
Journal of Machine Learning Research 8 (2007) 277-290 Submitted 5/06; Revised 8/06; Published 2/07

Separating Models of Learning from
Correlated and Uncorrelated Data

Ariel Elbaz ARIELBAZ@CS.COLUMBIA.EDU

Homin K. Lee HOMIN@CS.COLUMBIA.EDU

Rocco A. Servedio∗ ROCCO@CS.COLUMBIA.EDU

Andrew Wan ATW12@CS.COLUMBIA.EDU

Department of Computer Science
Columbia University
NY, NY 10027, USA

Editors: Peter Auer and Ron Meir

Abstract

We consider a natural framework of learning from correlated data, in which successive examples
used for learning are generated according to a random walk over the space of possible examples.
A recent paper by Bshouty et al. (2003) shows that the class of polynomial-size DNF formulas is
efficiently learnable in this random walk model; this result suggests that the Random Walk model
is more powerful than comparable standard models of learning from independent examples, in
which similarly efficient DNF learning algorithms are not known. We give strong evidence that
the Random Walk model is indeed more powerful than the standard model, by showing that if any
cryptographic one-way function exists (a universally held belief in cryptography), then there is a
class of functions that can be learned efficiently in the Random Walk setting but not in the standard
setting where all examples are independent.

Keywords: random walks, uniform distribution learning, cryptographic hardness, correlated data,
PAC learning

1. Introduction

It is a commonly held belief in machine learning that having access to correlated data—for example,
having random data points that differ only slightly from each other—is advantageous for learning.
Thus it is a natural research goal to rigorously validate this belief from the vantage point of the
abilities and limitations of computationally efficient learning.

We study a natural model of learning from correlated data, by considering a framework in
which the learning algorithm has access to successive examples that are generated by a random
walk. We give strong evidence that learning is indeed easier, at least for some problems, in this
framework of correlated examples than in the standard framework in which no correlations exist
between successive examples.

∗. Supported in part by NSF CAREER award CCF-0347282 and a Sloan Foundation Fellowship.

c©2007 Ariel Elbaz, Homin K. Lee, Rocco A. Servedio and Andrew Wan.



ELBAZ, LEE, SERVEDIO AND WAN

1.1 Background

In the well-known Probably Approximately Correct (PAC) learning model introduced by Valiant
(1984), a learning algorithm is given access to a source EXD(c) of labeled examples each of which
is drawn independently from a fixed probability distribution D over the space of possible instances.
The goal of the learning algorithm is to construct (with high probability) a high-accuracy hypothesis
for the target concept c with respect to D.

Aldous and Vazirani (1990) introduced and studied a variant of the PAC learning model in which
successive examples are generated according to a Markov process, that is, by taking a random walk
on an (exponentially large) graph. Subsequent work by Gamarnik (1999) extended this study to
infinite Markov chains and gave bounds on the sample complexity required for learning in terms of
the VC dimension and certain mixing properties of the underlying Markov chain. Neither Aldous
and Vazirani (1990) nor Gamarnik (1999) considered computational issues for learning algorithms
in the Random Walk framework.

In this paper we consider an elegant model of learning from Random Walk examples that is well
suited for computational analyses. This model was introduced by Bartlett et al. (2002) and subse-
quently studied by Bshouty et al. (2003) and Roch (2006). In this framework (described in detail in
Section 2), successive examples for the learning algorithm are produced sequentially according to
an unbiased random walk on the Boolean hypercube {0,1}n. The PAC goal of constructing a high-
accuracy hypothesis for the target concept with high probability (where accuracy is measured with
respect to the stationary distribution of the random walk, that is, the uniform distribution on {0,1}n)
is unchanