-k DNF

formula will be extremely concentrated on a small range. We show how to modify our

construction so that a concentration result does hold.

Let f = T1 ∨ · · · ∨Tt be any t-term read-k DNF formula, and let |Ti| denote the number

of variables in term Ti. We assume that the terms are ordered from longest to shortest,

i.e., |Tj | ≥ |Ti| for all j ≤ i. For any term Ti of f , let φi be the DNF formula consisting of
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those terms (at least as large as Ti) in T1, · · · , Ti−1 that overlap with Ti, i.e.,

φi :=
∨
j∈Ci

Tj , for Ci = {j < i | Tj ∩ Ti 6= ∅}.

We define Ai := Ti ∧¬φi and zf :=
∑t

i=1Ai. The function zf : {0, 1}n → {0, . . . ,t} outputs

the number of disjoint terms of f satisfied by x (greedily starting from T1). Note that if f

is a read-once DNF formula, then zf = yf .

Observe that each Ai can be represented by the polynomial Ti ·
∏
j∈Ci(1− Tj) (and so

zf can be represented by a polynomial), and that ||(1−Tj)||1 ≤ 2 for all j. As f is a read-k

DNF formula, each φi has at most k|Ti| terms, and Ai has small spectral norm:

Fact 5. Let f = T1 ∨ · · · ∨ Tt be a t-term read-k DNF formula. Then each Ai has a

polynomial representation, and ||Ai||1 ≤ 2k|Ti|.

As we did in Section 3.3, we can construct a polynomial qf,d : {0, 1}n→R defined as

qf,d := Pd ◦ zf for any t-term read-k DNF formula f . The following lemma shows that qf,d

has small spectral norm.

Lemma 7. Let f be a t-term read-k DNF formula with terms of length at most w. Then

‖qf,d‖1 ≤ 2O(d(log t+kw)).

Proof. By Fact 4, Pd is a degree-d univariate polynomial with d terms and coefficients of

magnitude at most d. We can view the polynomial qf,d as the polynomial P ′d(A1, . . . , At) :=

Pd(A1 + · · ·+At) over variables Ai ∈ {0, 1}. Expanding out (but not recombining) P ′d gives

us at most dtd monomials of degree d (over variables Ai) with coefficients of magnitude at

most d.

We can now apply Facts 5 and 1 to bound the spectral norm of qf,d. Since P ′d has at

most dtd monomials each of degree d (over Ai), fnd each Ai satisfies ||Ai||1 ≤ 2kw, we have

that ||qf,d||1 ≤ 2dkwdtd = 2O(d(log t+kw)). �

We will show that Mansour’s conjecture holds for read-k DNF formulas by showing that

zf =
∑t

i=1Ai behaves much like yf =
∑t

i=1 Ti would if f were a read-once DNF formula,

and thus we can use our polynomial Pd (Equation 3.1) to approximate f .

One crucial property of our construction is that only disjoint sets of terms can contribute

to zf .
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Claim 1. Let T1 ∨ · · · ∨ Tt be a t-term DNF formula. Then for any S ⊆ [t], Pr[∧i∈SAi] ≤∏
i∈S Pr[Ti].

Proof. If there is a pair j, k ∈ S such that Tj ∩ Tk 6= ∅ for some j < k, then φk contains Tj

and both Tj ∧ ¬φj and Tk ∧ ¬φk cannot be satisfied simultaneously, so Pr[∧i∈SAi] = 0. If

no such pair exists, then all the terms indexed by S are disjoint. Now

Pr[∧i∈SAi] ≤ Pr[∧i∈STi] =
∏
i∈S

Pr[Ti].

�

The following claim tells us that, for a read-k monotone DNF formula, the probability

of satisfying Ai compared to that of satisfying Ti is only smaller by a constant (for constant

k). While the claim only holds for monotone read-k DNF formulas, it will be useful for

analyzing the behavior of
∑t

i=1Ai for non-monotone formulas as well.

Claim 2. Let T1 ∨ · · · ∨ Tt be a t-term monotone read-k DNF formula. Then Pr[Ai] ≥

2−4k Pr[Ti].

Proof. Let I be the set of indices of the terms in φi. For each Tj ∈ φi, let T ′j be Tj with

all the variables of Ti set to 1, and let φ′i = ∨{j:Tj∈φi}T ′j . (For example, if Ti = x1x2x3

and Tj = x2x4x5 is a term of φi, then φ′i contains the term T ′j = x4x5.) Observe that

Pr[Ai] = Pr[Ti ∧ ¬φi] = Pr[Ti ∧ ¬φ′i] = Pr[Ti] Pr[¬φ′i]. Thus it suffices to show that

Pr[¬φ′i] ≥ 2−4k.

Let aj be the number of variables in Tj ∩ Ti. By the definition of φi, 1 ≤ aj ≤ |Ti| − 1,

and note that Pr[T ′j ] = 2aj−|Tj |. Applying the Four Functions Theorem (Theorem 1 from

Chapter 2), we obtain:

Pr[¬φ′i] ≥
∏
j∈I

Pr[¬T ′j ] =
∏
j∈I

(1− 2aj−|Tj |) ≥
∏
j∈I

(1− 2aj−|Ti|).

We partition I into two sets: J = {j : aj ≤ |Ti|/2} and J ′ = {j : aj > |Ti|/2}. (Assume

that |Ti| ≥ 4 or else we are done, because there can be at most 4k terms.) As φi is a read-k

DNF formula, we have that
∑

j∈I aj ≤ k|Ti|, and thus |J ′| ≤ 2k, and |J | ≤ k|Ti|.
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We will lower bound the products over each set of indices separately. For those terms

in J , we have that Pr[T ′j ] ≤ 2−|Ti|/2, hence∏
j∈J

(1− Pr[T ′j ]) ≥
∏
j∈J

(1− 2−|Ti|/2) ≥ (1− 2−|Ti|/2)k|Ti| ≥ 2−2k.

For those terms Tj , j ∈ J ′ (which share many variables with Ti), we use the facts that each

Pr[T ′j ] ≤ 1/2 and that there are at most 2k such terms, so that∏
j∈J ′

(1− Pr[T ′j ]) ≥ 2−2k.

Taking the product over the set J ∪ J ′ completes the proof of the claim. �

We remark that we used the fact that φi only contains terms that are at least as long

as Ti to get a much stronger lower bound than that implied by Lemma 3 of [Hancock and

Mansour, 1991b].

As in the read once-case, we will prove (in Lemma 9) that for any read-k DNF formula

f , if
∑t

i=1 Pr[Ti] is large then f is biased towards one. To do so we will prove this for

monotone read-k DNF formulas and then use the following lemma to obtain the general

case. Lemma 8 was communicated to us by Omid Etesami and James Cook [Etesami and

Cook, 2010].

Lemma 8. Let f = T1∨. . .∨Tt be a t-term read-k DNF formula, and let f ′ = T ′1∨. . .∨T ′t be

the monotone formula obtained from f by replacing all the negative literals by their positive

counterparts. Then Pr[f ′] ≤ Pr[f ].

Proof. For each 0 ≤ i ≤ n, define f (i) as the DNF formula obtained from f when replacing

each occurrence of ¬xj by xj for all 1 ≤ j ≤ i. In particular, f (0) = f and f (n) = f ′. Let

f (i−1) = (gxi∧xi)∨(g¬xi∧¬xi)∨g∅ where gxi∧xi is the OR of all terms from f (i−1) that have

the literal xi, g¬xi ∧¬xi is the OR of all terms that have the literal ¬xi, and g∅ is the OR of

all terms that neither contain xi nor contain ¬xi. Note that f (i) = ((gxi ∨ g¬xi) ∧ xi) ∨ g∅.

Thus

Pr
[
f (i−1)

]
=

1
2

Pr[gxi ∧ ¬g∅] +
1
2

Pr[g¬xi ∧ ¬g∅] + Pr[g∅],

and

Pr
[
f (i)
]

=
1
2

Pr[(gxi ∨ g¬xi) ∧ ¬g∅] + Pr[g∅].
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A union bound on the events (gxi ∧¬g∅) and (g¬xi ∧¬g∅) tells us that Pr[f (i−1)] ≥ Pr[f (i)],

and thus Pr[f (0)] ≥ Pr[f (n)]. �

Finally, we will prove Lemma 9. Using Lemma 9 with Claim 1, we can prove a lemma

analogous to Lemma 2 by a case analysis of
∑t

i=1 Pr[Ti]; either it is large and f must be

biased toward one, or it is small so zf is usually small.

Lemma 9. Let f be a t-term read-k DNF formula. Then,
t∑
i=1

Pr[Ti] ≤ 24k ln
(

1
Pr[¬f ]

)
.

Proof. First, let us consider the case when f is monotone. Let ρi be those terms among

T1, . . . , Ti−1 that are not present in φi. We can upper-bound Pr[¬f ] by:

Pr[¬f ] =
t∏
i=1

(1− Pr[Ti | ¬φi ∧ ¬ρi])

≤
t∏
i=1

(1− Pr[Ti ∧ ¬φi | ¬ρi]) =
t∏
i=1

(1− Pr[Ti | ¬ρi] Pr[¬φi | Ti ∧ ¬ρi])

≤
t∏
i=1

(1− Pr[Ti] Pr[¬φi | Ti]) =
t∏
i=1

(1− Pr[Ai]) .

The first inequality comes from Pr[A | B ∧ C] ≥ Pr[A ∧ B | C] for any A, B, and C. The

last inequality holds because Pr[Ti | ¬ρi] = Pr[Ti] (by the mutual independence of Ti and

ρi) and Pr[¬φi | Ti] ≤ Pr[¬φi | Ti ∧ ¬ρi]. The last fact may be obtained by applying the

Four Functions Theorem to ¬φi and ¬ρi under the product distribution induced by setting

all the variables of Ti to be true.

We apply Claim 2 to obtain Pr[¬f ] ≤
∏t
i=1(1−Pr[Ti]2−4k), and the arithmetic-geometric

mean inequality shows that our upper-bound on Pr[¬f ] is maximized when all the Pr[Ti]

are equal, hence:

Pr[¬f ] ≤

(
1− 2−4k

∑t
i=1 Pr[Ti]
t

)t
≤ exp

(
−2−4k

t∑
i=1

Pr[Ti]

)
.

Solving for
∑t

i=1 Pr[Ti] yields the lemma for monotone f .

Now let f be a non-monotone DNF formula, and let f ′ be the monotonized version of

f . Then by Lemma 8 we have:
t∑
i=1

Pr[Ti] =
t∑
i=1

Pr[T ′i ] ≤ 24k ln
(

1
Pr[¬f ′]

)
≤ 24k ln

(
1

Pr[¬f ]

)
,
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as was to be shown. �

Lemma 10. Let f = T1 ∨ · · · ∨ Tt be a read-k DNF formula of size t such that Pr[f ] <

1 − ε. Then the probability over the uniform distribution on {0, 1}n that zf ≥ j (for any

j > 24ke ln(1/ε)) is at most
(

24ke ln(1/ε)
j

)j
.

Proof. By Lemma 9, TA :=
∑t

i=1 Pr[Ti] < 24k ln(1/ε). The probability that some set of j

Ai’s is satisfied is at most
∑

S⊆[t],|S|=j Pr[∧i∈SAi]. Applying Claim 1, we have:

∑
S⊆[t],|S|=j

Pr[∧i∈SAi] ≤
∑

S⊆[t],|S|=j

∏
i∈S

Pr[Ti].

The arithmetic-geometric mean inequality shows that this quantity is maximized when all

Pr[Ti] are equal, hence:

∑
S⊆[t],|S|=j

∏
i∈S

Pr[Ti] ≤
(
t

j

)(
TA
t

)j
≤
(
eTA
j

)j
≤
(

24ke ln 1/ε
j

)j
�

We can now show that Mansour’s conjecture holds for read-k DNF formulas with any

constant k.

Theorem 8. Let f : {0, 1}n → {0, 1} be any read-k DNF formula with t terms. Then there

is a polynomial qf,d with ‖qf,d‖1 = tO(24k log 1/ε) and E[(f − qf,d)2] ≤ ε for all ε > 0.

Proof. If Pr[f = 1] > 1 − ε, the constant 1 is a suitable polynomial. Let g be the DNF

formula f after dropping terms of length greater than w := log(2t/ε). (This only changes

the probability by ε/2.) Let d := d4e324k ln(2/ε)e and qg,d be as defined at the beginning

of Section 3.5. Lemma 7 tells us that ‖qg,d‖1 ≤ tO(24k log 1/ε), and Lemma 10 combined with

Lemma 3 tells us that E[(g − qg,d)2] ≤ ε/2. �

3.6 Pseudorandomness

De et al. [De et al., 2009] recently improved long-standing pseudorandom generators against

DNF formulas.
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Definition 4. A probability distribution X over {0, 1}n ε-fools a real function f : {0, 1}n →

R if

|E[f(X)]−E[f(Un)]| ≤ ε.

Here Un denotes the uniform distribution over the Boolean hypercube. If C is a class of

functions, then we say that X ε-fools C if X ε-fools every function f ∈ C.

We say a probability distribution X over {0, 1}n is ε-biased if it ε-fools the character

function χS for every S ⊆ [n].

De et al. observed that a result of Bazzi [Bazzi, 2007] implied a pseudorandom generator

that ε-fools t-term DNF formulas over n variables with seed length O(log n·log2(t/β)), which

already improves the long-standing upper bound of O(log4(tn/ε)) of Luby et al. [Luby et

al., 1993]. They go on to show a pseudorandom generator with seed length O(log n +

log2(t/ε) log log(t/ε)).

They prove that a sufficient condition for a function f to be ε-fooled by an ε-biased dis-

tribution is that the function be “sandwiched” between two bounded real-valued functions

whose Fourier transform has small `1 norm:

Lemma 11 (Sandwich Bound [De et al., 2009]). Suppose f, f`, fu : {0, 1}n → R are three

functions such that for every x ∈ {0, 1}n, f`(x) ≤ f(x) ≤ fu(x), E[fu(Un)]−E[f(Un)] ≤ ε,

and E[f(Un)]−E[f`(Un)] ≤ ε. Let L = max(‖f`‖ 6=∅1 , ‖fu‖ 6=∅1 ). Then any β-biased probability

distribution (ε+ βL)-fools f .

Naor and Naor [Naor and Naor, 1993] prove that an ε-biased distribution over n bits

can be sampled using a seed of O(log(n/ε)) bits. Using our construction from Section 3.4,

we show that random DNF formulas are ε-fooled by a pseudorandom generator with seed

length O(log n+ log(t) log(1/ε)):

Theorem 9. Let f = T1∨· · ·∨Tt be a random DNF formula chosen from Dtn for t = nΘ(1).

For 1 ≤ d ≤ t, with probability 1 − 1/nΩ(log t) over the choice of f , β-biased distributions

O(2−Ω(d) + βtd)-fool f . In particular, we can ε-fool most f ∈ Dtn by a t−O(log(1/ε)-biased

distribution.

Proof. Let d+ be the first odd integer greater than d, and let d− be the first even integer

greater than d. Let fu = pf,d+ and f` = pf,d− (where pf,d is defined as in Section 3.3).



CHAPTER 3. MANSOUR’S CONJECTURE IS TRUE FOR RANDOM DNF 36

By Lemma 1, the `1-norms of fu and f` are tO(d). By Fact 4, we know that Pd+(y) =(
y−1
d

)
+ 1 > 1 and Pd−(y) = −

(
y−1
d

)
+ 1 ≤ 0 for y ∈ [t] \ [d], hence:

E[fu(Un)]−E[f(Un)] =
t∑

j=d+1

((
j − 1
d

)
+ 1− 1

)
Pr[yf = j],

which with probability 1−1/nΩ(log t) over the choice of f is at most 2−Ω(d) by the analysis in

Lemma 3. The same analysis applies for f`, thus applying Lemma 11 gives us the theorem.

�

De et al. match our bound for random DNF formulas for the special case of read-once

DNF formulas. Using our construction from Section 3.5 and a similar proof as the one

above, we can show that read-k formulas are ε-fooled by a pseudorandom generator with

seed length O(log n+ log(t) log(1/ε)).

Theorem 10. Let f = T1∨· · ·∨Tt be a read-k DNF formula for constant k. For 1 ≤ d ≤ t,

β-biased distributions O(2−Ω(d) + βtd)-fool f . In particular, we can ε-fool read-k DNF

formulas by a t−O(log(1/ε))-biased distribution.

3.7 Discussion

On the relationship between Mansour’s Conjecture and the Entropy-Influence

Conjecture. As a final note, we would like to make a remark on the relationship be-

tween Mansour’s conjecture and the entropy-influence conjecture. The spectral entropy of

a function is defined to be E(f) :=
∑

S −f̂(S)2 log(f̂(S)2) and the total influence to be

I(f) :=
∑

S |S|f̂(S)2. The entropy-influence conjecture is that E(f) = O(I(f)) [Friedgut

and Kalai, 1996].1 Boppana showed that the total influence of t-term DNF formulas is

O(log t) [Boppana, 1997]. From this it follows that Mansour’s conjecture (actually, tO(1/ε)

concentration) is implied by the entropy-influence conjecture. Thus, proving that DNF can

be ε-approximated (for constant ε) by poly(n)-sparse polynomials is necessary for proving

the entropy-influence conjecture. It can also be shown that for nO(1)-size DNF formulas,

Mansour’s conjecture implies that their spectral entropy is at most O(log n).

1http://terrytao.wordpress.com/2007/08/16/gil-kalai-the-entropyinfluence-conjecture/

http://terrytao.wordpress.com/2007/08/16/gil-kalai-the-entropyinfluence-conjecture/
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See Appendix A for a rigorous treatment of the previous statements.
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Chapter 4

Learning Random Monotone DNF

We next apply average-case analysis to the problem of learning DNF formulas from random

examples.

4.1 Introduction

4.1.1 Motivation and Background

In this chapter, we address the tantalizing question of learning monotone DNF from random

examples, which has been posed as a goal by many authors (see e.g. [Jackson, 1997a; Jackson

and Tamon, 1997; Blum et al., 1998; Blum, 2003b; Servedio, 2004b]). Besides being a natural

restriction of the uniform distribution DNF learning problem, this problem is interesting

because several impediments to learning general DNF under uniform – known lower bounds

for Statistical Query based algorithms [Blum et al., 1994], the apparent hardness of learning

the subclass of log(n)-juntas [Blum, 2003a] – do not apply in the monotone case. This

chapter solves a natural average-case version of this problem using previously unknown

Fourier properties of monotone functions.

4.1.2 Previous Work

Many partial results have been obtained on learning monotone DNF under the uniform dis-

tribution. Verbeurgt [Verbeurgt, 1990] gave an nO(logn)-time uniform distribution algorithm

for learning any poly(n)-term DNF, monotone or not. Several authors [Kučera et al., 1994;
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Sakai and Maruoka, 2000; Bshouty and Tamon, 1996] have given results on learning mono-

tone t-term DNF for larger and larger values of t; most recently, [Servedio, 2004b] gave a

uniform distribution algorithm that learns any 2O(
√

logn)-term monotone DNF to any con-

stant accuracy ε = Θ(1) in poly(n) time. O’Donnell and Servedio [O’Donnell and Servedio,

2006] have recently shown that poly(n)-leaf decision trees that compute monotone func-

tions (a subclass of poly(n)-term monotone DNF) can be learned to any constant accuracy

under uniform in poly(n) time. Various other problems related to learning different types

of monotone functions under uniform have also been studied, see e.g. [Kearns et al., 1994a;

Blum et al., 1998; Verbeurgt, 1998; Hancock and Mansour, 1991a; Amano and Maruoka,

2002].

Aizenstein and Pitt [Aizenstein and Pitt, 1995] first proposed a model of random DNF

formulas and gave an exact learning algorithm that learns random DNFs generated in this

way. As noted in [Aizenstein and Pitt, 1995] and [Jackson and Servedio, 2006], this model

admits a trivial learning algorithm in the uniform PAC setting. Jackson and Servedio

[Jackson and Servedio, 2005a] gave a uniform distribution algorithm that learns log-depth

decision trees on average in a natural random model. Previous work on average-case uniform

PAC DNF learning, also by Jackson and Servedio, is described below.

4.1.3 Our Results

The main result of this chapter is a polynomial-time algorithm that can learn random

poly(n)-term monotone DNF drawn from a particular distribution. (We give a full descrip-

tion of the exact probability distribution defining our random DNFs in Section 4.4; briefly,

the reader should think of our random t-term monotone DNFs as being obtained by inde-

pendently drawing t monotone conjunctions uniformly from the set of all conjunctions of

length log2 t over variables x1, . . . , xn. Although many other distributions could be consid-

ered, this seems a natural starting point. Some justification for the choice of term length is

given in Sections 4.4 and 4.6.)

Theorem 11. [Informally] Let t(n) be any function such that t(n) ≤ poly(n), and let

c > 0 be any fixed constant. Then random monotone t(n)-term DNFs are PAC learnable

(with failure probability δ = n−c) to accuracy ε in poly(n, 1/ε) time under the uniform
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distribution. The algorithm outputs a monotone DNF as its hypothesis.

In independent and concurrent work, Sellie [Sellie, 2008a] has given an alternate proof of

this theorem using different techniques. Later, she generalized the result to non-monotone

DNF formulas as well [Sellie, 2009].

4.1.4 Our Technique

Jackson and Servedio [Jackson and Servedio, 2006] showed that for any γ > 0, a result

similar to Theorem 11 holds for random t-term monotone DNF with t ≤ n2−γ . The main

open problem stated in [Jackson and Servedio, 2006] was to prove Theorem 11. Our work

solves this problem by using the previous algorithm to handle t ≤ n3/2, developing new

Fourier lemmas for monotone DNF, and using these lemmas together with more general

versions of techniques from [Jackson and Servedio, 2006] to handle t ≥ n3/2.

The crux of our strategy is to establish a connection between the term structure of

certain monotone DNFs and their low-order Fourier coefficients. There is an extensive

body of research on Fourier properties of monotone Boolean functions [Bshouty and Tamon,

1996; Mossel and O’Donnell, 2003a; Blum et al., 1998], polynomial-size DNF [Jackson,

1997a; Mansour, 1994], and related classes such as constant-depth circuits and decision

trees [Linial et al., 1993; Kushilevitz and Mansour, 1993a; Jackson et al., 2002; O’Donnell

and Servedio, 2006]. These results typically establish that every function in the class has

a Fourier spectrum with certain properties; unfortunately, the Fourier properties that have

been obtainable to date for general statements of this sort have not been sufficient to yield

polynomial-time learning algorithms.

We take a different approach by defining a natural distribution over monotone DNF

and proving Fourier properties for the DNF drawn from this distribution. To this end, we

carefully define a set of conditions and show in Section 4.4 that the random DNFs satisfy

these conditions with high probability. We prove in Sections 4.2 and 4.3 that if a monotone

DNF f satisfies these conditions then the structure of the terms of f will be reflected in the

low-order Fourier coefficients of f . In [Jackson and Servedio, 2006], the degree two Fourier

coefficients were shown to reveal the structure of the terms for certain (including random)

monotone DNFs having at most n2−γ terms. In this work we develop new lemmas about the
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Fourier coefficients of more general monotone DNF, and use these new lemmas to establish

a connection between term structure and constant degree Fourier coefficients for monotone

DNFs with any polynomial number of terms. Roughly speaking, this connection holds for

monotone DNF that satisfy the following conditions:

• each term has a reasonably large fraction of assignments which satisfy it and no other

term;

• for each small tuple of distinct terms, only a small fraction of assignments simultane-

ously satisfy all terms in the tuple; and

• for each small tuple of variables, only a small number of terms contains the entire

tuple.

The “small” tuples referred to above should be thought of as tuples of constant size. The

constant degree coefficients capture the structure of the terms in the following sense: tuples

of variables that all co-occur in some term will have a large magnitude Fourier coefficient,

and tuples of variables that do not all co-occur in some term will have a small magnitude

Fourier coefficient (even if subsets of the tuple do co-occur in some terms). We show this

in Section 4.2.

Next we show a reconstruction procedure for obtaining the monotone DNF from tuple-

wise co-occurrence information. Given a hypergraph with a vertex for each variable, the

procedure turns each co-occurrence into a hyperedge, and then searches for all hypercliques

of size corresponding to the term length. The hypercliques that are found correspond to

the terms of the monotone DNF hypothesis that the algorithm constructs. This procedure

is described in Section 4.3; we show that it succeeds in constructing a high-accuracy hy-

pothesis if the monotone DNF f satisfies a few additional conditions. This is a significant

generalization of a reconstruction procedure from [Jackson and Servedio, 2006] that was

based on finding cliques in a graph (in the n2−γ-term DNF setting, the algorithm deals only

with co-occurrences of pairs of variables so it is sufficient to consider only ordinary graphs

rather than hypergraphs).

The ingredients described so far thus give us an efficient algorithm to learn any monotone

DNF that satisfies all of the required conditions. Finally, we show that random monotone
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DNF satisfy all the required conditions with high probability. We do this in Section 4.4 via

a fairly delicate probabilistic argument. Section 4.5 combines the above ingredients to prove

Theorem 11. We close the chapter by showing that our technique lets us easily recapture

the result of [Hancock and Mansour, 1991a] that read-k monotone DNF are learnable in

polynomial time under the uniform distribution.

4.2 Fourier Coefficients and the Term Structure of Monotone

DNF

Throughout Section 4.2 let f(x1, . . . , xn) be a monotone DNF and let S ⊆ {1, . . . , n} be a

fixed subset of variables. We write s to denote |S| throughout this section. The Fourier

coefficient, written f̂(S), measures the correlation between f and the parity of the variables

in S.

The main result of this section is Lemma 3, which shows that under suitable conditions

on f , the value |f̂(S)| is “large” if and only if f has a term containing all the variables of

S. To prove this, we observe that the inputs which uniquely satisfy such a term will make a

certain contribution to f̂(S). (In Section 4.2.1 we explain this in more detail and show how

to view f̂(S) as a sum of contributions from inputs to f .) It remains then to show that the

contribution from other inputs is small. The main technical novelty comes in Sections 4.2.2

and 4.2.3, where we show that all other inputs which make a contribution to f̂(S) must

satisfy the terms of f in a special way, and use this property to show that under suitable

conditions on f , the fraction of such inputs must be small.

4.2.1 Rewriting f̂(S).

We observe that f̂(S) can be expressed in terms of 2s conditional probabilities, each of which

is the probability that f is satisfied conditioned on a particular setting of the variables in

S. That is:

f̂(S) def= Ex∈Un
[
(−1)

P
i∈S xi · f(x)

]
=

1
2n

∑
x∈{0,1}n

(−1)
P
i∈S xi · f(x)

=
1
2n
∑
U⊆S

(−1)|U |
∑

x∈ZS(U)

f(x) =
1
2s
∑
U⊆S

(−1)|U | Pr
x

[f(x) = 1 | x ∈ ZS(U)],
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where ZS(U) denotes the set of those x ∈ {0, 1}n such that xi = 1 for all i ∈ U and

xi = 0 for all i ∈ S \ U . If f has some term T containing all the variables in S, then

Prx[f(x) = 1 | x ∈ ZS(S)] is at least as large as Prx[T is uniquely satisfied in f |x ∈ ZS(S)].

On the other hand, if f has no such term, then Prx[f(x) = 1 | x ∈ ZS(S)] does not receive

this contribution. We will show that this contribution is the chief determinant of the

magnitude of f̂(S).

It is helpful to rewrite f̂(S) as a sum of contributions from each input x ∈ {0, 1}n. To

this end, we decompose f according to the variables of S. Given a subset U ⊆ S, we will

write gU to denote the disjunction of terms in f that contain every variable indexed by

U ⊆ S and no variable indexed by S \ U , but with the variables indexed by U removed

from each term. (So for example if f = x1x2x4x6 ∨ x1x2x5 ∨ x1x2x3 ∨ x3x5 ∨ x1x5x6 and

S = {1, 2, 3} and U = {1, 2}, then gU = x4x6∨x5.) Thus we can split f into disjoint sets of

terms: f =
∨
U⊆S(tU ∧ gU ), where tU is the term consisting of exactly the variables indexed

by U .

Suppose we are given U ⊆ S and an x that belongs to ZS(U). We have that f(x) = 1 if

and only if gU ′(x) is true for some U ′ ⊆ U . (Note that tU ′(x) is true for every U ′ ⊆ U since

x belongs to ZS(U).) Thus we can rewrite the Fourier coefficients f̂(S) as follows: (Below

we write I(P ) to denote the indicator function that takes value 1 if predicate P is true and

value 0 if P is false.)

f̂(S) =
1
2n
∑
U⊆S

(−1)|U |
∑

x∈ZS(U)

f(x) =
∑
U⊆S

(−1)|U |
1
2n

∑
x∈ZS(U)

I

 ∨
U ′⊆U

gU ′(x)


=

∑
U⊆S

(−1)|U |
1
2s

1
2n

∑
x∈{0,1}n

I

 ∨
U ′⊆U

gU ′(x)

 =
∑

x∈{0,1}n

1
2s

1
2n
∑
U⊆S

(−1)|U |I

 ∨
U ′⊆U

gU ′(x)

 .

We can rewrite this as

f̂(S) =
∑

x∈{0,1}n
ConS(x), where ConS(x) def=

1
2s

1
2n
∑
U⊆S

(−1)|U |I

 ∨
U ′⊆U

gU ′(x)

 . (4.1)

The value ConS(x) may be viewed as the “contribution” that x makes to f̂(S). Recall that

when f has a term T which contains all the variables in S, those x ∈ ZS(S) which uniquely

satisfy T will contribute to f̂(S). We will show that under suitable conditions on f , the

other x’s make little or no contribution.
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4.2.2 Bounding the contribution to f̂(S) from various inputs.

The variable C will denote a subset of P(S), the power set of S; i.e. C denotes a collection

of subsets of S. We may view C as defining a set of gU ’s (those gU ’s for which U belongs to

C).

We may partition the set of inputs {0, 1}n into 2|P(S)| = 22s parts according to what

subset of the 2s functions {gU}U⊆S each x ∈ {0, 1}n satisfies. For C a subset of P(S) we

denote the corresponding piece of the partition by PC ; so PC consists of precisely those

x ∈ {0, 1}n that satisfy
(∧

U∈C gU
)
∧
(∧

U 6∈C gU

)
. Note that for any given fixed C, each x

in PC has exactly the same contribution ConS(x) to the Fourier coefficient f̂(S) as every

other x′ in PC ; this is simply because x and x′ will satisfy exactly the same set of gU ′ ’s in

(4.1). More generally, we have the following:

Lemma 12. Let C be any subset of P(S). Suppose that there exist U1, U2 ∈ C such that

U1 ( U2. Then for any y, z where y ∈ PC and z ∈ PC\U2
, we have that: ConS(y) = ConS(z).

Proof. Consider (4.1). Fix any subset U of S. We shall show that the indicator variable

I
(∨

U ′⊆U gU ′(x)
)

takes the same value on y and on z.

Recall that y satisfies precisely those gr’s such that r ∈ C, and z satisfies precisely those

gr’s such that r ∈ (C \ U2). We have that:

1.
∨
U ′⊆U gU ′(y) is true if and only if there exists some U ′ ⊆ U , U ′ ∈ C; and

2.
∨
U ′⊆U gU ′(z) is true if and only if there exists some U ′′ ⊆ U , U ′′ ∈ (C \ U2).

Since U1 ( U2 and U1, U2 ∈ C, there exists a U ′ as described above if and only if there

exists a U ′′ as described above. �

Given a collection C of subsets of S, we write ConS(C) to denote
∑

x∈PC ConS(x), and

we refer to this quantity as the contribution that C makes to the Fourier coefficient f̂(S).

It is clear that we have f̂(S) =
∑
C⊆P(S) ConS(C).

The following lemma establishes a broad class of C’s for which ConS(C) is zero:

Lemma 13. Let C be any collection of subsets of S. If
⋃
U∈C U 6= S then ConS(x) = 0 for

each x ∈ PC and hence ConS(C) = 0.
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Before proving Lemma 13 we first introduce some notation and make a few easy obser-

vations. Let odd(U) ⊂ P(S) be the set of all the odd-sized subsets of S that are supersets

of U , and let even(U) be defined similarly. For any U ( S we have |odd(U)| = |even(U)|

since there are exactly 2|S|−|U | subsets of S containing U , half of which are even and half

of which are odd. Note that if U is the entire set S, then S is the only superset of U , and

of course |S| cannot be both even and odd. Finally, note that given subsets U1, . . . , Uk of

S, we have:

∩ki=1 odd(Ui) = odd(∪ki=1Ui). (4.2)

(This just says that the intersection of the odd(Ui)’s is equal to the set of all odd subsets of

S that contain the union of all the Ui’s.) A similar equality ∩ki=1even(Ui) = even(∪ki=1Ui)

also holds.

Now we can give the proof:

Proof of Lemma 13. We know that each x in PC makes the same contribution to f̂(S). So

fix any x ∈ PC ; it suffices to show that the quantity
∑

U⊆S(−1)|U |I
(∨

U ′⊆U gU ′(x)
)

is zero.

This quantity will be zero if x satisfies an equal number of
∨
U ′⊆U gU ′(x) for which |U | is

even, and for which |U | is odd. The U for which x satisfies
∨
U ′⊆U gU ′(x) are the U for which

there exist some U ′ ∈ C such that U ′ ⊆ U . Thus, we need to count the number of even and

odd-sized U ⊆ S containing some U ′ ∈ C, and show that |∪U ′∈Codd(U ′)| = |∪U ′∈Ceven(U ′)| .

Let C = {U1, . . . , Uk} ⊆ P(S). By inclusion-exclusion,

∣∣∪U ′∈Codd(U ′)
∣∣ =

k∑
i=1

|odd(Ui)| −
∑
i1,i2

|odd(Ui1) ∩ odd(Ui2)| . . .+ (−1)k−1
∣∣∣∩ki=1odd(Ui)

∣∣∣ ,
(4.3)

and we have a similar expression for | ∪U ′∈C even(U ′)| (identical to the RHS of (4.3) except

with “even” everywhere in place of “odd”).

By (4.2) we can rewrite each intersections of some odd(Ui)’s as odd(∪Ui), and similarly

we can rewrite each intersection of some even(Ui)’s as even(∪Ui)’s. Thus the RHS of (4.3)

can be rewritten as a sum of |odd(∪Ui)|’s, and similarly | ∪U ′∈C even(U ′)| can be rewritten

as an identical sum of |even(∪Ui)|’s. Since by assumption each of these ∪Ui’s cannot be

the whole set S, for each ∪Ui we have |odd(∪Ui)| = |even(∪Ui)|. Therefore all the terms
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of | ∪U ′∈C odd(U ′)| in (4.3) will match up with all the terms of | ∪U ′∈C even(U ′)|. It follows

that |∪U ′∈Codd(U ′)| is indeed equal to |∪U ′∈Ceven(U ′)|, and the lemma is proved. �

It remains to analyze those C’s for which
⋃
U∈C U = S; for such a C we say that C covers

S.

Recall from the previous discussion that ConS(C) = |PC |·ConS(x) where x is any element

of PC . Since |ConS(x)| ≤ 1
2n for all x ∈ {0, 1}n, for any collection C, we have that

|ConS(C)| ≤ Pr
x∈Un

[x ∈ PC ] = Pr
x∈Un

[(
∧
U∈C

gU ) ∧ (
∧
U 6∈C

gs)] ≤ Pr
x∈Un

[(
∧
U∈C

gU )].

We are interested in bounding this probability for C 6= {S} (we will deal with the special

case C = {S} separately later). Recall that each gU is a disjunction of terms; the expression∧
U∈C gU is satisfied by precisely those x that satisfy at least one term from each gU as U

ranges over all elements of C. For j ≥ 1 let us define a quantity Bj as follows

Bj
def= max

i1,...,ij
Pr
x∈Un

[x simultaneously satisfies terms Ti1 , . . . , Tij in ∨U⊆S(gU )]

where the max is taken over all j-tuples of distinct terms in ∨U⊆S(gU ). Then it is not hard

to see that by a union bound, we have

|ConS(C)| ≤ B|C|
∏
U∈C

(#gU ), (4.4)

where #gU denotes the number of terms in the monotone DNF gU .

The idea of why (4.4) is a useful bound is as follows. Intuitively, one would expect that

the value of Bj decreases as j (the number of terms that must be satisfied) increases. One

would also expect the value of #gU to decrease as the size of U increases (if U contains

more variables then fewer terms in f will contain all of those variables). This means that

there is a trade-off which helps us bound (4.4): if |C| is large then B|C| is small, but if |C|

is small then (since we know that
⋃
U∈C U = S) some U is large and so

∏
U∈C #gU will be

smaller.

4.2.3 Bounding f̂(S) based on whether S co-occurs in some term of f .

We are now ready to state formally the conditions on f̂ that allow us to detect a co-

occurrence of variables in the value of the corresponding Fourier coefficient.
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Lemma 14. Let f : {0, 1}n → {−1, 1} be a monotone DNF. Fix a set S ⊂ [n] of size

|S| = s and let

Y = {C ⊆ P(S) : C covers S and S /∈ C}.

Suppose that we define α, β1, . . . , β2s and Φ : Y→R so that:

(C1) Each term in f is uniquely satisfied with probability at least α;

(C2) For 1 ≤ j ≤ 2s, each j-tuple of terms in f is simultaneously satisfied with probability

at most βj; and

(C3) For every CY ∈ Y we have
∏
U∈CY (#gU ) ≤ Φ(CY ).

Then

1. If the variables in S do not simultaneously co-occur in any term of f , then

|f̂(S)| ≤ Υ where Υ :=
∑
CY ∈Y

(
2sβ|CY |Φ(CY )

)
;

2. If the variables in S do simultaneously co-occur in some term of f , then |f̂(S)| ≥
α
2s − 2 ·Υ.

Using Lemma 14, if f satisfies conditions (C1) through (C3) with values of βj and

Φ(·) so that there is a “gap” between α/2s and 3Υ, then we can determine whether all the

variables in S simultaneously co-occur in a term by estimating the magnitude of f̂(S).

Proof. Let C? denote the ‘special’ element of P (S) that consists solely of the subset S, i.e.

C? = {S}, and let X = {C ⊆ P(S) : C covers S and S ∈ C and C 6= C?}. Using Lemma 13,

we have

f̂(S) = ConS(C?) +
∑
CY ∈Y

ConS(CY ) +
∑
CX ∈X

ConS(CX ). (4.5)

We first prove point 1. Suppose that the variables of S do not simultaneously co-occur

in any term of f . Then gS is the empty disjunction and #gS = 0, so ConS(C) = 0 for

any C containing S. Thus in this case we have f̂(S) =
∑
CY ∈Y ConS(CY ); using (4.4) and

condition (C3), it follows that |f̂(S)| is at most
∑
CY ∈Y B|CY |Φ(CY ).
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We now claim that B|CY | ≤ 2sβ|CY |; we establish this by showing that Bj ≤ 2sβj for

all j. In other words, we shall bound the probability of simultaneously satisfying any fixed

collection of j terms in the DNF f ′ = ∨U⊆S(gU ). We have that for 1 ≤ j ≤ 2s, each j-tuple

of terms in f is simultaneously satisfied with probability at most βj . Consider any fixed

sequence T ′i1 , . . . , T
′
ij

of terms from f ′. Let Ti1 , . . . , Tij denote the sequence of terms in f

from which the terms T ′i1 , . . . , T
′
ij

were derived, i.e. each term T consists of T ′ ∧ (∧i∈Uxi)

for some U ⊆ S. Since Ti1 ∧ · · · ∧Tij is simply a monotone conjunction and T ′i1 ∧ · · · ∧T
′
ij

is

simply the corresponding conjunction obtained by removing at most |S| = s variables from

Ti1 ∧ · · · ∧ Tij , we have that Prx[T ′i1 ∧ · · · ∧ T
′
ij

] ≤ 2sβj .

So in this case we have

|f̂(S)| ≤
∑
CY ∈Y

|ConS(CY )| ≤
∑
CY ∈Y

B|CY |Φ(CY ) ≤
∑
CY ∈Y

(
2sβ|CY |Φ(CY )

)
= Υ.

Now we turn to point 2. Suppose that the variables of S do co-occur in some term of

f . Let x be any element of PC? , so x satisfies gU if and only if U = S. It is easy to see

from (4.1) that for such an x we have ConS(x) = (−1)|S|/(2n2s). We thus have that

ConS(C?) =
(−1)|S|

2s
· Pr[x ∈ PC? ] =

(−1)|S|

2s
Pr[gS ∧ (

∧
U(S

gU )]. (4.6)

Since S co-occurs in some term of f , we have that gS contains at least one term T . By

condition (C1), the corresponding term (T ∧ (∧i∈Sxi)) of f is uniquely satisfied with prob-

ability at least α. Since each assignment that uniquely satisfies (T ∧ (∧i∈Sxi)) (among all

the terms of f) must satisfy gS ∧ (
∧
U(S gU ), we have that the magnitude of (4.6) is at least

α/2s.

We now show that |
∑
CX ∈X ConS(CX )| ≤ Υ, which completes the proof, since we

already have that |
∑
CY ∈Y ConS(CY )| ≤

∑
CY ∈Y |ConS(CY )| ≤ Υ. First note that if the

set CX \ {S} does not cover S, then by Lemmas 12 and 13 we have that ConS(x) = 0 for

each x ∈ PCX and thus ConS(CX ) = 0. So we may restrict our attention to those CX such

that CX \ {S} covers S. Now since such a CX \ {S} is simply some CY ∈ Y , and each

CY ∈ Y is obtained as CX \ {S} for at most one CX ∈X , we have∣∣∣∣∣∣
∑
CX ∈X

ConS(CX )

∣∣∣∣∣∣ ≤
∑
CY ∈Y

|ConS(CY )| ≤ Υ.

�
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4.3 Hypothesis Formation

In this section, we show that if a target monotone DNF f satisfies the conditions of

Lemma 14 and two other simple conditions stated below (see Theorem 12), then it is

possible to learn f from uniform random examples.

Theorem 12. Let f be a t-term monotone DNF. Fix s ∈ [n]. Suppose that

• For all sets S ⊂ [n], |S| = s, conditions (C1) through (C3) of Lemma 14 hold for

certain values α, βj, and Φ(·) satisfying ∆ > 0, where ∆ := α/2s− 3 ·Υ. (Recall that

Υ :=
∑
CY ∈Y

(
2sβ|CY |Φ(CY )

)
, where Y = {C ⊆ P(S) : C covers S and S /∈ C}.)

(C4) Every set S of s co-occurring variables in f appears in at most γ terms (here γ ≥ 2);

and

(C5) Every term of f contains at most κ variables (note that s ≤ κ ≤ n).

Then algorithm A PAC learns f to accuracy ε with confidence 1−δ given access to EX(f, Un),

and runs in time poly(ns+γ , t, 1/∆, γκ, 1/ε, log(1/δ)).

Algorithm A is described on the following page.
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Algorithm A (inputs are ε, δ, s, α,Υ, γ, κ, and access to EX(f, Un))

1. Define ∆ := α/2s − 3 ·Υ.

2. For each S ⊂ [n], |S| = s, empirically estimate f̂(S) to within ±∆/3 (with confidence

1− δ/3 that all estimates have the required accuracy); let f̃(S) be the empirical estimate

thus obtained. Mark as “good” each S for which |f̃(S)| ≥ Υ + ∆
2 .

3. Let Gf denote the following n-vertex hypergraph: the vertices of Gf correspond to vari-

ables x1, . . . , xn, and Gf contains each s-vertex hyperedge S if and only if S was marked

as “good” in the previous step.

4. Run algorithm A′ to identify the set HCf of all of the k-hypercliques in Gf , as k ranges

over {s, . . . , κ}.

5. Run the standard elimination algorithm for disjunctions—with ε as the accuracy input

parameter and δ/3 as the confidence—over the “features” that are the monotone con-

junctions corresponding to the hypercliques identified in the previous step. Output the

resulting hypothesis h (which is a monotone DNF).

Algorithm A′ (input is the list of “good” sets S identified in Step 1 of Algorithm A)

1. For each good set S, run Algorithm A′′ to identify the set NS of all variables in [n] \ S

that occur in some term that also contains all variables in S.

2. For all s ≤ k ≤ κ, using brute-force search over all subsets N ′ of at most (k − s) many

elements from NS , check whether N ′ ∪ S is a k-hyperclique in Gf .

Algorithm A′′ (input is a good set S)

1. For each subset N of at most γ variables from [n] \ S, perform the following:

(a) Empirically estimate f̂N←0(S) to additive accuracy ±∆/3; let f̃N←0(S) be the em-

pirical estimate thus obtained. Mark each N for which f̃N←0(S) ≥ Υ + ∆
2 .

2. Let NS be the union of all the N ’s that were marked in the previous step. Return NS .
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Proof. Lemma 14 implies that for each set S ⊂ [n], |S| = s,

• if the variables in S all co-occur in some term of f , then |f̂(S)| is at least ∆/2 larger

than Υ + ∆/2;

• if the variables in S do not all co-occur in some term of f , then |f̂(S)| is at least ∆/2

smaller than Υ + ∆/2.

A straightforward application of Hoeffding bounds (to estimate the Fourier coefficients using

a random sample of uniformly distributed examples) shows that Step 1 of Algorithm A can

be executed in poly(ns, 1/∆, log(1/δ)) time, and that with probability 1− δ/3 the S’s that

are marked as “good” will be precisely the s-tuples of variables that co-occur in some term

of f .

Conceptually, the algorithm next constructs the hypergraph Gf that has one vertex per

variable in f and that includes an s-vertex hyperedge if and only if the corresponding s

variables co-occur in some term of f . Clearly there is a k-hyperclique in Gf for each term

of k variables in f . So if we could find all of the k-hypercliques in Gf (where again k ranges

between s and κ), then we could create a set HCf of monotone conjunctions of variables

such that f could be represented as an OR of t of these conjunctions. Treating each of

the conjunctions in HCf as a variable in the standard elimination algorithm for learning

disjunctions (see e.g. Chapter 1 of [Kearns and Vazirani, 1994]) would then enable us to

properly PAC learn f to accuracy ε with probability at least 1 − δ/3 in time polynomial

in n, t, |HCf |, 1/ε, and log(1/δ). Thus, A will use a subalgorithm A′ to find all of the

k-hypercliques in Gf and will then apply the elimination algorithm over the corresponding

conjunctions to learn the final approximator h.

We now explain the subalgorithm A′ for locating the set HCf of k-hypercliques. For

each set S of s co-occurring variables, let NS ⊆ ([n] \ S) be defined as follows: a variable

xi is in NS if and only if xi is present in some term that contains all of the variables in

S. Since by assumption there are at most γ terms containing such variables and each term

contains at most κ variables, this means that |NS | < κγ. The subalgorithm will use this

bound as follows. For each set S of s co-occurring variables, A′ will determine the set NS

using a procedure A′′ described shortly. Then, for each s ≤ k ≤ κ and each (k− s)-element
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subset N ′ of NS , A′ will test whether or not N ′ ∪ S is a k-hyperclique in Gf . The set of

all k-hypercliques found in this way is HCf . For each S, the number of sets tested in this

process is at most
κ∑
i=0

(
|NS |
i

)
≤

κ∑
i=0

(
κγ

i

)
≤
(eκγ
κ

)κ
= (eγ)κ.

Thus, |HCf | = O(ns(eγ)κ), and this is an upper bound on the time required to execute

Step 2 of subalgorithm A′.

Finally, we need to define the procedure A′′ for finding NS for a given set S of s co-

occurring variables. Fix such an S and let Nγ be a set of at most γ variables in ([n] \ S)

having the following properties:

(P1) In the projection fNγ←0 of f in which all of the variables of Nγ are fixed to 0, the

variables in S do not co-occur in any term; and

(P2) For every set N ′γ ⊂ Nγ such that |N ′γ | = |Nγ | − 1, the variables in S do co-occur in at

least one term of fN ′γ←0.

We will use the following claim:

Claim 3. NS is the union of all sets Nγ of cardinality at most γ that satisfy (P1) and

(P2).

Proof. We first show that the union of all sets satisfying (P1) and (P2) is a subset of NS .

To see this, note that if variable xi is not in NS (i.e. xi does not co-occur with S in any

term), then any set Nγ that includes xi cannot satisfy both properties. This is because if

Nγ satisfies (P1) (i.e. S does not co-occur in any term of fNγ←0), then the set N ′γ = Nγ \xi

will also be such that S do not co-occur in any term of fN ′γ←0, since x does not co-occur

with S in any term.

Next, consider the minimal monotone DNF representation Df of the target f . Let DfS

be the monotone DNF expression obtained from Df by removing from Df all terms in which

the variables of S do not co-occur and then fixing all of the variables in S to 1. Since DfS

has at most γ terms, there is an equivalent minimal CNF CfS in which each clause contains

at most γ variables. For each clause Ci in CfS , the set of variables in Ci satisfies both (P1)

and (P2): setting all of the variables in Ci to 0 falsifies both CfS and DfS and therefore
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removes from f all terms in which the variables of S co-occur; but setting any proper subset

of the variables in Ci to 0 does not falsify DfS and therefore leaves at least one term in f in

which the variables of S co-occur. Furthermore, all of the variables in DfS are also relevant

in CfS , so every variable in DfS appears in at least one clause of CfS . It follows that the

union of the variables in the sets Nγ satisfying (P1) and (P2) is a superset of the set of

variables in DfS , that is, the set NS . �

There are only O(nγ) possible candidate sets Nγ to consider, so our problem now reduces

to the following: given a set N of at most γ variables, determine whether the variables in

S co-occur in fN←0.

Recall that since f satisfies the three conditions (C1), (C2) and (C3), Lemma 14

implies that |f̂(S)| is either at most Υ (if the variables in S do not co-occur in any term of

f) or at least α
2s − 2 ·Υ (if the variables in S do co-occur in some term). We now claim that

the function fN←0 has this property as well: i.e., |f̂N←0(S)| is either at most the same value

Υ (if the variables in S do not co-occur in any term of fN←0) or at least the same value
α
2s − 2 · Υ (if the variables in S do co-occur in some term of fN←0). To see this, observe

that the function fN←0 is just f with some terms removed. Since each term in f is uniquely

satisfied with probability at least α (this is condition (C1)), the same must be true of fN←0

since removing terms from f can only increase the probability of being uniquely satisfied

for the remaining terms. Since each j-tuple of terms in f is simultaneously satisfied with

probability at most βj (this is condition (C2)), the same must be true for j-tuples of terms

in fN←0. Finally, for condition (C3), the value of #gU can only decrease in passing from

f to fN←0. Thus, the upper bound of Υ that follows from applying Lemma 14 to f is also

a legitimate upper bound when the lemma is applied to |f̂N←0(S)|, and similarly the lower

bound of α
2s − 2 · Υ is also a legitimate lower bound when the lemma is applied to fN←0.

Therefore, for every |N | ≤ γ, a sufficiently accurate (within ∆/2) estimate of f̂N←0(S)

(as obtained in Step 1 of subalgorithm A′′) can be used to determine whether or not the

variables in S co-occur in any term of fN←0.

To obtain the required estimate for f̂N←0, observe that for a given set N , we can simulate

a uniform example oracle for fN←0 by filtering the examples from the uniform oracle for

f so that only examples setting the variables in N to 0 are accepted. Since |N | ≤ γ, the
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filter accepts with probability at least 1/2γ . A Hoeffding bound argument then shows that

the Fourier coefficients f̂N←0(S) can be estimated (with probability of failure no more than

a small fraction of δ) from an example oracle for f in time polynomial in n, 2γ , 1/∆, and

log(1/δ).

Algorithm A′′, then, estimates Fourier coefficients of restricted versions of f , using a

sample size sufficient to ensure that all of these coefficients are sufficiently accurate over

all calls to A′′ with probability at least 1− δ/3. These estimated coefficients are then used

by A′′ to locate the set NS as just described. The overall algorithm A therefore succeeds

with probability at least 1 − δ, and it is not hard to see that it runs in the time bound

claimed. �

Required parameters. In the above description of Algorithm A, we assumed that it is

given the values of s, α,Υ, γ, and κ. In fact it is not necessary to assume this; a standard

argument gives a variant of the algorithm which succeeds without being given the values of

these parameters.

The idea is simply to have the algorithm “guess” the values of each of these parameters,

either exactly or to an adequate accuracy. The parameters s, γ and κ take positive integer

values bounded by poly(n). The other parameters α,Υ take values between 0 and 1; a

standard argument shows that if approximate values α′ and Υ′ (that differ from the true

values by at most 1/poly(n)) are used instead of the true values, the algorithm will still

succeed. Thus there are at most poly(n) total possible settings for (s, γ, κ, α,Υ) that need

to be tried. We can run Algorithm A for each of these candidate parameter settings, and

test the resulting hypothesis; when we find the “right” parameter setting, we will obtain a

high-accuracy hypothesis (and when this occurs, it is easy to recognize that it has occurred,

simply by testing each hypothesis on a new sample of random labeled examples). This

parameter guessing incurs an additional polynomial factor overhead. Thus Theorem 12

holds true for the extended version of Algorithm A that takes only ε, δ as input parameters.
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4.4 Random Monotone DNF

4.4.1 The Random Monotone DNF Model

We define a random monotone DNF according to the non-monotone definition from 2. Let

Mt,k
n be the probability distribution over monotone t-term DNF induced by the following

process: each term is independently and uniformly chosen at random from all
(
n
k

)
monotone

ANDs of size exactly k over x1, . . . ,xn.

Given a value of t, throughout this section we consider the Mt,k
n distribution where

k = blog tc (we will relax this and consider a broader range of values for k in Section 4.6).

To motivate this choice, consider a random draw of f from Mt,k
n . If k is too large relative

to t then a random f ∈ Mt,k
n will likely have Prx∈Un [f(x) = 1] ≈ 0, and if k is too small

relative to t then a random f ∈ Mt,k
n will likely have Prx∈Un [f(x) = 1] ≈ 1; such functions

are trivial to learn to high accuracy using either the constant-0 or constant-1 hypothesis. A

straightforward analysis (see e.g. [Jackson and Servedio, 2006]) shows that for k = blog tc

we have that E
f∈Mt,k

n
[Prx∈Un [f(x) = 1]] is bounded away from both 0 and 1, and thus we

feel that this is an appealing and natural choice.

4.4.2 Probabilistic Analysis

In this section we will establish various useful probabilistic lemmas regarding random mono-

tone DNF of polynomially bounded size. We have grouped the statements of our proba-

bilistic lemmas close together in this section, and provide all proofs in Appendix B.

Assumptions: Throughout the rest of Section 4.4 we assume that t(n) is any function

such that n3/2 ≤ t(n) ≤ poly(n). To handle the case when t(n) ≤ n3/2, we will use the

results from [Jackson and Servedio, 2006]. Let a(n) be such that t(n) = na(n). For brevity

we write t for t(n) and a for a(n) below, but the reader should keep in mind that a actually

denotes a function 3
2 ≤ a = a(n) ≤ O(1). The first lemma provides a bound of the sort

needed by condition (C3) of Lemma 14:

Lemma 15. Let |S| = s = bac + 2. Fix any CY ∈ Y . Let δterms = n−Ω(logn). With

probability at least 1− δterms over the random draw of f from Mt,k
n , we have that for some
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absolute constant c and all sufficiently large n,

∏
U∈CY

(#gU ) ≤ c · t
|CY |−1k2s

√
n

. (4.7)

The following lemma shows that for f drawn from Mt,k
n , with high probability each

term is “uniquely satisfied” by a noticeable fraction of assignments as required by condition

(C1). (Note that since k = O(log n) and t > n3/2, we have δusat = n−Ω(log logn) in the

following.)

Lemma 16. Let δusat := exp(−tk3n ) + t2( kn)log log t. For n sufficiently large, with probability

at least 1 − δusat over the random draw of f = T1 ∨ · · · ∨ Tt from Mt,k
n , f is such that for

all i = 1, . . . , t we have Prx[Ti is satisfied by x but no other Tj is satisfied by x ] ≥ Θ(1)
2k

.

We now upper bound the probability that any j distinct terms of a random DNF f ∈

Mt,k
n will be satisfied simultaneously (condition (C2)). (In the following lemma, note

that for j = Θ(1), since t = nΘ(1) and k = Θ(log n) we have that the quantity δsimult is

n−Θ(log logn).)

Lemma 17. Let 1 ≤ j ≤ 2s, and let δsimult := tjejk−log k(jk−log k)log k

nlog k . With probability at

least 1− δsimult over the random draw of f = T1∨ · · · ∨Tt from Mt,k
n , for all 1 ≤ ι1 < · · · <

ιj ≤ t we have Pr[Tι1 ∧ . . . ∧ Tιj ] ≤ βj, where βj := k
2jk
.

Finally, the following lemma shows that for all sufficiently large n, with high probability

over the choice of f , every set S of s variables appears in at most γ terms, where γ is

independent of n (see condition (C4)).

Lemma 18. Fix any constant c > 0. Let s = bac+ 2 and let γ = a+ c+ 1. Let δγ = n−c.

Then for n sufficiently large, with probability at least 1−δγ over the random draw of f from

Mt,k
n , we have that every s-tuple of variables appears in at most γ terms of f .

4.5 Proof of Theorem 11

Theorem 1. [Formally] Let t(n) be any function such that t(n) ≤ poly(n), let a(n) = O(1)

be such that t(n) = na(n), and let c > 0 be any fixed constant. Then for any n−c < δ < 1
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and 0 < ε < 1, Mt(n),blog t(n)c
n is PAC learnable under Un in poly(n2a(n)+c+3,(a(n) + c +

1)log t(n),t(n),1/ε, log 1/δ) time.

Proof. The result is proved for t(n) ≤ n3/2 already in [Jackson and Servedio, 2006], so we

henceforth assume that t(n) ≥ n3/2. We use Theorem 12 and show that for s = ba(n)c+ 2,

random monotone t(n)-term DNFs, with probability at least 1−δ, satisfy conditions (C1)–

(C5)with values α, βj ,Φ(·),∆, γ, and κ such that ∆ > 0 and the quantities ns+γ , 1/∆, and

γκ are polynomial in n. This will show that the extended version of Algorithm A defined

in Section 4.3 PAC learns random monotone t(n)-term DNFs in time poly(n, 1/ε). Let

t = t(n) and k = blog tc, and let f be drawn randomly fromMt,k
n . By Lemmas 15–18, with

probability at least 1− δusat − δγ − 22sδterms − δsimult, f will satisfy (C1)–(C5) with the

following values:

(C1) α > Θ(1)
2k

; (C2) βj ≤ k
2jk

for 1 ≤ j ≤ 2s;

(C3) Φ(CY ) ≤ O(1) t
|CY |−1k2s

√
n

for all CY ∈ Y ; (C4) γ ≤ a(n) + c+ 1;

(C5) κ = k = blog tc,

which gives us that ns+γ = n2a+c+3 and γκ = (a + c + 1)blog tc. Finally, we show that

∆ = Ω(1/t) so 1/∆ is polynomial in n:

∆ = α/2s − 3 ·Υ =
Θ(1)
t2s
− 3

∑
CY ∈Y

2sβ|CY |Φ(CY ) ≥ Θ(1)
t2s
−Θ(1)

∑
CY ∈Y

2s
k

t|CY |
· t
|CY |−1k2s

√
n

=
Θ(1)
t2s
− Θ(1)k2s+1

t
√
n

= Ω(1/t). �

4.6 Discussion

Robustness of parameter settings. Throughout Sections 4.4 and 4.5 we have assumed

for simplicity that the term length k in our random t-term monotone DNF is exactly blog tc.

In fact, the results extend to a broader range of k’s; one can straightforwardly verify that

by very minor modifications of the given proofs, Theorem 11 holds forMt,k
n for any (log t)−

O(1) ≤ k ≤ O(log t).

Relation to previous results. Our results are powerful enough to subsume some known

“worst-case” results on learning restricted classes of monotone DNF formulas. Hancock
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and Mansour [Hancock and Mansour, 1991a] have shown that read-k monotone DNF (in

which each Boolean variable xi occurs in at most k terms) are learnable under the uniform

distribution in poly(n) time for constant k. Their result extends an earlier result of Kearns

et al. [Kearns et al., 1994a] showing that read-once DNF (which can be assumed monotone

without loss of generality) are polynomial-time learnable under the uniform distribution.

It is not hard to see that (a very restricted special case of) our algorithm can be used

to learn read-k monotone DNF in polynomial time. Note first that we may assume the

unknown target read-k DNF f has ε
2 ≤ Pr[f(x) = 1] ≤ 1− ε

2 , since otherwise it is trivial to

learn to accuracy ε.

We show that we can apply Theorem 12 to learn f. Any read-k DNF has at most kn total

occurrences of variables, so we certainly have that f is a t(n)-term DNF with t(n) = O(n).

We will take s = 1. Since f is a read-k DNF, we may take γ = 2 in condition (C4). By the

usual reasoning, we may suppose without loss of generality that each term of f contains at

most O(log n
ε ) many variables (this is because the probability that any longer term is ever

satisfied by any example in a poly(n/ε)-size set of random examples is negligibly small).

Thus we may take κ = O(log n
ε ) in condition (C5).

Turning to Lemma 14, since s = 1 we have that the collection Y is in fact empty

– for S = {xi}, the only C ⊆ P(S) that cover S are C = {∅, {xi}} and C = {{xi}},

both of which clearly contain S. We thus have Υ = 0, so ∆ = α
2 and it remains only

to prove that α is “not too small,” i.e. that each term in f is uniquely satisfied with

probability at least Ω(1/poly(n/ε)). An easy argument in [Hancock and Mansour, 1991a]

gives precisely the desired result; they show that for any monotone read-k DNF f that

has Pr[f(x) = 0] = p, every term T that contains C variables satisfies Pr[T is true and

all other terms are false] ≥ p2−k|C|. Since we have p ≥ ε
2 and C ≤ κ = O(log n

ε ), we

obtain α ≥ Ω(1/poly(n/ε)) as required. So we may apply Theorem 12 to conclude that our

algorithm learns f in time poly(n, 1/ε, log(1/δ)).
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Chapter 5

Optimal Cryptographic Hardness

of Learning Monotone Functions

In the previous chapter, we saw that polynomial-size monotone DNF formulas could be

significantly easier to learn than the entire class of polynomial-size DNF formulas. This

trend appears in uniform distribution learning for several other classes, such as polynomial-

size decision trees.

In this chapter, we will apply average-case analysis to prove a cryptographic hardness

result for learning monotone functions, the first hardness result of this kind for monotone

functions.

5.1 Introduction

5.1.1 Background and Motivation

Monotonicity makes learning easier For many classes of functions, uniform dis-

tribution learning algorithms have been devised that substantially improve on a naive

exponential-time approach to learning via brute-force search. However, despite intensive

efforts, researchers have not yet obtained poly(n)-time learning algorithms in this model

for various simple classes of functions. Interestingly, in many of these cases restricting

the class of functions to the corresponding class of monotone functions has led to more
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efficient—sometimes poly(n)-time—algorithms. We list some examples:

1. A simple algorithm learns monotone O(log n)-juntas to perfect accuracy in poly(n)

time, and a more complex algorithm [Bshouty and Tamon, 1996] learns monotone

Õ(log2(n))-juntas to any constant accuracy in poly(n) time. In contrast, the fastest

known algorithm for learning arbitrary k-juntas runs in time n.704k [Mossel et al.,

2004b].

2. The fastest known uniform distribution learning algorithm for the general class of

s-term DNF, due to Verbeurgt [Verbeurgt, 1990], runs in time nO(log s) to learn to any

constant accuracy. In contrast, [Servedio, 2004a] gives an algorithm that runs in time

sO(log s) for s-term monotone DNF. Thus, the class of 2O(
√

logn)-term monotone DNF

can be learned to any constant accuracy in poly(n) time, but no such result is known

for 2O(
√

logn)-term general DNF.

3. The fastest known algorithm for learning poly(n)-size general decision trees to con-

stant accuracy takes nO(logn) time (following from [Verbeurgt, 1990]), but poly(n)-size

decision trees that compute monotone functions can be learned to any constant accu-

racy in poly(n) time [O’Donnell and Servedio, 2007].

4. No poly(n)-time algorithm can learn the general class of all Boolean functions on

{0, 1}n to accuracy better than 1/2 + poly(n)/2n, but a simple polynomial-time al-

gorithm can learn the class of all monotone Boolean functions to accuracy 1/2 +

Ω(1/
√
n) [Blum et al., 1998]. Recent work [O’Donnell and Wimmer, 2009] gives a

simple polynomial-time algorithm that learns to accuracy 1/2 + Ω(log n/
√
n). We

note also that the result of [Bshouty and Tamon, 1996] mentioned above follows from

a 2Õ(
√
n)-time algorithm for learning arbitrary monotone functions on n variables to

constant accuracy. (It is easy to see that no comparable algorithm can exist for

learning arbitrary Boolean functions to constant accuracy.)

Cryptography and hardness of learning Essentially all known representation-independent

hardness of learning results (i.e., , results that apply to learning algorithms that do not

have any restrictions on the syntactic form of the hypotheses they output) rely on some
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cryptographic assumption, or an assumption that easily implies a cryptographic primitive.

For example, under the assumption that certain subset sum problems are hard on average,

Kharitonov [Kharitonov, 1995] showed that the class AC1 of logarithmic-depth, polynomial-

size Boolean circuits (circuits with AND, OR, and NOT gates) is hard to learn under the

uniform distribution. Subsequently Kharitonov [Kharitonov, 1993] showed that if factoring

Blum integers is 2n
ε
-hard for some fixed ε > 0, then even the class AC0 of constant-depth,

polynomial-size Boolean circuits similarly cannot be learned in polynomial time under the

uniform distribution. In later work, Naor and Reingold [Naor and Reingold, 2004] gave

constructions of pseudorandom functions with very low circuit complexity. Their results

imply that if factoring Blum integers is super-polynomially hard, then even depth-5 TC0

circuits cannot be learned in polynomial time under the uniform distribution. (TC0 circuits

are Boolean circuits that can also use MAJ gates. The value of a MAJ gate is one if at least

half of its inputs are one, and zero otherwise.) We note that all of these hardness results

apply even to algorithms that may make black-box “membership queries” to obtain the

value f(x) for inputs x of their choosing.

Monotonicity versus cryptography? Given that cryptography precludes efficient

learning while monotonicity seems to make efficient learning easier, it is natural to in-

vestigate how these phenomena interact. One could argue that prior to the current work

there was something of a mismatch between known positive and negative results for uniform-

distribution learning: as described above, a fairly broad range of polynomial-time learning

results have been obtained for various classes of monotone functions, but there were no

corresponding computational hardness results for monotone functions. Can all monotone

Boolean functions computed by polynomial-size circuits be learned to 99% accuracy in poly-

nomial time from uniform random examples? As far as we are aware, prior to our work

answers were not known even to such seemingly basic questions about learning monotone

functions as this one. This gap in understanding motivated the research presented in this

chapter (which, as we describe below, lets us answer “no” to the above question in a strong

sense).
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5.1.2 Our results and techniques: cryptography trumps monotonicity

We present several different constructions of “simple” (polynomial-time computable) mono-

tone Boolean functions and prove that these functions are hard to learn under the uniform

distribution, even if membership queries are allowed. We now describe our main results,

followed by a high-level description of how we obtain them.

Blum, Burch, and Langford [Blum et al., 1998] showed that arbitrary monotone func-

tions cannot be learned to accuracy better than 1/2 +O(log n/
√
n) by any algorithm that

makes poly(n) many membership queries. This is an information-theoretic bound that is

proved using randomly generated monotone DNF formulas of size (roughly) nlogn that are

not polynomial-time computable. A natural goal is to obtain computational lower bounds

for learning polynomial-time computable monotone functions that match, or nearly match,

this level of hardness (which is close to optimal by the (1/2 + Ω(1/
√
n))-accuracy algorithm

of Blum et al. described above). We prove near-optimal hardness for learning polynomial-

size monotone Boolean circuits (circuits with AND and OR gates):

Theorem 13 (informal statement). If one-way functions exist, then there is a class of

poly(n)-size monotone Boolean circuits that cannot be learned to accuracy 1/2 + 1/n1/2−ε

for any fixed ε > 0.

Our approach yields even stronger lower bounds if we make stronger assumptions:

• Assuming the existence of sub-exponential one-way functions, we improve the bound

on the accuracy to 1/2 + polylog(n)/
√
n.

• Assuming the hardness of factoring Blum integers, our hard-to-learn functions may

be computed in monotone NC1.

• Assuming that Blum integers are 2n
ε
-hard to factor on average (which is the same

hardness assumption used in Kharitonov’s work [Kharitonov, 1993]), we obtain a

lower bound for learning constant-depth circuits of sub-polynomial size that almost

matches the positive result from [Servedio, 2004a]. More precisely, we show that for

any (sufficiently large) constant d, the class of monotone functions computed by depth-

d Boolean circuits of size 2(logn)O(1)/(d+1)
cannot be learned to accuracy 51% under the
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Hardness assumption Complexity of f Accuracy bound Ref.

none random nlogn-term mono.

DNF

1
2 + ω(logn)

n1/2
[Blum et al., 1998]

OWF (poly) poly-size monotone circuits 1
2 + 1

n1/2−ε Thm. 13

OWF (2n
α
) poly-size monotone circuits 1

2 + poly(logn)

n1/2 Thm. 15

factoring BI (poly) monotone NC1-circuits 1
2 + 1

n1/2−ε Thm. 16

factoring BI (2n
α
) depth-d, size

2(logn)O(1)/(d+1)

AND/OR/NOT circuits

1
2 + o(1) Thm. 17

Figure 5.1: Summary of known hardness results for learning monotone Boolean functions.

The meaning of each row is as follows: under the stated hardness assumption, there is a class

of monotone functions computed by circuits of the stated complexity which no poly(n)-time

membership query algorithm can learn to the stated accuracy. In the first column, OWF

and BI denote one-way functions and hardness of factoring Blum Integers respectively,

and “poly” and “2n
α
” means that the problems are intractable for poly(n)- and 2n

α
-time

algorithms respectively (for some fixed α > 0). Recall that the poly(n)-time algorithm of

[Blum et al., 1998] for learning monotone functions implies that the best possible accuracy

bound for monotone functions is 1/2 + Ω(1)/n1/2.

uniform distribution in poly(n) time. In contrast, the positive result of [Servedio,

2004a] shows that monotone functions computed by depth-d Boolean circuits of size

2O((logn)1/(d+1)) can be learned to any constant accuracy in poly(n) time.

These results are summarized in Figure 5.1.

Proof techniques A natural first approach is to try to replace the random nlogn-term

monotone DNFs constructed in [Blum et al., 1998] by pseudorandom DNFs of polynomial

size. We were not able to do this directly; indeed, as we discuss in Section 7, construct-
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ing such DNFs seems closely related to an open problem of Goldreich, Goldwasser, and

Nussboim [Goldreich et al., 2003]. However, it turns out that a closely related approach

does yield some results along the desired lines; in Section 5.4 we present and analyze a

simple variant of the information-theoretic construction from [Blum et al., 1998] and then

show how to replace random choice by pseudorandom in this the variant. Because our

variant gives a weaker quantitative bound on the information-theoretic hardness of learning

than [Blum et al., 1998], this gives a construction of polynomial-time-computable monotone

functions that, assuming the existence of one-way functions, cannot be learned to accuracy

1/2 + 1/polylog(n) under the uniform distribution. While this answers the question posed

above (even with “51%” in place of “99%”), the 1/polylog(n) factor is rather far from the

O(log n/
√
n) factor that one might hope for as described above.

In Section 5.2 we use a different construction to obtain much stronger quantitative

results; another advantage of this second construction is that it enables us to show hard-

ness of learning monotone circuits rather than just circuits computing monotone functions.

We start with the simple observation that using standard tools it is easy to construct

polynomial-size monotone circuits computing “slice” functions that are pseudorandom on

the middle layer of the Boolean cube {0, 1}n. Such functions are easily seen to be mildly

hard to learn, i.e., , hard to learn to accuracy 1− Ω(1/
√
n). We then use the elegant ma-

chinery of hardness amplification of monotone functions pioneered by O’Donnell [O’Donnell,

2004a] to amplify the hardness of this construction to near-optimal levels (as summarized

in rows 2–4 of Figure 5.1). We obtain our result for constant-depth, sub-polynomial-size

circuits (row 5 of Figure 5.1) by augmenting this approach with an argument that, at a high

level, is similar to one used in [Allender et al., 2006], by “scaling down” and modifying our

hard-to-learn functions using a variant of Nepomnjaščĭı’s theorem [Nepomnjascii, 1970].

Recent work [Feldman et al., 2010] generalizes this “amplifying hardness of learning” ap-

proach to obtain lower bounds for learning small-depth monotone formulas with Statistical

Query algorithms.
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5.1.3 Preliminaries

We consider Boolean functions of the form f : {0, 1}n→{0, 1}. We view {0, 1}n as endowed

with the natural partial order: x ≤ y if and only if xi ≤ yi for all i = 1, . . . , n. A Boolean

function f is monotone if x ≤ y implies f(x) ≤ f(y).

Our work uses various standard definitions from the fields of circuit complexity, learning,

and cryptographic pseudorandomness; and for completeness we recall this material below.

Learning As described earlier, all of our hardness results apply even to learning algo-

rithms that may make membership queries (see Chapter 2 for a description of query learn-

ing in the uniform distribution setting). The goal of the learning algorithm is to construct

a hypothesis h so that Prx[h(x) 6= f(x)] is small, where the probability is taken over the

uniform distribution. We shall only consider learning algorithms that are allowed to run in

poly(n) time, so the learning algorithm L may be viewed as a probabilistic polynomial-time

oracle machine that is given black-box access to the function f and attempts to output a

hypothesis h with small error relative to f .

We establish that a class C of functions is hard to learn by showing that for a uniform

random f ∈ C, the expected error of any poly(n)-time learning algorithm L is close to 1/2

when run with f as the target function. Thus we bound the quantity

Pr
f∈C,x∈{0,1}n

[
Lf (1n)→h;h(x) = f(x)

]
(5.1)

where the probability is also taken over any internal randomization of the learning algorithm

L. We say that a class C is hard to learn to accuracy 1/2 + ε(n) if, for every poly(n)-

time membership query learning algorithm L (i.e., , probabilistic polynomial-time oracle

algorithm), we have that the above quantity Equation 5.1 is smaller than 1/2 + ε(n) for

all sufficiently large n. As noted in [Blum et al., 1998], it is straightforward to transform a

lower bound of this sort into a lower bound for the usual ε, δ formulation of PAC learning.

Circuit complexity We shall consider various classes of circuits computing Boolean

functions, including the classes NC1 (polynomial-size, logarithmic-depth, bounded fan-in

Boolean circuits, AC0 (polynomial-size, constant-depth, unbounded fan-in Boolean circuits),
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and TC0 (polynomial-size, constant-depth unbounded fan-in Boolean circuits with MAJ

gates).

A circuit is said to be monotone if it is composed entirely of AND/OR gates with

no negations. Every monotone circuit computes a monotone Boolean function, but of

course non-monotone circuits may compute monotone functions as well. The famous result

of [Razborov, 1985] shows that there are natural monotone Boolean functions (such as the

perfect matching function) that can be computed by polynomial-size circuits but cannot be

computed by quasi-polynomial-size monotone circuits, and Tardos [Tardos, 1988] observed

that the separation can be increased to an exponential gap.

Thus, in general, it is a stronger result to show that a function can be computed by a

small monotone circuit than to show that it is monotone and can be computed by a small

circuit.

Pseudorandom functions Pseudorandom functions [Goldreich et al., 1986] are the main

cryptographic primitive that underlie our constructions. Fix k(n) ≤ n, and let G be a

family of functions
{
g : {0, 1}k(n)→{0, 1}

}
each of which is computable by a circuit of size

poly(k(n)). We say that G is a t(n)-secure pseudorandom function family if the following

condition holds: for any probabilistic t(n)-time oracle algorithm A, we have∣∣∣∣Pr
g∈G

[Ag(1n) outputs 1]− Pr
g′∈G′

[Ag
′
(1n) outputs 1]

∣∣∣∣ ≤ 1/t(n)

where G′ is the class of all 22k(n)
functions from {0, 1}k(n) to {0, 1} (so the second probability

above is taken over the choice of a truly random function g′). Note that the purported

distinguisher A has oracle access to a function on k(n) bits but is allowed to run in time

t(n).

It is well known that a pseudorandom function family that is t(n)-secure for all polyno-

mials t(n) can be constructed from any one-way function [Goldreich et al., 1986; H̊astad et

al., 1999]. We shall use the following folklore quantitative variant that relates the hardness

of the one-way function to the security of the resulting pseudorandom function:

Proposition 2. Fix t(n) ≥ poly(n) and suppose there exist one-way functions that are hard

to invert on average for t(n)-time adversaries. Then there exists a constant, 0 < c < 1, such
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that for any k(n) ≤ n, there is a pseudorandom family G of functions
{
g : {0, 1}k(n)→{0, 1}

}
that is (t(k(n)))c-secure.

5.2 Lower bounds via hardness amplification of monotone

functions

In this section we prove our main hardness results, summarized in Figure 5.1, for learning

various classes of monotone functions under the uniform distribution with membership

queries.

Let us start with a high-level explanation of the overall idea. Inspired by the work on

hardness amplification within NP initiated by O’Donnell [O’Donnell, 2004a; Trevisan, 2003;

Healy et al., 2006], we study constructions of the form

f(x1, . . . , xm) = C
(
f ′(x1), . . . , f ′(xm)

)
where C is a Boolean “combining function” with low noise stability (we give precise def-

initions later) that is both efficiently computable and monotone. Recall that O’Donnell

showed that if f ′ is weakly hard to compute and the combining function C has low noise

stability, then f is very hard to compute. This result holds for general (not necessarily

monotone) functions C, and thus generalizes Yao’s XOR lemma, which addresses the case

where C is the XOR of m bits (and hence has the lowest noise stability of all Boolean

functions [O’Donnell, 2004a]).

Roughly speaking, we establish an analogue of O’Donnell’s result for learning. Our

analogue, given in Section 5.2.2, essentially states that for certain well-structured1 functions

f ′ that are hard to learn to high accuracy, if C has low noise stability then f is hard to learn

to accuracy even slightly better than 1/2. As our ultimate goal is to establish that “simple”

classes of monotone functions are hard to learn, we shall use this result with combining

functions C that are computed by “simple” monotone Boolean circuits. In order for the

overall function f to be monotone and efficiently computable, we need the initial f ′ to

be well-structured, monotone, efficiently computable, and hard to learn to high accuracy.

1As will be clear from the proof, we require that f ′ be balanced and have a “hard-core set.”
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Such functions are easily obtained by a slight extension of an observation of Kearns, Li, and

Valiant [Kearns et al., 1994c]. They noted that the middle slice f ′ of a random Boolean

function on {0, 1}k is hard to learn to accuracy greater than 1−Θ
(
1/
√
k
)

[Blum et al., 1998;

Kearns et al., 1994c]; by taking the middle slice of a pseudorandom function instead, we

obtain an f ′ with the desired properties. In fact, by a result of Berkowitz [Berkowitz,

1982] (see also [Valiant, 1986; Beals et al., 1998]), this slice function is computable by a

polynomial-size monotone circuit, so the overall hard-to-learn functions we construct are

computed by polynomial-size monotone circuits.

Organization

In Section 5.2.2 we adapt the analysis from [O’Donnell, 2004a; Trevisan, 2003; Healy et al.,

2006] to reduce the problem of constructing hard-to-learn monotone Boolean functions to

constructing monotone combining functions C with low noise stability. In 5.2.3 we show

how constructions and analyses in [O’Donnell, 2004a; Mossel and O’Donnell, 2003b] can be

used to obtain a “simple” monotone combining function with low noise stability. In 5.2.4 we

establish Theorems 14 and 15 (lines 2 and 3 of 5.1) by making different assumptions about

the hardness of the initial pseudorandom functions. Finally, in 5.3 we establish Theorems 16

and 17 by making specific number theoretic assumptions (namely, the hardness of factoring

Blum integers) to obtain hard-to-learn monotone Boolean functions that can be computed

by very simple circuits.

5.2.1 Preliminaries

Functions Let C : {0, 1}m→{0, 1} and f ′ : {0, 1}k→{0, 1} be Boolean functions. We

write C ◦ f ′⊗m to denote the Boolean function over ({0, 1}k)m given by

C ◦ f ′⊗m(x) = C
(
f ′(x1), . . . , f ′(xm)

)
, where x = (x1, . . . , xm) .

For g : {0, 1}k→{0, 1}, we write slice(g) to denote the “middle slice” function:

slice(g)(x) =


1 if |x| > bk/2c,

g(x) if |x| = bk/2c,

0 if |x| < bk/2c,
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where |x| denotes the number of ones in the string x. It is immediate that slice(g) is a

monotone Boolean function for any g.

Bias and noise stability Following the analysis in [O’Donnell, 2004a; Trevisan, 2003;

Healy et al., 2006], we shall study the bias and noise stability of various Boolean functions.

Specifically, we adopt the following notations and definitions from [Healy et al., 2006]. The

bias of a 0-1 random variable X is defined to be

Bias[X] def=
∣∣Pr[X = 0]− Pr[X = 1]

∣∣ .
Recall that a probabilistic Boolean function h on {0, 1}k is a probability distribution over

Boolean functions on {0, 1}k (so for each input x, the output h(x) is a 0-1 random variable).

The expected bias of a probabilistic Boolean function h is

ExpBias[h] def= Ex[Bias[h(x)]] .

Let C : {0, 1}m→{0, 1} be a Boolean function and 0 ≤ δ ≤ 1/2. The noise stability of C at

noise rate δ, denoted NoiseStabδ[C], is defined to be

NoiseStabδ[C] def= Ex,η[C(x)⊕ C(x⊕ η)] = 2 · Pr
x,η

[C(x) = C(x⊕ η)]− 1

where x ∈ {0, 1}m is uniform random, η ∈ {0, 1}m is a vector whose bits are each indepen-

dently 1 with probability δ, and ⊕ denotes bitwise XOR.

5.2.2 Hardness amplification for learning

Throughout this subsection we write m for m(n) and k for k(n). We shall establish the

following:

Lemma 19. Let C : {0, 1}m→{0, 1} be a polynomial-time computable function. Let G′ be

the family of all 22k functions from {0, 1}k to {0, 1}, where n = mk and k = ω(log n). Then

the class

C = {f = C ◦ slice(g)⊗m | g ∈ G′}

of Boolean functions over {0, 1}n is hard to learn to accuracy

1
2

+
1
2

√
NoiseStabΘ(1/

√
k)[C] +

1
nω(1)

.
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This easily yields Corollary 3, which is an analogue of Lemma 19 with pseudorandom

rather than truly random functions, and which we use to obtain our main hardness of

learning results.

Proof of Lemma 19. Let k,m be such that mk = n, and let C : {0, 1}m→{0, 1} be a Boolean

combining function. We prove the lemma by establishing an upper bound on the probability

Pr
g∈G′,x∈{0,1}n

[
Lf (1n)→ h; h(x) = f(x)

]
(5.2)

where L is an arbitrary probabilistic polynomial-time oracle machine (running in time

poly(n) on input 1n) that is given oracle access to f
def= C ◦ slice(g)⊗m and outputs some

hypothesis h : {0, 1}n→{0, 1}.

We first observe that because C is computed by a uniform family of circuits of size

poly(m) ≤ poly(n), it is easy for a poly(n)-time machine to simulate oracle access to f if it

is given oracle access to g. So, the probability in 5.2 is at most

Pr
g∈G′, x∈{0,1}n

[
Lg(1n)→ h; h(x) = (C ◦ slice(g)⊗m)(x)

]
. (5.3)

To analyze the above probability, suppose that in the course of its execution L never queries

g on any of the inputs x1, . . . , xm ∈ {0, 1}k, where x = (x1, . . . , xm). Then the a posteriori

distribution of g(x1), . . . , g(xm) (for uniform random g ∈ G′), given the responses to the

queries of L that it received from g, is identical to the distribution of g′(x1), . . . , g′(xm),

where g′ is an independent uniform draw from G′: both distributions are uniform random

over {0, 1}m. (Intuitively, this just means that if L never queries the random function g on

any of x1, . . . , xm, then giving L oracle access to g does not help it predict the value of f

on x = (x1, . . . , xm).) As L runs in poly(n) time, for any fixed x1, . . . , xm the probability

that L queried g on any of x1, . . . , xm is at most m · poly(n)/2k. Hence 5.3 is bounded by

Pr
g,g′∈G′, x∈{0,1}n

[
Lg(1n)→ h; h(x) = (C ◦ slice(g′)⊗m)(x)

]
+
m · poly(n)

2k
. (5.4)

The first summand in 5.4 is the probability that L correctly predicts the value C◦slice(g′)⊗m(x),

given oracle access to g, where g and g′ are independently random functions and x is uni-

form over {0, 1}n. It is clear that the best possible strategy for L is to use a maximum

likelihood algorithm, i.e., , predict according to the function h that, for any fixed input x,
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outputs 1 if and only if the random variable (C ◦ slice(g′)⊗m)(x) (which we emphasize has

randomness over the choice of g′) is biased towards 1. The expected accuracy of this h is

precisely
1
2

+
1
2

ExpBias[C ◦ slice(g′)⊗m] . (5.5)

Now fix

δ
def=

1
2k

(
k

bk/2c

)
= Θ

(
1√
k

)
to be the fraction of inputs in the “middle slice” of {0, 1}k. We observe that the probabilistic

function slice(g′) (where g′ is truly random) is “δ-random” in the sense of Definition 3.1

of [Healy et al., 2006], meaning that it is balanced, truly random on inputs in the middle

slice, and deterministic on all other inputs. This means that we may apply the following

technical lemma (Lemma 3.7 from [Healy et al., 2006], see also [O’Donnell, 2004a]):

Lemma 20. Let h : {0, 1}n→{0, 1} be a function that is δ-random. Then

ExpBias[C ◦ h⊗m] ≤
√

NoiseStabδ[C] .

Applying this lemma to the function slice(g′) we obtain

ExpBias[C ◦ slice(g′)⊗m] ≤
√

NoiseStabδ[C] . (5.6)

Combining 5.4, 5.5 and 5.6 and recalling that k = ω(log n), we obtain 19. �

Corollary 3. Let C : {0, 1}m→{0, 1} be a polynomial-time computable function. Let G be a

pseudorandom family of functions from {0, 1}k to {0, 1} that are secure against poly(n)-time

adversaries, where n = mk and k = ω(log n). Then the class

C =
{
f = C ◦ slice(g)⊗m | g ∈ G

}
of Boolean functions over {0, 1}n is hard to learn to accuracy

1
2

+
1
2

√
NoiseStabΘ(1/

√
k)[C] +

1
nω(1)

.

Proof. The corollary follows from the fact that 5.3 must differ from its pseudorandom

counterpart,

Pr
g∈G, x∈{0,1}n

[
Lg(1n)→ h; h(x) = (C ◦ slice(g)⊗m)(x)

]
, (5.7)
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by less than any fixed 1/ poly(n). Otherwise, we would easily obtain a poly(n)-time distin-

guisher that, given oracle access to g, runs L to obtain a hypothesis h and checks whether

h(x) = (C ◦ slice(g)⊗m)(x)

for a random x to determine whether g is drawn from G or G′. �

By instantiating Corollary 3 with a “simple” monotone function C having low noise

stability, we obtain strong hardness results for learning simple monotone functions. We

exhibit such a function C in the next section.

5.2.3 A simple monotone combining function with low noise stability

In this section we combine known results of [O’Donnell, 2004a; Mossel and O’Donnell,

2003b] to obtain:

Proposition 3. Given a value k, let m = 3`d2d for `, d satisfying 3` ≤ k6 < 3`+1 and

d ≤ O(k.35). Then there exists a monotone function C : {0, 1}m → {0, 1} computed by a

uniform family of poly(m)-size, log(m)-depth monotone circuits such that

NoiseStabΘ(1/
√
k)[C] = O

(
k6 logm

m

)
. (5.8)

Note that in this proposition we may have m as large as 2Θ(k.35) but not larger.

O’Donnell [O’Donnell, 2004a] established the lower bound

NoiseStab
Θ
(

1/
√
k
)[C] = Ω

(
log2m

m

)
for every monotone m-variable function C, so the above upper bound is fairly close to the

best possible (within a polylog(m) factor if m = 2k
Θ(1)

).

Following [O’Donnell, 2004a; Healy et al., 2006], we use the “recursive majority of 3”

function and the “tribes” function in our construction. We require the following results on

noise stability:

Lemma 21 ([O’Donnell, 2004a]). Let Rec-Maj-3` : {0, 1}3`→{0, 1} be defined as follows:

for x = (x1, x2, x3) where each xi ∈ {0, 1}3`−1
,

Rec-Maj-3`(x)
def
= Maj

(
Rec-Maj-3`−1(x1),Rec-Maj-3`−1(x2),Rec-Maj-3`−1(x3)

)
.
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Then for ` ≥ log1.1(1/δ), we have

NoiseStabδ[Rec-Maj-3`] ≤ δ−1.1(3`)−.15 .

Lemma 22 ([Mossel and O’Donnell, 2003b]). Let Tribesd : {0, 1}d2d→{0, 1} denote the

“tribes” function on d2d variables, i.e., , the read-once 2d-term monotone d-DNF

Tribesd(x1, . . . , xd2d)
def
= (x1 ∧ · · · ∧ xd) ∨ (xd+1 ∧ · · · ∧ x2d) ∨ · · · .

Then if η = O(1/d), we have

NoiseStab 1−η
2

[Tribesd] = O
(ηd2

d2d
)

= O
( 1

2d
)
.

Lemma 23 ([O’Donnell, 2004a]). If h is a balanced Boolean function and ψ : {0, 1}r →

{0, 1} is arbitrary, then for any δ we have

NoiseStabδ[ψ ◦ h⊗r] = NoiseStab 1
2
−NoiseStabδ [h]

2

[ψ] .

Proof of Proposition 3. We take C to be Tribesd ◦Rec-Maj-3⊗d2d

` . Given that Rec-Maj-3`

is balanced, by Lemma 23 we have

NoiseStabδ[C] = NoiseStab 1
2
−NoiseStabδ [Rec-Maj-3`]

2

[Tribesd] .

Setting δ = Θ
(
1/
√
k
)

and recalling that 3` ≤ k6, we have ` ≥ log1.1(1/δ) so we may apply

Lemma 21 to obtain

NoiseStabΘ(1/
√
k)[Rec-Maj-3`] ≤ Θ

((√
k
)1.1

)(
k6
)−.15 = O

(
k−.35

)
.

As O(k−.35) ≤ O(1/d), we may apply Lemma 22 with the previous inequalities to obtain

NoiseStabΘ(1/
√
k)[C] = O

(
1
2d

)
.

The bound 5.8 follows from a rearrangement of the bounds on k,m, d and `. It is easy to see

that C can be computed by monotone circuits of depth O(`) = O(logm) and size poly(m).

This completes the proof. �



CHAPTER 5. OPTIMAL CRYPTOGRAPHIC HARDNESS OF LEARNING
MONOTONE FUNCTIONS 74

5.2.4 Nearly optimal hardness of learning polynomial-size monotone cir-

cuits

Given a value of k, let m = 3`d2d for `, d as in 3. Let G be a pseudorandom family of

functions
{
g : {0, 1}k→{0, 1}

}
secure against poly(n)-time adversaries, where n = mk.

Given that we have k = ω(log n), we may apply Corollary 3 with the combining function

from Proposition 3 and conclude that the class C = {C ◦ slice(g)⊗m | g ∈ G} is hard to learn

to accuracy
1
2

+O

(
k3
√

logm√
m

)
+ o(1/n) ≤ 1

2
+O

(
k3.5
√

log n√
n

)
. (5.9)

We claim that the functions in C can, in fact, be computed by poly(n)-size monotone

circuits. This follows from a result of Berkowitz [Berkowitz, 1982] that states that if a

k-variable slice function is computed by a Boolean circuit of size s and depth d, then it is

also computed by a monotone Boolean circuit with MAJ gates of size O(s + k) and depth

d + 1. Combining these monotone circuits for slice(g) with the monotone circuit for C, we

obtain a poly(n)-size monotone circuit for each function in C.

By making various different assumptions on the hardness of one-way functions, Propo-

sition 2 lets us obtain different quantitative relationships between k (the input length for

the pseudorandom functions) and n (the running time of the adversaries against which they

are secure), and thus different quantitative hardness results from Equation 5.9 above:

Theorem 14. Suppose that standard one-way functions exist. Then for any constant ε >

0 there is a class C of poly(n)-size monotone circuits that is hard to learn to accuracy

1/2 + 1/n1/2−ε.

Proof. If poly(n)-hard one-way functions exist then we may take k = nc in Proposition

2 for an arbitrarily small constant c; this corresponds to taking d = γ log k for γ a large

constant in 3. The claimed bound on Equation 5.9 easily follows. (We note that while

not every n is of the required form mk = 3`d2dk, it is not difficult to see that this and

our subsequent theorems hold for all (sufficiently large) input lengths n by padding the

hard-to-learn functions.) �

Theorem 15. Suppose that sub-exponentially hard (2n
α

for some fixed α > 0) one-way
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functions exist. Then there is a class C of poly(n)-size monotone circuits that is hard to

learn to accuracy 1/2 + polylog(n)/
√
n.

Proof. As above, but now we take k = logγ n for some sufficiently large constant γ (i.e., ,

d = c log k for a small constant c). �

5.3 Hardness of Learning Simple Circuits

In this section we obtain hardness results for learning very simple classes of circuits comput-

ing monotone functions under a concrete hardness assumption for a specific computational

problem, namely factoring Blum integers. Naor and Reingold [Naor and Reingold, 2004]

showed that if factoring Blum integers is computationally hard then there is a pseudoran-

dom function family, which we denote G?, that is computable in TC0. From this it easily

follows that the functions {slice(g) | g ∈ G?} are also computable in TC0.

We now observe that the result of Berkowitz [Berkowitz, 1982] mentioned earlier for

converting slice circuits into monotone circuits applies not only to Boolean circuits, but

also to TC0 circuits.

This means that the functions in {slice(g) | g ∈ G?} are in fact computable in monotone

TC0, i.e., , by polynomial-size, constant-depth circuits composed only of AND/OR/MAJ

gates. As the majority function can be computed by polynomial-size, O(log n)-depth mono-

tone Boolean circuits, (see, e.g., , [Ajtai et al., 1983]), the functions in {slice(g) | g ∈ G?} are

computable by O(log n)-depth monotone Boolean circuits. Finally, using the parameters in

14 we have a combining function C that is a O(log n)-depth poly-size monotone Boolean

circuit, which implies the following lemma:

Lemma 24. Let C be the monotone combining function from 3 and G? be a family of

pseudorandom functions computable in TC0. Then every function in {C ◦ slice(g)⊗m | g ∈

G?} is computable in monotone NC1.

This directly yields a hardness result for learning monotone NC1 circuits (the fourth line

of Figure 5.1):
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Theorem 16. If factoring Blum integers is hard on average for any poly(n)-time algorithm,

then for any constant ε > 0 there is a class C of poly(n)-size monotone NC1 circuits that is

hard to learn to accuracy 1/2 + 1/n1/2−ε.

Now we show that under a stronger but still plausible assumption on the hardness of

factoring Blum integers, we get a hardness result for learning a class of constant-depth

monotone circuits that is very close to a class known to be learnable to any constant

accuracy in poly(n) time. Suppose that n-bit Blum integers are 2n
α
-hard to factor on

average for some fixed α > 0 (which is the same hardness assumption that was earlier used

by Kharitonov [Kharitonov, 1993]). This means there exist 2n
α/2

-secure pseudorandom

functions that are computable in TC0. Using such a family of functions in place of G? in

the construction for the preceding theorem and fixing ε = 1/3, we obtain:

Lemma 25. Assume that Blum integers are 2n
α

-hard to factor on average. Then there is

a class C of poly(n)-size monotone NC1 circuits that is hard for any 2n
α/20

-time algorithm

to learn to accuracy 1/2 + 1/n1/6.

Now we “scale down” this class C as follows. Let n′ be such that n′ = (log n)κ for a

suitable constant κ > 20/α, and let us substitute n′ for n in the construction of the previous

lemma; we call the resulting class of functions C′. In terms of n, the functions in C′ (which are

functions over {0, 1}n that only depend on the first n′ variables) are computed by (log n)O(κ)-

size, O(log log n)-depth monotone circuits whose inputs are the first (log n)κ variables in

x1, . . . , xn. We moreover have that C′ is hard for any 2(n′)α/20
= 2(logn)κα/20

= ω(poly(n))-

time algorithm to learn to some accuracy

1
2

+
1

(n′)1/6
=

1
2

+ o(1) .

We now recall the following variant of Nepomnjaščĭı’s theorem that is implicit in [Al-

lender et al., 2006].

Lemma 26. For every language L ∈ NL, for all sufficiently large constant d there are AC0
d

circuits of size 2n
O(1)/(d+1)

that recognize L.

As every function in C′ can be computed in NC1, which is contained in NL, combining

Lemma 26 with the paragraph that proceeds it, we obtain the following theorem (final line

of Figure 5.1):
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Theorem 17. Suppose that Blum integers are sub-exponentially hard to factor on average.

Then there is a class C of monotone functions that is hard for any poly(n)-time algorithm

to learn to accuracy 1/2 + o(1) and that, for all sufficiently large constant d, are computed

by AC0
d circuits of size 2(logn)O(1)/(d+1)

.

This final hardness result is of interest because it is known that constant-depth circuits

of only slightly smaller size can be learned to any constant accuracy in poly(n) time under

the uniform distribution (without needing membership queries):

Theorem 18 ([Servedio, 2004a] Corollary 2). For all d ≥ 2, the class of AC0
d circuits of size

2O((logn)1/(d+1)) that compute monotone functions can be learned to any constant accuracy

1− ε in poly(n)-time.

Theorem 17 is thus nearly optimal in terms of the size of the constant-depth circuits for

which it establishes hardness of learning.

5.4 A computational analogue of the Blum-Burch-Langford

lower bound

In this section we first present a simple variant of the lower bound construction in [Blum et

al., 1998], obtaining an information-theoretic lower bound on the learnability of the general

class of all monotone Boolean functions. The quantitative bound our variant achieves is

weaker than that of [Blum et al., 1998], but has the advantage that it can be easily deran-

domized. Indeed, as mentioned in Section 7 (and further discussed below), our construction

uses a certain probability distribution over monotone DNFs, such that a typical random in-

put x satisfies only poly(n) many “candidate terms” (which are terms that may be present

in a random DNF drawn from our distribution). By selecting terms for inclusion in the

DNF in a pseudorandom rather than truly random way, we obtain a class of poly(n)-size

monotone circuits that is hard to learn to accuracy 1/2 + 1/polylog(n) (assuming one-way

functions exist).

Below we start with an overview of why it is difficult to obtain a computational analogue

of the exact construction of [Blum et al., 1998] using the pseudorandom approach sketched
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above, and the idea behind our variant, which overcomes this difficulty. We then provide our

information theoretic construction and analysis, followed by its computational analogue.

5.4.1 Idea

Recall the information-theoretic lower bound from [Blum et al., 1998]. It works by defining

a distribution Ps over monotone functions of the form {0, 1}n→{0, 1} as follows. (Here s

is a numerical parameter which should be thought of as the number of membership queries

that a learning algorithm is allowed to make.) Take t = log(3sn). A draw from Ps is

obtained by randomly including each length-t monotone term in the DNF independently

with probability p′, where p′ is chosen so that the function is expected to be balanced on

“typical inputs” (more precisely, on inputs with exactly n/2 ones). The naive idea for

derandomizing this construction is to simply use a pseudorandom function with bias p′

to determine whether each possible term of size t should be included or excluded in the

DNF. However, there is a problem with this approach: we do not know an efficient way to

determine whether a typical example x (with, say, n/2 ones) has any of its
(
n/2
t

)
candidate

terms (each of which is pseudorandomly present/not present in f) actually present in f , so

we do not know how to evaluate f on a typical input x in less than
(
n/2
t

)
time.

We get around this difficulty by instead considering a new distribution of random mono-

tone DNFs. In our construction we will again use a random function with bias p to determine

whether each possible term of length t is present in the DNF. However, in our construction,

a typical example x will have only a polynomial number of candidate terms that could be

satisfied, and thus it is possible to check all of them and evaluate the function in poly(n)

time.

The main difficulty of this approach is to ensure that although a typical example has only

a polynomial number of candidate terms, the function is still hard to learn in polynomial

time. We achieve this by partitioning the variables into blocks of size k and viewing each

block as a “super-variable” (corresponding to the AND of all k variables in the block). We

then construct the DNF by randomly choosing length-t terms over these super-variables.

It is not difficult to see that with this approach, we can equivalently view our problem as

learning a t-DNF f with terms chosen as above, where each of the n/k variables is drawn
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from a product distribution with bias 1/2k. By fine-tuning the parameters that determine

t (the size of each term of the DNF) and k (the size of the partitions), we are able to

achieve an information-theoretic lower bound showing that this distribution over monotone

functions is hard to learn to accuracy 1/2 + o(1).

5.4.2 Construction

Let us partition the variables x1, . . . , xn into m = n/k blocks B1, . . . , Bm of k variables each.

Let Xi denote the conjunction of all k variables in Bi (X1, . . . , Xm are the super-variables).

The following is a description of our distribution P over monotone functions. A function f

is drawn from P as follows (we fix the values of k, t later):

• Construct a monotone DNF f1 as follows: each possible conjunction of t super-

variables chosen from {X1, . . . , Xm} is placed in the target function f1 independently

with probability p, where p is defined as the solution to:

(1− p)(
m/2k

t ) =
1
2
. (5.10)

Note that for a uniform choice of x ∈ {0, 1}n, we expect m/2k ones in the correspond-

ing “super-assignment” X = (X1, . . . , Xm), and any superassignment with this many

ones will be satisfied by
(
m/2k

t

)
many terms. Thus p is chosen such that a “typical”

example X, with m/2k ones, has probability 1/2 of being labeled positive under f1.

• Let

f(x) =


f1(x) if the number of supervariables satisfied in x is at most m/2k + (m/2k)2/3,

1 otherwise.

Note that because of the final step of the construction, the function f is not actually

a DNF (though it is a monotone function). Intuitively, the final step is there because if

too many supervariables were satisfied in x, there could be too many (more than poly(n))

candidate terms to check, and we would not be able to evaluate f1 efficiently. We will show

later that the probability that the number of supervariables satisfied in x is greater than

m/2k + (m/2k)2/3 is at most 2e−(m/2k)1/3/3 = 1/nω(1), and thus the function f is 1/nω(1)-

close to f1; so hardness of learning results established for the random DNFs f1 carry over
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to the actual functions f. For most of our discussion we shall refer to P as a distribution

over DNFs, meaning the functions f1.

5.4.3 Information-theoretic lower bound

As discussed previously, we view the distribution P defined above as a distribution over

DNFs of terms of size t over the supervariables. Each possible combination of t supervari-

ables appears in f1 independently with probability p and the supervariables are drawn from

a product distribution that is 1 with probability 1/2k and 0 with probability 1− 1/2k. We

first observe that learning f over the supervariables drawn from the product distribution

is equivalent to learning the original function over the original variables. This is because

if we are given the original membership query oracle for n-bit examples we can simulate

answers to membership queries on m-bit “supervariable” examples and vice versa. Thus we

henceforth analyze the product distribution.

We follow the proof technique of [Blum et al., 1998]. To simplify our analysis, we

consider an “augmented” oracle, as in [Blum et al., 1998]. Given a query X, with ones in

positions indexed by the set SX , the oracle will return the first conjunct in lexicographic

order that appears in the target function and is satisfied by X. Additionally, the oracle

returns 1 if X is positive and 0 if X is negative. (So instead of just giving a single bit as its

response, if the example is a positive one the oracle tells the learner the lexicographically

first term in the target DNF that is satisfied.) Clearly, lower bounds for this augmented

oracle imply the same bounds for the standard oracle.

We are interested in analyzing Ps, the conditional distribution over functions drawn

from the initial distribution P that are consistent with the information learned by A in the

first s queries. We can think of Ps as a vector Vs of
(
m
t

)
elements, one for each possible

conjunct of size t. Initially, each element of the vector contains p, the probability that the

conjunct is in the target function. When a query is made, the oracle examines one by one

the entries that satisfy X. For each entry having value p, we can think of the oracle as

flipping a coin and replacing the entry by 0 with probability 1−p and by 1 with probability

p. After s queries, Vs will contain some entries set to 0, some set to 1 and the rest set to

p. Because Vs describes the conditional distribution Ps given the queries made so far, the
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Bayes-optimal prediction for an example X is simply to answer 1 if Vs(X) ≥ 1/2 and 0

otherwise.

We now analyze Vs(X), the conditional probability over functions drawn from P that are

consistent with the first s queries that a random example, X, drawn from the distribution,

evaluates to 1, given the answers to the first s queries. We will show that for s = poly(n),

for X drawn from the product distribution on {0, 1}m, with probability at least 1− 1/nω(1)

the value Vs(X) lies in 1/2± 1/log n. This is easily seen to give a lower bound of the type

we require.

Following [Blum et al., 1998], we first observe that after s queries there can be at most

s entries set to one in the vector Vs. We shall also use the following lemma from [Blum et

al., 1998]:

Lemma 27 ([Blum et al., 1998]). After s queries, with probability 1 − e−s/4, there are at

most 2s/p zeros in Vs.

We thus may henceforth assume that there are at most 2s/p zeros in Vs.

We now establish the following, which is an analogue (tailored to our setting) of Claim 3

of [Blum et al., 1998]:

Lemma 28. For any vector Vs of size
(
m
t

)
with at most s entries set to 1, at most 2s/p

entries set to 0, and the remaining entries set to p, for a random example X (drawn from

{0, 1}m according to the 1/2k-biased product distribution), we have that with probability at

least 1− ε1, the quantity Vs(X) lies in the range

1− (1− p)

»
(m/2

k−(m/2k)1/3

t )− 2s
√
n

p2kt

–
≤ Vs(X) ≤ 1− (1− p)(

m/2k+(m/2k)1/3

t ). (5.11)

Here

ε1 = s ·
(

2
√
n

p
+ 1
)

2−kt + 2e−(m/2k)1/3/3. (5.12)

Proof. Let X be a random example drawn from the 1/2k-biased product distribution over

{0, 1}m, and consider the following 3 events:

• None of the 1-entries in Vs are satisfied by X.

There are at most s 1-entries in Vs and the probability that any one is satisfied by

X is 2−kt. Therefore the probability that some 1-entry is satisfied by X is at most
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s2−kt and the probability that none of the 1-entries in Vs are satisfied by X is at least

1− s2−kt.

• At most (2s
√
n/p)2−kt of the 0-entries in Vs are satisfied by X.

Because there are at most 2s/p entries set to 0 in Vs, the expected number of 0-entries

in Vs satisfied by X is at most (2s/p)2−kt. By Markov’s inequality, the probability

that the actual number exceeds this by a
√
n factor is at most 1/

√
n.

• The number of ones in X lies in the range m/2k ± (m/2k)2/3.

Using a multiplicative Chernoff bound, we have that this occurs with probability at

least 1 − 2e−(m/2k)1/3/3. Note that for any X in this range, f(X) = f1(X). So,

conditioning on this event occurring, we can assume that f(X) = f1(X).

Therefore, the probability that all 3 of the above events occurs is at least 1− ε1 where

ε1 = s ·
(

2
√
n

p
+ 1
)

2−kt + 2e−(m/2k)1/3/3.

Given that these events all occur, we show that Vs(X) lies in the desired range. We follow

the approach of [Blum et al., 1998].

For the lower bound, Vs(X) is minimized when X has as few ones as possible and when

as many of the 0-entries in Vs are satisfied by X as possible. So Vs(X) is at least

Vs(X) ≥ 1− (1− p)

»
(m/2

k−(m/2k)2/3

t )− 2s
√
n

p2kt

–
.

For the upper bound, Vs(X) is maximized when X has as many ones as possible and as few

zeros as possible. So, Vs(X) is at most

Vs(X) ≤ 1− (1− p)(
m/2k+(m/2k)2/3

t ),

which completes the proof. �

Now let us choose values for k and t. What are our goals in setting these parameters?

First off, we want
(
m/2k

t

)
to be at most poly(n) (so that there are at most poly(n) candidate

terms to be checked for a “typical” input). Moreover, for any s = poly(n) we want both

sides of Equation 5.11 to be close to 1/2 (so the accuracy of any s-query learning algorithm
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is indeed close to 1/2 on typical inputs), and we want ε1 to be small (so almost all inputs

are “typical”). With this motivation, we set k = Θ(log n) to be such that m/2k (recall,

m = n/k) equals log6 n, and we set t =
√

log n. This means(
m/2k

t

)
=
(

log6 n√
log n

)
≤ 26 log(logn)

√
logn � n .

Now Equation 5.10 gives p� 1/n; together with k = Θ(log n), for any s = poly(n) we have

ε1 = 1/nω(1).

Now we analyze Equation 5.11. First the lower bound:

Vs(X) ≥ 1− (1− p)
[
(m/2

k−(m/2k)2/3

t )− 2s
√
n

p2kt

]
≥ 1− (1− p)(

m/2k−(m/2k)2/3

t )
(
e

3s
√
n

p2kt

)
= 1− (1− p)(

m/2k−(m/2k)2/3

t )
(

1 + 1/nω(1)
)

= 1−
[
2−(m/2

k−(m/2k)2/3

t )/(m/2
k

t )
]
·
(

1 + 1/nω(1)
)
.

(In the last step we are using the definition of p from Equation 5.10.) Let us bound the

exponent: (
m/2k−(m/2k)2/3

t

)(
m/2k

t

) ≥

(
m/2k − (m/2k)2/3 − t

m/2k

)t

=
(

log6 n− log4 n−
√

log n
log6 n

)√logn

≥
(

log6 n− 2 log4 n

log6 n

)√logn

=
(

1− 2
log2 n

)√logn

≥ 1− 2
log1.5 n

.

So

Vs(X) ≥ 1−
[
2−(1−2/ log1.5 n)

]
· (1 + 1/nω(1)) ≥ 1

2
− 1

log n
.

Now for the upper bound:

Vs(x) ≤ 1− (1− p)(
m/2k+(m/2k)2/3

t ) = 1− 2−(m/2
k+(m/2k)2/3

t )/(m/2
k

t ) .
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Again bounding the exponent:(
m/2k+(m/2k)2/3

t

)(
m/2k

t

) =

(log6 n+log4 n√
logn

)
( log6 n√

logn

)
≤

(
log6 n+ log4 n

log6 n−
√

log n

)√logn

≤
(

1 +
2 log4 n

log6 n−
√

log n

)√logn

≤ 1 +
4

log1.5 n
.

So

Vs(X) ≤ 1− 2−
“

1+ 4
log1.5 n

”
≤ 1

2
+

1
log n

.

The above analysis has thus established the following.

Lemma 29. Let L be any poly(n)-time learning algorithm. If L is run with a target function

that is a random draw f from the distribution P described above, then for all but a 1/nω(1)

fraction of inputs x ∈ {0, 1}n, the probability that h(x) = f(x) (where h is the hypothesis

output by L) is at most 1/2 + 1/log n.

It is easy to see that by slightly modifying the values of t and k in the above construction,

it is actually possible to replace 1/log n with any 1/polylog n in the above lemma.

5.4.4 Computational lower bound

To obtain a computational analogue of Lemma 29, we make a pseudorandom choice of terms

in a draw of f1 from P.

Recall that the construction of P placed each possible term (conjunction of t super-

variables) in the target function with probability p, as defined in Equation 5.10. We first

consider a distribution that uses uniform bits to approximate the probability p. This can

be done by approximating log(p−1) with poly(n) bits, associating each term with indepen-

dent uniform poly(n) bits chosen this way, and including that term in the target function

if all bits are set to 0. It is easy to see that the resulting construction yields a probability

distribution that is statistically close to P , and we denote it by P stat.
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Now, using a pseudorandom function rather than a truly random (uniform) one for

the source of uniform bits will yield a distribution, which we denote by PPSR. Similar

arguments to those we give elsewhere in the paper show that a poly(n) time adversary

cannot distinguish the resulting construction from the original one (or else a distinguisher

could be constructed for the pseudorandom function).

To complete the argument, we observe that every function f in the support of PPSR

can be evaluated with a poly(n)-size circuit. It is obviously easy to count the number of

supervariables that are satisfied in an input x, so we need only argue that the function f1 can

be computed efficiently on a “typical” input x that has “few” supervariables satisfied. But

by construction, such an input will satisfy only poly(n) candidate terms of the monotone

DNF f1 and thus a poly(n)-size circuit can check each of these candidate terms separately

(by making a call to the pseudorandom function for each candidate term to determine

whether it is present or absent). Thus, as a corollary of Lemma 29, we can establish the

main result of this section:

Theorem 19. Suppose that standard one-way functions exist. Then there is a class C of

poly(n)-size monotone circuits that is hard to learn to accuracy 1/2 + 1/polylog(n).
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Chapter 6

Learning an Overcomplete Basis:

Analaysis of Lattice-based

Signature Schemes

In this chapter we see that it is useful to study the security of cryptosystems as average-

case learning problems. Here we propose an attack on a family of lattice-based signature

schemes by showing that recovery of secret keys from signed messages reduces to a learning

problem. We then show that “random” instances of this learning problem have a special

structure that makes learning feasible.

6.1 Introduction

6.1.1 Background and Motivation

In 1997, Goldreich, Goldwasser and Halevi (GGH) [Goldreich et al., 1997] proposed a lattice-

based signature scheme and public-key encryption scheme that were inspired by the break-

through work of hardness of well-studied lattice problems. Since then, numerous variations

of the GGH schemes have been proposed including the commercial offering NTRUSign [Hoff-

stein et al., 2003], which applies the ideas of the GGH signature scheme to the compact

NTRU family of lattices. The NTRUSign scheme is reasonably efficient, but it has no known
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security proof.

In a beautiful paper from 2006, Nguyen and Regev [Nguyen and Regev, 2009] described a

cryptanalytic key-recovery attack against GGH-style signature schemes, including the basic

version of NTRUSign. Their work describes a polynomial-time algorithm (which is also

quite efficient in practice) for recovering the secret key from a transcript of signatures on

(arbitrary) messages. The first main observation behind their attack is that the signature

transcript can serve as the data set in a “hidden parallelepiped” learning problem. In this

problem, the learner is given a collection of (unlabeled) example vectors in Rn, each of

which is drawn uniformly at random from an unknown n-dimensional parallelepiped in Rn

(centered at the origin). The job of the learner is to reconstruct the basis vectors of the

unknown parallelepiped (or a close approximation thereof).

Even before the full attack of [Nguyen and Regev, 2009] was developed, it was known

that the basic approach behind GGH and NTRU signatures leaked some information about

the secret key that was potentially useful in an attack [Gentry and Szydlo, 2002; Szydlo,

2003]. As a result, the design of NTRUSign also includes a method for applying one or

more “perturbations” in the signing algorithm as a countermeasure against cryptanaly-

sis; this technique is part of the proposed IEEE P1363.1 standard that is currently under

consideration [IEEE, 2008]. When perturbations are used, signatures are drawn from a

non-uniform probability distribution over a convex set in Rn that is more complicated than

a parallelepiped (we elaborate more on this below). The drawback is that each perturbation

increases the running time of the signing algorithm, and necessitates a larger dimension n

(and correspondingly larger key sizes) to avoid certain other attacks.

While the cryptanalytic attack of Nguyen and Regev [Nguyen and Regev, 2009] com-

pletely breaks the basic NTRUSign scheme, it does not apply when one or more pertur-

bations are used. Cryptanalysis of the perturbation technique was left as the main open

problem, and to our knowledge no such analysis has yet appeared. Given this state of

affairs, a very natural and important question is whether perturbations actually are an

effective security measure. Further motivation is provided by the recent work of Gentry,

Peikert, and Vaikuntanathan [Gentry et al., 2008] (followed by [Peikert, 2009]), who gave

theoretically justified variants of GGH-style signature schemes that are provably unforgeable
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under worst-case lattice assumptions. Given the existence of provably secure alternatives,

the question of whether already-implemented schemes like NTRUSign with perturbations

are comparably secure takes on added interest.

6.1.2 Our Contributions

In this chapter we address the main problem left open by the work of Nguyen and Regev [Nguyen

and Regev, 2009] — namely, cryptanalysis of GGH/NTRU-style signature schemes with per-

turbations.

Following [Nguyen and Regev, 2009], we first present an abstract model of the signature

distribution, and phrase the key-recovery task as a learning problem. We generalize the

“hidden parallelepiped” problem (see above in Section 6.1.1) as formulated by [Nguyen and

Regev, 2009]; in the new problem, each sample is obtained as a random convex combination

of an overcomplete basis of m > n vectors in Rn, and our goal is to find or approximate as

many of the m vectors as possible (see Section 6.3 for a formal definition of the problem).

Based on other security considerations for lattice-based signature schemes and some

standard facts about high-dimensional geometry, we then argue that it is reasonable to

view the m unknown vectors as quasi-orthogonal elements of Rn. For quasi-orthogonal

vectors, we show (in Section 6.4.2) that it suffices to identify local maxima of the `∞-norm

of a certain function over Rn. While we are not able to find the local maxima of the `∞-norm

efficiently, we observe (in Section 6.4.3) that for a sufficiently large constant k, the `k-norm

is a very good proxy for the `∞-norm. This motivates an approach in which we search for

local maxima of the kth cumulant of a certain random variable, for an appropriate choice

of k.

In Section 6.4.4, we give an optimization algorithm that is specifically tailored to finding

these local maxima using the kth cumulant of the random variable. Then, in Section 6.4.5,

we show how to compute estimates of the kth cumulant from signature samples. To demon-

strate the efficacy of our attack, we need to argue that the algorithm is efficient and correct

when given the necessary statsitics and then show that we can efficiently compute reliable

estimates of the statistics.

We provide very strong empirical results indicating that the optimization algorithm,
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using real or noisy values for the cumulant, converges quickly to the hidden columns of the

basis. In Section 6.5.1 we present experimental results showing that our algorithm performs

extremely well on real-world parameters (and far beyond) with noisy or exact values of the

kth cumulant for k = 6. In contrast, for k = 4 the algorithm performs poorly even when

given exact values of the cumulants, which indicates that our approach of using the higher-

order cumulants is an essential novelty of this work. Though we do not yet have a full

theoretical proof of its correctness or convergence, we also present a variety of theoretical

results that indicate various ways in which our algorithm is effective and well-motivated,

see Section 6.4. For example, we prove that the `k norm typically has local maxima very

close to those of the `∞ norm, which give the vectors we are trying to find. We have not

found a proof that no other local maxima exist, but our experiments (Section 6.5) have yet

to encounter one.

We provide a full proof in Section 6.4.5 that the necessary (estimated) statistic, the

kth cumulant of the random variable, can be estimated efficiently from polynomially many

random samples. We further conduct experiments, presented in Section 6.5.2, which indicate

that we can use significantly fewer signatures (roughly n7) than the (polynomial) number

required by our theoretical bound (Lemma 37).

We stress that our optimization algorithm is quite generally applicable; it makes no

use of the special structure of NTRU lattices, or even of the public signature verification

key. (However, by an observation attributed to Whyte in [Nguyen and Regev, 2009], a

single NTRU signature in dimension n may heuristically be expanded into n samples for

the learning algorithm, which decreases the sample complexity of the algorithm somewhat.)

The only barrier preventing a practical attack is the number of signatures needed to estimate

the kth cumulant reliably, even for k = 6. Our experiments indicate that the number of

signatures required to mount an effective attack using our approach, while significantly

smaller than the number required by our theoretical bound, is still not yet practical. We

note that the designers of NTRUSign recommend releasing a limited numbers of signatures

for each key [Hoffstein et al., 2003; Hoffstein et al., 2005], yet they also claim that the number

of signatures allowed can be exponential in the number of perturbations. In contrast, our

theoretical analysis shows that only polyomially many signatures are needed to compute
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the statistics needed by our algorithm. The effectiveness of our attack underscores the

importance of using a limited number of signatures.

6.1.3 Overview of Our Attack

As in [Nguyen and Regev, 2009], we model the cryptanalytic task as an abstract learning

problem (see Section 6.3 for full details and justification of the model). For positive integers

m ≥ n (e.g., m = 2n), let C ∈ Rn×m be an unknown rank-n matrix, which corresponds

to the secret key of the signature scheme for dimension n. (Note that the case m = n

corresponds to the basic GGH-style signature scheme without perturbations, for which prior

attacks apply; the case m > n corresponds to signatures with perturbations.) The signing

algorithm implicitly produces independent random samples of the form

x = Cs ∈ Rn

for uniformly random s ∈ [−1, 1)n. The goal is to recover many (or all) of the columns ci

of the matrix C, or at least close approximations thereof, using oracle access to the signer.

(An approximation suffices because the secret key consists of integer lattice points, so the

approximate solution may be rounded to the true value.)

As in prior works [Hyvärinen et al., 2001; Gentry and Szydlo, 2002; Frieze et al., 1996;

Nguyen and Regev, 2009], the first basic step of our attack is to “sphere” the distribution

of x = Cs by estimating and correcting its covariance; we can then assume that the rows of

C are orthonormal. Moreover, because the secret key is random, we heuristically model the

rows of C as spanning a random n-dimensional subspace of Rm. The exact distribution of

the subspace is not too important; the only fact we need is that with noticeable probability,

the m columns ci ∈ Rn of C are quasi-orthogonal, i.e., 〈ci, cj〉 ≈ 0 when i 6= j and ≈ n/m

when i = j. This condition can be guaranteed to an appropriate degree of tolerance as a

consequence of, e.g., the Johnson-Lindenstrauss lemma.

We then search for the columns ci of C by measuring the statistics of the random

variable x = Cs. The main task is to determine the direction of some ci. (Its length will

be apparent once the direction is known, as explained below). By considering the inner

product of x with some unit vector w ∈ Rn of our choice, we get a random variable of the
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form

〈w,x〉 = 〈w,Cs〉 = 〈Ctw, s〉.

(Note that Ctw ∈ Rm is always a unit vector, because w is unit and the columns of Ct are

orthonormal.) Our first key observation, which follows from quasi-orthogonality, is that the

`∞ norm ‖Ctw‖∞ is locally maximized exactly when w is aligned with any column of C.1

Ideally, then, the statistics of 〈Ctw, s〉 would let us estimate the value of ‖Ctw‖∞ and find

its local maxima efficiently, which would reveal C exactly. However, we do not know if this

is possible.

Instead, we use the `k norm as a proxy for the the `∞ norm, for some large enough even

integer k (e.g., k = 6).2 One can see that ‖Ctw‖k closely approximates ‖Ctw‖∞, especially

in the regions of our interest, where Ctw has one dominant entry. We observe that the

value of ‖Ctw‖k corresponds exactly to a statistical quantity called the kth cumulant of

the random variable 〈Ctw, s〉. (Cumulants are similar to moments, but with the extra

crucial property that they are additive for independent random variables.) Furthermore, it

is possible to show that the kth cumulant of 〈Ctw, s〉, along with its gradient as a function

of w, may be efficiently estimated using about mO(k) samples, which is polynomial for

constant k.

Given this ability to estimate the `k norm and its gradient, standard optimization algo-

rithms such as gradient ascent or Newton’s method can then be used to find local maxima.

However, we find that the particular geometric form of our objective function admits a

special-purpose iterative optimization algorithm in which the current direction w is simply

replaced by the gradient, which seems to perform more robustly in our experiments.

Finally, once the direction w = ci/‖ci‖ of some ci is discovered, we see that the length

‖ci‖ is

‖ci‖ =
〈ci, ci〉
‖ci‖

=
‖Ctci‖∞
‖ci‖

= ‖Ctw‖∞.

This quantity is approximately ‖Ctw‖k, which can be measured efficiently, as discussed

above.

1The `∞ norm is defined as ‖z‖∞ = maxi |zi| .
2The `k norm is defined as ‖z‖k = (

P
i |zi|

k)1/k.
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6.1.4 Relation to Prior Work

As briefly noted above, the learning problem we consider is a generalization of the abstract

learning problem considered in [Frieze et al., 1996; Nguyen and Regev, 2009]. The problem

studied in those works corresponds to the special case m = n in our problem, in which

the m = n unknown vectors in Rn are the basis vectors defining a paralellepiped in Rn.

Heuristics for attacking this kind of learning problem had previously been given in the

Independent Component Analysis (ICA) literature (see, e.g., [Hyvärinen et al., 2001]); a

polynomial-time algorithm was described by Frieze et al [Frieze et al., 1996], and a similar

algorithm was analyzed rigorously by Nguyen and Regev [Nguyen and Regev, 2009].

The more general problem that we address, where m may be substantially larger than n,

seems considerably more difficult. It has received far less attention in the ICA literature, and

we do not know of any work on theoretically efficient algorithms with provable performance

guarantees. In a setting of quasi-orthogonal basis vectors similar to ours, Hyvärinen and Inki

[Hyvärinen and Inki, 2002] propose an algorithm based on a Bayesian maximum likelihood

approach. In contrast, our approach is based on estimating the cumulants of the data

and a special-purpose optimization algorithm for finding local maxima of the `k norm, as

described above.

We point out that our cryptanalytic attack, as well as the one of [Nguyen and Regev,

2009], fails when applied to the (provably secure) signature schemes of [Gentry et al., 2008;

Peikert, 2009], because the signatures are drawn from (essentially) an n-dimensional Gaus-

sian that is independent of the secret key basis, i.e., the signatures are “zero-knowledge.”

6.2 Background

For the purposes of this work, a lattice is a full-rank discrete subgroup of Rn. Any lattice

L can be represented by a basis, that is, a set of linearly independent b1, . . . ,bn ∈ L such

that L = {
∑n

i=1 cibi|ci ∈ Z}. Conversely, any set of linearly independent vectors is a basis

for some lattice. We denote the gradient of a function f : Rn→R by ∇f = ( ∂f∂x1
, . . . , ∂f∂xn ),

and the unit sphere in Rn by Sn = {w ∈ Rn : ‖w‖ = 1}.
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6.2.1 GGH-Style Signatures and Perturbations

The signature scheme originally proposed in [Goldreich et al., 1997], referred to as the GGH

signature scheme, works with lattices in Zn. The private key of the signer is a “short” basis

for a lattice L (where each basis vector has small Euclidean norm), while the public key is a

much longer basis for the same lattice. To create a signature, the message is first mapped to

Zn using a hash function, which can be modeled heuristically as a “random oracle.” Using

the private key and Babai’s round off algorithm [Babai, 1986], the signer finds a vector in L

near the hashed message, outputting it as the signature. Using the public basis, the verifier

may check that the vector belongs to the lattice and is close enough to the hashed message.

As mentioned previously, different incarnations of the original scheme exist, including the

NTRUSign scheme [Hoffstein et al., 2003], which uses a compact family of lattices from the

NTRU encryption scheme [Hoffstein et al., 1998].

The signatures of GGH-style schemes are known to leak information about the secret

key, as first shown in [Gentry and Szydlo, 2002]. The perturbation technique was proposed

as part of NTRUSign in the hopes of increasing its security [Hoffstein et al., 2003; Hoffstein

et al., 2005]. Abstractly, the technique involves generating and storing some number of

additional short vectors v1,v2, . . . ∈ Zn as part of the secret key, and adding a random linear

combination of them to the hashed message before applying the usual signing algorithm to

the perturbed hash value. The signature still verifies because it is still relatively close to the

original hashed message (though it is somewhat farther away than if the perturbation had

been left out). In the particular case of NTRUSign, the extra secret vectors are simply the

secret short bases from one or more independently generated keypairs; the corresponding

long bases are discarded and never made public.

6.2.2 Statistical Quantities

Let X be a random variable over the reals R. For nonnegative integer k, the kth moment

µk (about the origin) of X is defined as

µk(X) = E[Xk].
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The cumulants κk of X are closely related to the moments. Formally, they are defined as

the coefficients of the cumulant-generating function

g(t) = ln E[et·X ] =
∞∑
k=1

κk(X) · t
k

k!
.

The first cumulant κ1 equals the mean µ1, and the second and third cumulants κ2, κ3

are respectively the second and third central moments about the mean µ1. The general

relationship between cumulants and moments is more complex, and is given by the following

recursive formula:

κk = µk −
k−1∑
j=1

(
k − 1
j − 1

)
· κj · µk−j .

Like the kth moment, the kth cumulant is homogeneous of degree k, that is, κk(c · X) =

ck · κk(X) for any constant c ∈ R. Unlike moments, however — and crucially for our

purposes — cumulants are also additive. That is, for independent random variables X,Y ,

κk(X + Y ) = κk(X) + κk(Y ).

6.3 The Learning Problem

We model the key recovery attack on lattice-based signatures with perturbations as follows.

Definition 5 (Learning an Overcomplete Basis Problem). For m ≥ n, let A ∈ Rn×m

be a matrix of rank n. The input consists of polynomially many samples As ∈ Rn for

independent, uniformly distributed s ∈ [−1, 1]m. The goal is to find a good approximation

to all or most of the columns ai of A.

The special case of m = (k + 1)n correspond to NTRU-style signature with k pertur-

bations, where a transcript of signatures provides samples that are sums of random points

from k + 1 different parallelepipeds. The case k = 0 (no perturbations) corresponds to

the problem addressed by [Nguyen and Regev, 2009]. We note that in the case of NTRU

signatures, it suffices to find just one column of A belonging to the “true” secret key, then

the remainder of the key may be found using the symmetries of NTRU lattices.

The learning problem may be considered in a “worst-case” form, where A is arbitrary, or

as an “average-case” problem, where A is chosen from some distribution. For a cryptanalytic
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attack, it suffices to solve the average-case problem where the distribution on A is induced

by the key generation procedure, with some significant probability over all the randomness

of the experiment. We note that while [Nguyen and Regev, 2009] address the worst-case

version of their learning problem, our approach exploits the random distribution of A in an

important way.

The distribution on A that we focus on is the idealized one in which each entry is an

independent, normally distributed real (with the same variance). Under this distribution,

each row in A is an independent normally distributed vector in Rm, and thus (with prob-

ability 1) the rows span a random n-dimensional subspace of Rm. We argue that this is

the most natural way to model the key-generation algorithm in GGH-based signatures with

perturbations. We note that the specific key generation algorithm in NTRUSign applies a

more biased process, resulting in some longer and some shorter vectors in A. The method

appears to be motivated by efficiency concerns, and it seems that in terms of security, a

matrix spanning a random subspace would be preferable. In particular, in our attack the

longer vectors of the secret key will be found more easily (at the expense of the shorter

vectors).

As explained in Section 6.1.2, we need to assume a certain distribution on A because

our learning algorithm relies on the quasi-orthogonality of the columns of A. (This is in

contrast with the simpler case of m = n, where the columns of A are guaranteed to be

orthogonal following a preprocessing step). Our learning algorithm is actually quite robust

and works for a variety of distributions, as long as they provide a reasonable probability

of quasi-orthogonality. We prove in Theorem 20 that this condition is likely to occur when

the rows of A span a random n-dimensional subspace of Rm.

6.4 Approach and Learning Algorithm

Here we expand in detail upon the approach outlined in Section 6.1.3. We first show

in Section 6.4.1 how to transform instances of our learning problem into instances where

the rows of the unknown matrix C are orthonormal. In Section 6.4.2 we establish a key

property of C, namely quasi-orthogonality, and demonstrate an objective function over
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the unit sphere Sn that is locally maximized exactly in the direction of each column of

C. While we do not know how to maximize this exact objective function efficiently, we

show in Section 6.4.3 that there is a suitable proxy that can be optimized using standard

algorithms, given access to certain statistics. In Section 6.4.4 we additionally describe a

particular optimization algorithm that is tailored specifically to our objective function. In

Section 6.4.5 we give theoretical bounds on the number of samples needed to obtain reliable

estimates of the statistics required by the optimization algorithms.

6.4.1 Sphering the Distribution

As in prior theoretical work [Frieze et al., 1996; Nguyen and Regev, 2009] and the ICA

literature [Hyvärinen et al., 2001], we first reduce our learning problem to one in which the

data are “whitened” or “sphered,” i.e., have a trivial covariance matrix In. The following

two lemmas are slight generalizations of those appearing in [Nguyen and Regev, 2009].

Lemma 30. For any A ∈ Rn×m and uniformly random s ∈ [−1, 1)m, we have

Ex=As[xxt] = A ·Es[sst] ·At =
1
3
AAt.

Lemma 31. Let A ∈ Rn×m have full row rank, and let G ∈ Rn×n be the symmetric positive

definite Gram matrix G = AAt. Let L ∈ Rn×n be the Cholesky factor of G−1, that is, is

the unique lower-triangular matrix such that G−1 = LLt. Then the rows of the matrix

C = LtA are orthonormal, i.e., CCt = In.

Proof. The matrix G−1 is symmetric positive definite, because the Gram matrix G = AAt

is. Thus G−1 has a Cholesky factorization G−1 = LLt, where L is lower triangular and

nonsingular. Then AAt = (LLt)−1, so

CCt = LtAAtL = Lt(LLt)−1L = In.�

By Lemma 30 and standard Chernoff bounds, we can approximate the Gram matrix

G = AAt to a high degree of accuracy by averaging xxt over many samples x = As. We

can then compute the Cholesky factorization of G−1 = LLt efficiently using, e.g., Gram-

Schmidt orthogonalization. By Lemma 31, we may apply the transformation Lt to our data
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samples to obtain “sphered” samples of the form Cs = LtAs, where CCt is very close to

the identity In. In other words, we can reduce the learning problem to one in which the

rows of the unknown matrix C are essentially orthonormal. Moreover, note that the row

spaces of A and C = LtA are the same, so the probability distribution over the row space

from the learning problem remains unchanged. Finally, given a solution that approximates

C (or any of its columns), we can recover an approximation of A (or the corresponding

columns) simply by applying L−t.

For the remainder of this section, we therefore assume that the unknown matrix in our

learning problem is some C ∈ Rn×m such that CCt = In.

6.4.2 Quasi-Orthogonality and the `∞ Norm

When C is square (i.e., m = n) and its rows are orthonormal, then its columns are or-

thonormal as well. The algorithms from [Frieze et al., 1996; Nguyen and Regev, 2009]

crucially exploit this fact, defining a multivariate objective function (related to the fourth

moment of projected samples) that is optimized precisely at each of the columns of C.

When m > n, however, the columns of C cannot possibly be mutually orthogonal, and the

objective function used in [Frieze et al., 1996; Nguyen and Regev, 2009] does not have the

required properties.

Still, it is possible for m� n directions in Rn, represented by unit vectors u1, . . . ,um ∈

Rn, to satisfy the more relaxed notion of quasi-orthogonality, in which all the inner products

〈ui,uj〉 for i 6= j are relatively small (near zero). In fact, for m = poly(n), “most” choices

of m directions in Rn are quasi-orthogonal. Therefore, the notion is reasonably robust to

different distributions of the chosen directions.

Here we make this intuition more formal, and demonstrate a particular objective func-

tion that is optimized precisely in the direction of the unknown columns of C (when they

are indeed quasi-orthogonal).

Lemma 32 (Johnson-Lindenstrauss). Let ε ∈ (0, 1), let S be any finite set of points in

Rm, and let n ≥ n0 = O(ε−2 ln |S|). Let f be the orthogonal projection from Rm onto a

random n-dimensional subspace of Rm (i.e., the subspace spanned by n independent normally

distributed vectors in Rm). Then except with probability O(1/|S|) over the choice of the
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subspace, for every v ∈ S we have

‖f(v)‖2 ∈ (1± ε) · n
m
· ‖v‖2.

We remark that the probability O(1/|S|) in the statement of Lemma 32 is relatively

arbitrary, and may be reduced to 1/|S|c for any constant c > 0 at the expense of a larger

constant factor in the threshold n0 = O(ε−2 ln |S|).

Definition 6. For γ ≥ 1, we say that the columns xi of a matrix X are γ-quasi-orthogonal

if each diagonal entry of the symmetric Gram matrix XtX has magnitude at least a γ factor

larger than that of every other entry in its row/column, i.e., if |〈xi,xi〉| ≥ γ · |〈xi,xj〉| for

every distinct i, j.

In order to apply the Johnson-Lindenstrauss lemma in our context, we first observe

that the Gram matrix G = CtC ∈ Rm×m is the unique matrix representing the orthogonal

projection from Rm onto the linear subspace V = span(Ct) spanned by the columns of Ct.

To see this, note that CtCx = Ct0 = 0 for any x in the orthogonal complement of V , and

that any x ∈ V may be written as x = Ctz for some z ∈ Rn, so CtCx = Ct(CCt)z =

CtInz = x.

Theorem 20. Let 1/2 ≥ ε ≥ ε0 = O(
√

ln(m)/n). Then except with probability at most

O(1/m2) over the random n-dimensional subspace of Rm spanned by Ct, the following holds

for all i 6= j:

〈ci, ci〉 ∈ (1± ε) · n
m

and 〈ci, cj〉 ∈ ±ε ·
n

m
.

In particular, the columns of C are Ω(
√
n/ lnm)-quasi-orthogonal.

Proof. For v ∈ Rm, define f(v) = CtCv as the orthogonal projection from Rm onto

span(Ct), which is a random n-dimensional subspace of Rm. Also note that ‖f(v)‖ = ‖Cv‖,

because the columns of Ct are orthonormal.

Define the set S = {e1, . . . , em} ∪ {ei − ej : i > j}, where the ei ∈ Rm are the standard

basis vectors. Note that |S| = Θ(m2). Then Lemma 32 says that except with probability

O(1/m2), we have

〈ci, ci〉 = ‖Cei‖2 = ‖f(ei)‖2 ∈ (1± ε) · n
m
.
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Moreover, for i 6= j we have (again by Lemma 32)

2〈ci, cj〉 = 〈ci, ci〉+〈cj , cj〉−〈ci − cj , ci − cj〉 = ‖f(ei)‖2+‖f(ej)‖2−‖f(ei − ej)‖2 ∈ ±2ε· n
m
.�

We now define an objective function f∞ : Sn→R over the unit sphere as

f∞(w) = ‖Ctw‖∞.

Theorem 21. If the columns of C are γ-quasi-orthogonal for some γ > 1, then the local

maxima of f∞ are exactly those unit vectors parallel to the columns ci of C.

Proof. That each unit vector ±ui = ±ci/‖ci‖ is a local maximum of f∞ follows by hy-

pothesis: the magnitude of the ith coordinate of Ctui is |〈ci, ci〉| /‖ci‖ = ‖ci‖, while the

magnitude of every other coordinate |〈cj ,ui〉| < ‖ci‖ for j 6= i. Thus f∞(±ui) = ‖ci‖.

Now for any unit vector w 6= ±ui in a sufficiently small neighborhood of ±ui, we have

|〈ci,w〉| < ‖ci‖ and |〈cj ,w〉| < ‖ci‖, thus f∞(w) < f∞(±ui) = ‖ci‖.

Now we show that there are no other local maxima. Given any unit vector w /∈

{±u1, . . . ,±um}, let i be such that |〈ci,w〉| = f∞(w) = maxj |〈cj ,w〉|. We may rotate w

slightly toward ±ui (where the sign matches the sign of 〈ci,w〉) to obtain a new unit vector

w′ such that |〈ci,w′〉| > |〈ci,w〉|. Then we have f∞(w′) ≥ |〈ci,w′〉| > |〈ci,w〉| = f∞(w),

so w is not a local maximum. �

Ideally, we would hope to use the samples 〈Ctw, s〉 to efficiently find the local maxima

of f∞(w), i.e., the columns of C, but unfortunately we do not know how to do this. In the

remainder of this section, we show that for our purposes the `k norm (for a large enough

even integer k) is a good substitute for the `∞ norm, and that its maxima can be found

relatively efficiently.

6.4.3 Using the `k Norm

Our first motivation for using the `k norm (for some even integer k > 2) is that for reasonably

large k, it is a close approximation to the `∞ norm. Namely, for v ∈ Rm, it is a standard

fact that ‖v‖∞ ≤ ‖v‖k ≤ m1/k · ‖v‖∞. Moreover, the first inequality is nearly tight when v

has one dominant entry, which is indeed the case for v = Ctw in the regions of our interest
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(where w is closely aligned with some column of C). Naturally, a larger value of k yields a

better approximation to the `∞ norm, but as we see in Section 6.4.5, it also increases the

sample complexity and running time of our attack.

Because the `k norm is only an approximation of the `∞ norm, the local maxima and

other stationary points may differ. Fortunately, we prove in Theorem 22 that the `k norm

typically has local maxima very close to those of of the `∞ norm. We have not found a

proof that no other local maxima exist, but our experiments have yet to encounter one.

(See Section 6.5 for details.)

The second reason for using the `k norm is its close connection to the kth cumulant of

the random variables that arise in our learning problem, as shown in the following lemma.

Lemma 33. Let k be an even positive integer, let v ∈ Rm be fixed, and let s ∈ Rm be a

random variable where each coordinate si is independent and identically distributed to some

random variable X. Then

κk(〈v, s〉) = ‖v‖kk · κk(X).

Proof. We have

κk(〈v, s〉) =
m∑
i=1

κk(visi) =
m∑
i=1

vki · κk(si) = ‖v‖kk · κk(X),

by additivity of κk for independent random variables, homogeneity of degree k, and the

definition of the `k norm (for even k), respectively. �

Setting v = Ctw, Lemma 33 says that ‖Ctw‖kk is proportional to κk(〈w,Cs〉). As

we show below in Section 6.4.5, the latter quantity can be estimated to a high degree of

accuracy for any w using access to independent samples of the form Cs.

For our optimization algorithm, we also need to analyze the gradient of the `k norm

(actually, its kth power). For a vector x, denote by [x]j the operation that raises each entry

of x to the jth power. Define the function fk : Rn→R as

fk(w) = ‖Ctw‖kk =
m∑
i=1

〈ci,w〉k.

By linearity, the chain rule, and the fact that the transpose Jacobian (D〈c,w〉)t = c for
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any c ∈ Rn, the gradient of fk is

∇fk(w) =
m∑
i=1

∇(〈ci,w〉k) = k ·
m∑
i=1

ci · 〈ci,w〉k−1 = k ·C · [Ctw]k−1. (6.1)

We also show in Section 6.4.5 that this gradient can be expressed and measured in terms

of the statistics of 〈w,Cs〉.

We now show that the `k norm has local maxima that are very close to those of the `∞

norm, i.e., the columns ci of C.

Theorem 22. Let m = γc for some constant c > 2. Then fk has a local maximum within

distance δ = O(γc−k+1) of every local maxima of f∞ as long as k − 2 > 1.1(c+ 1).

Proof. Define g : Sn→Rn as g(w) = ∇fk(w)/‖∇fk(w)‖. We argue that g must have a fixed

point within distance δ of each normalized column ui = ci/‖ci‖ of C. Say that a vector w

has gap α if there is some i such that |〈ci,w〉| ≥ α · |〈cj ,w〉| for all i 6= j. Our argument

will proceed in two steps: first, we show in Lemma 34 that there is some α > 0 so that

every w with gap α satisfies g(w) > α. This implies that there is a fixed point, i.e., for

which g(w) = w, among the vectors having gap α. Then, we show in Lemma 35 that if w

has gap larger than α, then g(w) must be within distance δ of ui.

Note that for any vector v ∈ Rm, the ith coordinate of CtCv is given by

〈CtCv, ei〉 = 〈
∑
`

v`c`,Cei〉 =
∑
`

v`〈c`, ci〉.

Thus, if we set v = k · [Ctw]k−1, then ∇fk(w) = Cv. We observe that when w has a gap

α, g(w) is dominated by the contribution from vi:

‖
∑
` 6=i

v`c`‖ ≤
∑
`6=i

v`‖c`‖ ≤ |vi|
m

αk−1
(6.2)

by the triangle inequality and the fact that each ‖ci‖ = ‖CtCei‖ ≤ 1. We proceed to prove

the two main lemmas.

Lemma 34. If w ∈ Rn has gap α > 0, then g(w) has gap α′ ≥ γ(1−O( mγ
αk−1 ))2.

Proof. Using equation 6.2, we have that

|〈Cv, ci〉| ≥ |vi|〈ci, ci〉 − |vi|
m

αk−1
(6.3)

|〈Cv, cj〉| ≤ |vi|〈ci, cj〉+ |vi|
m

αk−1
. (6.4)
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Since C is γ-quasi-orthogonal, we have (6.4) is at most 1
γ |vi|(〈ci, ci〉+

γm
αk−1 ). Thus the gap

of g(w) is at least

γ
〈ci, ci〉 −m/αk−1

〈ci, ci〉+ γm/αk−1
≥ γ(1−O(

mγ

αk−1
))2.

�

Lemma 35. If w ∈ Rn has gap α′, then

‖g(w)− ui‖ ≤ O
( m

α′k−1

)
.

Proof. Note that the magnitude of the vector in Equation 6.2 bounds the distance of∇fk(w)

from the line spanned by ci. Normalizing gives us that

‖g(w)− ui‖ ≤
|vi| m

α′k−1

‖Cv‖
≤
|vi| m

α′k−1

|vi|‖ci‖
= O

( m

α′k−1

)
.

�

To complete the proof of Theorem 22, suppose m = O(γc) and consider any w with

gap α = γh for some h < 1. Applying Lemma 34 we have α′ ≥ γ(1 − 2
γ ) > α as long as

k − 2 > c+1
h . Applying Lemma 35 with α′ = O(γ), we have δ ≤ O(γc−k+1).

�

6.4.4 Special-Purpose Optimization Algorithm

A standard algorithmic approach for multivariate optimization is gradient ascent/descent, in

which one starts at an arbitrary point and iteratively steps in the direction of the gradient

until an extremum is found. More advanced techniques such as Newton’s method use

additional information about the function (such as the Hessian) to converge more quickly.

Prior works [Frieze et al., 1996; Nguyen and Regev, 2009] use these approaches with an

objective function that measures the fourth moment of the projected data.

For our objective function fk, which measures the kth cumulant, we observe that the

gradient has a nice geometric interpretation that inspires a somewhat different style of

optimization algorithm. First recall that by the method of Lagrange multipliers, fk is

maximized over the unit sphere Sn only where ∇fk(w) is parallel to w (this is a necessary

but not sufficient condition).
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Now consider the expression of the gradient from Equation (6.1). The vector Ctw ∈ Rm

indicates the degree of alignment between w and each unknown column ci. The “powering”

operation [Ctw]k−1 amplifies the largest of these inner products relative to the others, in

effect “pulling” the vector toward alignment with some standard basis vector ei ∈ Rm. (A

larger value of k yields greater amplification; in the limit as k approaches ∞, the result is

perfectly aligned with ei.) Finally, multiplying on the left by C produces a gradient vector

∇fk(w) that is closely aligned with ci, with relatively small contributions from the other

cj . We may then iterate this process, with each iteration having better alignment with ei

by the powering operation, followed by better alignment with ci, until some fixed point is

reached where w and ∇fk(w) are parallel. Due to the small contributions of the other cj ,

we do not expect the process to converge exactly in the direction of ci, but to some direction

very close to it.

Finally, once we have converged to the unit vector w = ci/‖ci‖ in the direction of some

ci, we need to scale w appropriately. By quasi-orthogonality, we have

‖ci‖ =
〈ci, ci〉
‖ci‖

=
‖Ctci‖∞
‖ci‖

= ‖Ctw‖∞ ≈ ‖Ctw‖k = (fk(w))1/k.

The above discussion naturally translates into the following simple “replace with gra-

dient” optimization algorithm for finding some column ci. The algorithm requires oracle

access to fk(·) and ∇fk(·); below we show that these oracles may be implemented efficiently

(to a high degree of accuracy).

1. Choose w uniformly at random from Sn.

2. Repeat until w and ∇fk(w) are (nearly) parallel: Let w← ∇fk(w)/‖∇fk(w)‖ ∈ Sn.

3. Output w · (fk(w))1/k.

6.4.5 Measuring the Statistics

In this section we show that the statistics needed by our optimization algorithm can be

estimated efficiently. We rely on the standard Hoeffding bound to quantify the quality of

our estimates.
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Lemma 36 (Hoeffding Bound). Let X1, . . . , XN be N independent, identically distributed

random variables in the interval [a, b] with mean µ, and let X = 1
N

∑
iXi. Then for any

ε > 0,

Pr[X 6∈ (1± ε) · µ] ≤ 2 exp

(
−2N ·

(
ε · µ
b− a

)2
)
.

6.4.5.1 Moments and Cumulants

Define the statistics

µC,k(w) = µk(〈w,Cs〉) and κC,k(w) = κk(〈w,Cs〉),

where s ∈ [−1, 1)m is uniformly random. Notice that µC,k(w) = κC,k(w) = 0 for any odd

integer k, because the distribution of 〈w,Cs〉 = 〈Ctw, s〉 is symmetric about the origin.

Therefore, we need only estimate the statistics for even k.

The following lemma bounds the number of samples that suffice for estimating the

cumulants κC,k(w) to within relative (multiplicative) error ε > 0. When k is held constant,

the number of samples grows with m3k/ε2. (We have not attempted to optimize the bound,

and improvements may be possible. Our experimental results in Section 6.5.2 indicate that

significantly fewer samples would suffice.)

Lemma 37. Let k = 2k′ ≥ 2 be an even integer, let ε, δ ∈ (0, 1
2), and let α = |κk(X)| for a

uniformly random variable X over [−1, 1). Define

κ̃k = µ̃k −
k−1∑
j=1

(
k − 1
j − 1

)
· κ̃j · µ̃k−j , (6.5)

where each estimate κ̃j of κC,j(w) for even j is computed recursively using the estimates

µ̃j = 1
N

∑
i x

j
i of µC,j(w) for independent draws x1, . . . , xN of 〈w,Cs〉, for

N ≥ (6m3)k · (k!/α)2 · ε−2 log(k/δ).

Then except with probability at most δ, we have

κ̃k ∈ (1± ε) · κC,k(w).
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Proof. For even j ≥ 2 and any w ∈ Sn, any draw of 〈w,Cs〉j = 〈Ctw, s〉j is in the interval

[0,mj/2], because ‖Ctw‖ = 1 and ‖s‖ ≤
√
m. The draws have mean

µC,j(w) = Es[〈Ctw, s〉j ] ≥ Es[〈Ctw, s〉2]j/2 = (1/3)j/2,

by Jensen’s inequality and the fact that the variance of 〈Ctw, s〉 is 1/3, since ‖Ctw‖2 = 1.

Applying the Hoeffding bound with N samples and the union bound (over all k′ estimates),

all the µ̃j are accurate estimates of µC,j(w) to within a multiplicative factor of 1± ε′ except

with probability at most δ, where

ε′ =
ε · α

(2m2)k′ · k!
.

We now analyze the accuracy of the estimate κ̃k. Ignoring the vanishing terms that

involve an odd-numbered moment, the recursive expansion of κk = κC,k(w) in terms of

the moments µj = µC,j(w) has exactly 2k
′−1 terms Ti. Each Ti is a product of binomial

coefficients that does not exceed (k − 1)! and up to k′ moments µj1 , µj2 , . . . , µjs , where∑
ji = k. As noted above, each moment µj ≤ mj/2, so the product of moments appearing

in each term is at most mk′ . Therefore, the sum of the terms’ absolute values is

S =
∑
|Ti| ≤ (2m)k

′ · (k − 1)!.

Now because each estimate µ̃j is accurate to within a factor 1± ε′, each product of up

to k′ estimates
∏
µ̃ji in the terms of κ̃k is accurate to within a (1± ε′)k′ ⊆ (1± ε′k) factor.

Then by the triangle inequality, the total additive error of κ̃k is

|κ̃k − κk| ≤ ε′k · S ≤ ε ·
α

mk′
.

Now because Ctw ∈ Rm is a unit vector, we have ‖Ctw‖kk ≥ m1−k′ . By Lemma 33, we

have

|κk| = |κk(X)| · ‖Ctw‖kk ≥
α

mk′−1
.

Therefore, the relative error of the estimate κ̃k is |κ̃k − κk| / |κk| ≤ ε, as desired. �

6.4.5.2 Gradients

In order to express the gradient ∇fk(w) in terms of statistics, we first invoke Lemma 33 to

write

fk(w) = ‖Ctw‖kk ∝ κC,k(w)
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(for simplicity, we elide the hidden constant). We then invoke the recursive definition of

the cumulant and the product rule for the gradient to obtain

∇κC,k(w) ∝ ∇µC,k(w)−
k−1∑
j=1

(
k − 1
j − 1

)
· (∇κC,j(w) · µC,k−j(w) + κC,j(w) · ∇µC,k−j(w)) .

The gradient ∇fk(w) can therefore be expressed recursively in terms of the moments

µC,j(w) and their gradients. The gradient of the jth moment is

∇µC,j(w) = Ex=Cs

[
∇(〈w,x〉j)

]
= j ·Ex=Cs

[
〈w,x〉j−1 · x

]
.

These quantities may be estimated to a high degree of accuracy from many independent

samples x = Cs, using analysis similar to that in Lemma 37.

6.5 Experiments

The chief difficulty with testing our proposed attack is the large sample complexity needed

(at least in theory) to obtain accurate estimates of the objective function fk(·) and its

gradient. (E.g., see Lemma 37). We therefore conduct two types of experiments to test the

efficacy of our approach.

First, we test the idealized version of our “replace with gradient” optimization algorithm

(defined in Section 6.4.4), in which the oracles for fk(·) and ∇fk(·) are implemented at

essentially no cost using knowledge of the secret matrix C and the definition of fk(w) =

‖Ctw‖kk. In order to simulate the effect of empirical estimation, we also test the performance

of the algorithm when the quality of the oracles is degraded by various amounts of noise.

We stress that no other information about C is available to the optimization algorithm,

except what can be obtained via the oracles. The main purpose of this experiment is to

test on real-world parameters (and beyond) the soundness of our approach involving the `k

norm and our special-purpose optimization algorithm.

Next, we try to determine the number of signatures needed in practice to implement

the oracles fk(·) and ∇fk(·) with sufficient accuracy. In these experiments, we choose a

random C and w and generate instances of the random variable 〈w,Cs〉. Using Equation

6.5, we compute cumulant estimates for various sample sizes and compare these to the
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actual cumulant (which is easily computed given C). Note that by Lemma 33, fk can be

computed from the cumulant with the same multiplicative error.

6.5.1 Performance Using Statistical Oracles

Our algorithm performed exceptionally well using the statistical oracles, even on outlandish

parameter settings that would never be used in practice. We generated instances by first

choosing a random n ×m matrix A having normally distributed entries (with a standard

deviation ranging from 3 to 100), then rounding its entries to integers. We then applied

the sphering operation to obtain C and ran the optimization algorithm, implementing its

oracles using knowledge of C. Each iteration of the algorithm applied the inverse sphering

transformation to the current value of w, rounded it to the nearest integer vector, and

checked for equality with any of the columns of A. We also simulated the effect of empirical

estimation by introducing artificial noise into the oracle’s answers.

We ran the algorithm with various sizes for A, with n as small as 200 to n as large

as 500. We set m to be anywhere from to 2n to as large as 5n (though we did not try

this for the larger values of n). For each parameter setting, we performed the experiments

without noise, and then we introduced noise by perturbing each gradient vector ∇f(w) with

a random vector from a sphere of radius ε · ||∇f(w)|| for some ε > 0.

With k = 6, the idealized algorithm discovered a (different) column of A within 7

iterations (usually fewer) in 99.7% of the runs, with every run successfully finding a column

of A within 11 iterations. This performance held across all reasonable values of parameters,

for dimensions ranging from n = 200 to n = 500, and for values of m ranging from m = 2n

all the way up to m = 200n.

Our trials with noisy estimates at k = 6 were successful as well; at n = 200 and m = 2n

and noise rate ε = .031, over half the trials returned a vector within 10 iterations and over

77% of the trials returned a vector within 19 iterations. Since our results at m = 2n had no

discernible difference from those at m = 4n, Figure 6.1 only presents the results for m = 2n.

We also include a full histogram for n = 200,m = 400 and k = 6, without error and with

error ε = .031 (see Figure 6.1). These results can be contrasted with the algorithm’s

comparatively poor performance for k = 4, which essentially corresponds to the objective
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k = 6 ε = 0 ε = .021 ε = .031

n 20 iterations 11 iter 20 iter 11 iter 40 iter 20 iter 11 iter

200 100% 99.7% 100% 100% 93.2% 77.15% 55.93%

300 100% 99.99% 100% 99.9% 79.0% 59.24% 37.65%

400 100% 99.99% 100% 100% 61.6% 38.49% 21.84%

500 100% 100% 100% 100% 40.4% 23.69% 12.28%

Table 6.1: Each table entry gives the percentage of 10,000 sample runs for which a column

of A was found within the stated number of iterations. The percentages at 40 iterations

and ε = .031 are out of 1000 runs.

k = 4 ε = 0 ε = .021 ε = .031

n 20 iterations 11 iter 20 iter 11 iter 40 iter 20 iter 11 iter

200 9.6% 8.8% 3.59 % 1.79 % .1% 0% 0%

Table 6.2: This table shows the analogous values for k = 4 when n = 200. Percentages are

out of 10,000 samples, except for the one at 40 iterations, which is out of 1000 runs.
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Figure 6.1: n = 200,m = 2n. Each bar at position j on the x-axis represents the percentage

of trials (out of 10,000) that found a column of A after j iterations. Trials that did not find

a column within 20 iterations are in the bin ’F’. The black bars represent trials without

noise and gray bars trials with noise ε = .031.
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1 2 3 4 5 6 7 8 9

20 0.0508 0.0280 0.0242 0.0135 0.0110 0.0079 0.0066 0.0043 0.0037

25 0.1193 0.0739 0.0562 0.0367 0.0260 0.0198 0.0144 0.0112 0.0062

30 0.2808 0.1691 0.1284 0.0681 0.0607 0.0433 0.0234 0.0169 0.0136

35 0.3630 0.2556 0.2551 0.1315 0.0807 0.0675 0.0472 0.0315 0.0236

39 0.5157 0.3384 0.2067 0.1379 0.1070 0.0716 0.0703 0.0489 0.0257

Table 6.3: The entry in the ith column of the row labeled by m gives the averaged magni-

tudes of the relative error for m columns using N = 2i · 106 samples.

function optimized in [Nguyen, 1999]. For the overcomplete basis problem, our (idealized)

algorithm performs substantially better than the one from [Nguyen, 1999], demonstrating

that the use of higher-order cumulants is an essential novelty in our approach. Figure 6.2

shows the results with different error rates for n = 200 and m = 2n.

6.5.2 Estimating the Cumulant

Our experimental evidence indicates that estimating the cumulants to tolerable accuracy

(one which was tolerated in our noisy experiments) requires significantly fewer signatures

than stated in Lemma 37. Specifically, we extrapolate from our results that m7 samples

will achieve good accuracy for k = 6.

To obtain this estimate, we first fix m and N (the number of samples) and choose a

random C and w (or equivalently, a random unit vector v = Ctw). Then we compute

a set of independent estimates {κ̃C,6(w)j}j=1...20 using N random draws of 〈w,Cs〉 for

each estimate. We compute the multiplicative error at sample size N by averaging the

magnitude of the multiplicative errors of each estimate κ̃C,6(w)j . We recorded these results

for m = 20, 25, 30, 35, 39 and N = [1 · 106 . . . 5.12 · 108] in Figure 6.5.2. For all values of m,

we plotted the logarithm of the error against the exponent j in N = 2j · 106 and found that

these values decreased linearly with j, at the same rate regardless of m. Next, we calculated

for each m, the exponent j required to obtain error below e−3.5 < .0301. This was done
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by linear interpolation of the ln ε versus j values. From this data we computed the sample

size, as a function of m, that suffices to obtain error at most .0301. A log/log graph reveals

that a linear function should yield accurate prediction for larger values of m. Using linear

regression, we obtain the relation lnN = 7.09 lnm− 5.8047.
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Chapter 7

Conclusions and Future Work

• Mansour’s conjecture

Mansour’s conjecture remains open for the class of DNF formulas and for a variety of

natural subclasses, such as non-monotone read-k DNF formulas (in which each variable

may appear at most k times in the formula), CDNF formulas (Boolean functions

which can be represented by polynomial-size DNF formulas and CNF formulas), and

Talagrand’s function [Talagrand, 1996; Mossel and O’Donnell, 2003b].

Our approach in Chapter 3 may be contrasted with the Fourier analytic approach (via

the switching lemma of Hastad’s) taken by [Mansour, 1995a], and seems well-suited

to DNF formulas which are “hard” for [Mansour, 1995a]. That is, the DNF formulas

considered in Chapter 3 seem less amenable to simplification by random restrictions

than other DNFs, such as CDNFs where different terms share many variables. Thus,

it is natural to ask if the two approaches can be combined to strengthen [Mansour,

1995b] or obtain Mansour’s conjecture for a broader class of DNF formulas.

• Learning monotone DNF from random examples

The problem of efficiently learning all polynomial-size monotone DNF formulas is still

open. A natural question is if our approach in Chapter 4 can be extended to handle a

larger class of monotone DNF formulas. Since our algorithm is statistical query based

[Blum et al., 1994], a related question is whether any SQ based algorithm could learn

monotone DNF formulas.
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• Hardness of monotone functions

An obvious goal for future work is to establish even sharper quantitative bounds

on the cryptographic hardness of learning monotone functions. Blum, Burch, and

Langford [Blum et al., 1998] obtained their

1
2

+
ω(log n)√

n

information-theoretic lower bound by considering random monotone DNF that are

constructed by independently including each of the
(

n
logn

)
possible terms of length

log n in the target function. Can we match this hardness with a class of polynomial-

size circuits?

As mentioned in Section 5.1, it is natural to consider a pseudorandom variant of the

construction in [Blum et al., 1998] in which a pseudorandom rather than truly random

function is used to decide whether or not to include each of the
(

n
logn

)
candidate terms.

However, we have not been able to show that a function f constructed in this way can

be computed by a poly(n)-size circuit. Intuitively, the problem is that for an input

x with (typically) n/2 bits set to 1, to evaluate f we must check the pseudorandom

function’s value on all of the
( n/2

logn

)
potential “candidate terms” of length log n that x

satisfies. Indeed, the question of obtaining an efficient implementation of these “huge

pseudorandom monotone DNF” has a similar flavor to Open Problem 5.4 of [Goldreich

et al., 2003]. In that question the goal is to construct pseudorandom functions that

support “subcube queries” that give the parity of the function’s values over all inputs

in a specified subcube of {0, 1}n. In our scenario we are interested in functions f that

are pseudorandom only over the
(

n
logn

)
inputs with precisely log n ones (these inputs

correspond to the “candidate terms” of the monotone DNF) and are zero everywhere

else, and we only need to support “monotone subcube queries” (i.e., , given an input

x, we want to know whether f(y) = 1 for any y ≤ x).

• Learning an overcomplete basis

The actual distribution output by the key generation algorithm of NTRUSign is diffi-

cult to analyze; running experiments to generate NTRUSign keys and verifying that



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 114

they satisfy quasi-orthogonality in practice would be one way to confirm that the

distribution we defined over the learning an overcomplete basis problem effectively

models the task of recovering secret keys from NTRU signatures.

An obvious goal would be to give a proof of convergence and correctness of our special

purpose optimization algorithm. While we were able to prove (see Theorem 22) that

the optimization problem over the k-norm will have local maxima very close to the

local maxima of the optimization problem over the ∞-norm (recall from Theorem 21

that these points reveal the secret keys), we do not rule out the existence of other local

maxima that our algorithm might converge to (though we gave strong experimental

evidence that these maxima would never be encountered). Our results in Sections 6.4.2

and 6.4.3 suggest that such a proof for the k-norm with k = log n is within reach.

This would yield a quasi-polynomial time algorithm for the problem of learning an

overcomplete basis.

Finally, it would be interesting to see if a similar attack is possible for GGH-style

public-key encryption schemes (such as NTRU). GGH-style signature schemes and

encryption schemes are both based on a “trapdoor” type property of the closest vector

problem. A natural direction to pursue is to see if a chosen ciphertext attack is possible

based on the HPP algorithm.
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Appendix A

The Entropy-Influence Conjecture

and DNF formulas

The spectral entropy of a Boolean function f is defined as E(f) =
∑

S⊆[n] f̂(S)2 log 1
f̂(S)2

and its total influence (also called its average sensitivity) as I(f) :=
∑

S |S|f̂(S)2. The

entropy-influence conjecture is that E(f) = O(I(f)).

The spectral entropy and the sparsity of a Boolean function are closely related. The

following two facts relate these two quantities. The first was observed by Li-Yang Tan, and

the proof of the second is due to Rocco Servedio.

Fact 6. Let f be any Boolean function. Then f is ε-concentrated on a set of at most 2E(f)/ε

many of its Fourier coefficients.

Proof. Let C = {S ⊆ [n] : f̂(S)2 ≤ 2−E(f)/ε}. Then
∑

S∈C f̂(S)2 ≤ ε, otherwise:

E(f) =
∑
S⊆[n]

f̂(S)2 log
1

f̂(S)2
≥
∑
S∈C

f̂(S)2 log
1

f̂(S)2
> ε log 2−E(f)/ε = E(f).

By Parseval’s inequality, the size of C can be at most 2E(f)/ε. �

Lemma 38. Let f be a Boolean function, and s : Z→R with s(n) ≥ 4 for all n. Suppose

that f is ε-concentrated on s(n)log 1/ε many coefficients, i.e., for every ε > 0, there exists a

set C(ε) of size at most s(n)log 1/ε such that
∑

S/∈C(ε) f̂(S)2 ≤ ε. Then E(f) ≤ O(log s(n)).
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Proof. Set εi = 2−i for ε1, · · · , εlogn, and set Ji = C(εi) \ C(εi−1), taking C(ε0) = ∅. Then

E(f) =
∑
S⊆[n]

f̂(S)2 log f̂(S)−2 ≤
logn∑
i=1

∑
S∈Ji

f̂(S)2 log f̂(S)−2 +O(1),

where the constant term comes from coefficients which contribute at most 1/n to the total

Fourier weight.

We have for any i > 1 that W (Ji) :=
∑

S∈Ji f̂(S)2 ≤ εi−1, because Ji ∩ C(εi−1) = ∅ and

the Fourier weight outside of C(εi−1) is at most εi−1. Furthermore, we have that |Ji| ≤ s(n)i,

so ∑
S∈Ji

f̂(S)2 log f̂(S)−2 ≤W (Ji) log
s(n)i

W (Ji)
≤ εi−1i(log s(n) + 1).

The last inequality holds because x log 1/x is increasing for x ∈ (0, 1/e).

Summing over the Ji, we obtain

logn∑
i=1

εi−1i(log s(n) + 1) ≤ (log s(n) + 1)
logn∑
i=1

iεi−1 ≤ 4(log s(n) + 1),

which completes the proof. �

Let f be any t(n)-term DNF formula. If the entropy-influence conjecture holds, then

there is some c > 0 such that E(f) < cI(f). The total influence of any size-t DNF for-

mula is at most O(log t) [Boppana, 1997]. Thus, as a consequence of the entropy-influence

conjecture, (this observation was noted in http://terrytao.wordpress.com/2007/08/

16/gil-kalai-the-entropyinfluence-conjecture/) we obtain a sparse approximating

polynomial (which is close to the sparsity conjectured by Mansour) by Applying Fact 6 to

get concentration on at most tO(1/ε) many coefficients.

Our results in Chapter 3 show that polynomial size random and read-k (for constant

k) DNF formulas are ε-concentrated on nO(log 1/ε) many coefficients (see Fact 3 in Section

3.2). Lemma 38 tells us that the entropy of any such DNF formula is O(log n).

http://terrytao.wordpress.com/2007/08/16/gil-kalai-the-entropyinfluence-conjecture/
http://terrytao.wordpress.com/2007/08/16/gil-kalai-the-entropyinfluence-conjecture/
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Appendix B

Proofs of Probabilistic Results for

Random Monotone DNF

Proof of Lemma 15. We prove the lemma assuming that that ∅ /∈ CY . This is sufficient

because if ∅ ∈ CY , then C′Y = CY \ ∅ is still contained in Y , and applying the result to C′Y
gives that

∏
U∈C′Y

(#gU ) ≤ c · t
|C′Y |−1k2s

√
n

with probability at least 1− δterms. Since #g∅ ≤ t

and |C′Y | = |CY | − 1, the conclusion of the lemma holds for CY as well.

Fix any ∅ 6= U ∈ CY (note that since U ∈ CY we also have U 6= S, and hence |U | ≤

s− 1 = bac+ 1.). Recall that f is chosen by picking each term Ti to be a uniformly chosen

set of k distinct variables. The probability (over a random choice of f) that T1 contains

all the elements of U and none of the elements of S \ U is
(
n−s
k−|U |

)
/
(
n
k

)
; let us write pU to

denote this quantity. Using the facts that k = Θ(log n) and 1 ≤ |U | < s = O(1), one can

verify that
1
2

(k/n)|U | ≤ pU ≤ (k/n)|U | . (B.1)

Since each of the t terms of f is chosen independently, we have that #gU is binomially

distributed according to B(t, pU ), so t · 1
2( kn)|U | ≤ E[#gU ] = tpU ≤ t( kn)|U |. Now recall that

the Chernoff bound gives that Pr[X ≥ (1 + ζ)E[X]] ≤ e−ζ
2tp/3 where X is an independent

and identically distributed random variable. For X drawn from B(t, p) and taking ζ = 1,

we get

Pr
[
#gU > 2t (k/n)|U |

]
≤ Pr[#gU > 2tpU ] ≤ exp(−tpU/3) ≤ exp(−t(k/n)|U |/6). (B.2)
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Suppose first that |U | ≤ s − 2 = bac. If |U | = 1, then since t ≥ n3/2 we have that

(B.2) is at most exp(−
√
n log n). On the other hand, if |U | > 1 then bac ≥ 2, and since

t/n|U | ≥ t/nbac ≥ 1 we have that (B.2) ≤ exp(−k|U |/6) ≤ n−Ω(logn).

Now suppose that |U | = s − 1. In this case we use the following form of the Hoeffding

bound (see e.g. Exercise 4.1 in [Motwani and Raghavan, 1995]): if ζ > 2e− 1, then Pr[X >

(1 + ζ)E[X]] ≤ 2−(1+ζ)E[X] for X drawn from B(t, p). Let ζ be such that (1 + ζ)t(k/n)|U | =

t1/2a; note that this gives

1 + ζ = t(1/(2a))−1(n/k)|U | = (
√
n/t)(n/k)|U | ≥ (

√
n/t)(n/k)a =

√
n/polylog(n)� 2e,

so we may indeed apply the Hoeffding bound for this choice of ζ. Using (B.1), we obtain

Pr[#gU > t1/2a] ≤ Pr[#gU > (1 + ζ)tpU ] ≤ 2
−t1/2a

2 ≤ 2−
√
n/2.

Taking a union bound over all possible sets U 6= ∅ (at most 2s = O(1) many possibilities),

we have that with probability at least 1− δterms over the draw of f , every such set U ∈ CY
satisfies

• if |U | ≤ s− 2 then #gU ≤ 2t(k/n)|U |; and

• if |U | = s− 1 then #gU ≤ t1/2a.

We henceforth assume the above conditions are satisfied, and now show that this gives the

bound (4.7).

We partition CY according to the size of U : let CAY = {U ∈ CY : |U | = s − 1} and

CBY = CY \ CAY = {U ∈ CY : |U | ≤ s− 2}. Then∏
U∈CY

(#gU ) =
∏

U∈CAY

(#gU )
∏

U∈CBY

(#gU ) ≤ t|CAY |/2a · (2t)|CBY |(k/n)
P
U∈CB

Y
|U |
.

By definition of CY we have that
∑

U∈CY |U | ≥ s. Now if |CAY | = 0 , then we have

∏
U∈CY

(#gU ) ≤ (2t)|CY |(k/n)
P
U∈CY

|U | ≤ (2t)|CY |(k/n)s = 2|CY |
t|CY |−1ks

ns−a
≤ 2|CY |

t|CY |−1ks

n
.

On the other hand, if |CAY | > 0, then∏
U∈CY

(#gU ) ≤ 2|C
B
Y |t|C

A
Y |/2a+|CBY |(k/n)|C

B
Y |.
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Since |CY | − (2a−1
2a )|CAY | = |CAY |/2a+ |CBY |, observing that |CBY | ≤ 2s it suffices to show that

2|C
B
Y |k2s t|CY |

n
2a−1

2
|CAy |+|CBY |

≤ c · t
|CY |−1k2s

√
n

,

which holds when 2a−1
2 |C

A
Y | + |CBY | ≥ a + 1/2. This inequality follows from the fact that

|CY | ≥ 2 (since S /∈ CY and ∪U∈CY U = S), |CAY | ≥ 1, and a ≥ 3
2 . �

Proof of Lemma 16. For a monotone t-term DNF f = T1 ∨ · · · ∨ Tt, let f i denote the

projected function obtained from f by removing the term Ti from f and restricting all of

the variables which were present in term Ti to 1. For ` 6= i we write T i` to denote the term

obtained by setting all variables in Ti to 1 in T`, i.e. T i` is the term in f i corresponding

to T`. Now the probability that Ti is satisfied and no other Tj is satisfied is given by

Pr[Ti] ·Pr[T i` for all ` 6= i |Ti] = Pr[Ti] ·Pr[f i]. Since Pr[Ti] = 1
2k

, it suffices to bound Pr[f i]

from below. As in [Jackson and Servedio, 2006], we show that the following four facts all

hold with probability 1− δusat:

1. Pr[f i] ≥
∏
`: 6̀=i Pr[T i` ].

2.
∏
`:T i`≡T`

Pr[T i` ] > 1/16.

3. |{T i` : ` 6= i ∧ T i` 6≡ T`}| ≤
2tk2

n .

4. No term in f i has fewer than k − log log t variables.

Together, these conditions imply that

Pr[f i] ≥
∏

`:T`≡T i`

Pr[T i` ]
∏

`:T` 6≡T i` ,`6=i

Pr[T i` ] ≥
1
16

(
1− log t

2k

)2tk2/n

≥ 1
32
.

We now prove (1)–(4). To prove (1) note that

Pr[f ] = Pr[T1 ∧ T2 ∧ · · · ∧ Tt] = Pr[T1|T2 ∧ · · · ∧ Tt] Pr[T2|T3 ∧ · · · ∧ Tt] · · ·Pr[Tt−1|Tt] Pr[Tt]

which is at least
∏t
i=1 Pr[Ti] since f is monotone. (Conditioning on terms being unsatisfied

can only increase the number of variables set to 0 and thus can only increase the chances a

particular term is unsatisfied).
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For any i and ` such that T i` ≡ T`, we have Pr[T i` ] = Pr[T`] = 1 − Pr[T`] = 1 − 1
2k

.

Certainly there are at most t such T i` , so (2) follows from the fact that k = blog tc so

(1− 1
2k

)t > 1/16.

For (3), first we prove that with probability at least 1− exp(−tk3n ), any variable appears

in at most 2tk
n many terms. Each variable vj appears in each fixed term T` with probability

k/n. Since the terms are chosen independently, the number of occurrences of vj is binomially

distributed according to B(t, p) with p = k/n. Now recall that the Chernoff bound gives

that Pr[X ≥ (1 + ζ)E[X]] ≤ e−ζ
2tp/3 where X is drawn from B(t, p). Taking ζ = 1, we

get that Pr[X > 2tk
n ] < exp(−tk3n ). If T` 6≡ T i` then T` must contain some variable from

Ti. Assuming every variable appears in at most 2tk/n terms, and term Ti has at most k

variables, there can be at most k · 2tk/n such terms.

Finally, Lemma 3.5 of [Jackson and Servedio, 2006] gives that (4) holds with probability

at least 1− t2(k
2

n )log log t. Thus we have that conditions (1)–(4) all hold with probability at

least 1− δusat. �

Proof of Lemma 17. Fix any sequence ι1 < · · · < ιj of j terms. Let v ≤ jk be the number

of distinct variables that occur in these terms. First, we will bound the probability that

v > w := jk − log k. Consider any particular fixed set of w variables. The probability that

none of the j terms includes any variable outside of the w variables is precisely (
(
w
k

)
/
(
n
k

)
)j .

Thus, the probability that v ≤ w is by the union bound:

Pr[v ≤ w] ≤
(
n

w

)((w
k

)(
n
k

))j ≤ (en
w

)w (w
n

)jk
≤ ejk−log k(jk − log k)log k

nlog k
.

Taking a union bound over all (at most tj) sequences 1 ≤ ι1 < · · · < ιj ≤ t, we have that

with probability 1−δsimult, every sequence of j terms contains at least w distinct variables,

and thus for every sequence we have Pr[Tι1 ∧ · · · ∧ Tιj ] ≤ 2−w = k/2jk. �

Proof of Lemma 18. For any fixed r ∈ {1, . . . , t} and any fixed S such that |S| = s, we

have Pr[all variables in S occur in Tr] = k(k−1)···(k−s+1)
n(n−1)···(n−s+1) ≤

(
k
n

)s
. Since terms are chosen

independently, the probability that the variables in S co-occur in a fixed collection of γ + 1

terms is at most
(
k
n

)s(γ+1)
. By the union bound, the probability that these variables co-

occur in any collection of γ + 1 terms is at most
(

t
γ+1

)
· ( kn)s(γ+1) ≤

(
tks

ns

)γ+1
. Using the
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union bound again, we have that the probability that any set of s variables co-occurs in

more than γ terms is at most
(
n
s

)
·
(
tks

ns

)γ+1
. Recalling that t = na, that s = bac+2, and that

k = blog tc = O(log n), we have that this probability is at most polylog(n) ·na(γ+1)−(a+1)γ =

polylog(n) · na−γ . By our choice of γ this is at most δγ , and the proof is done. �
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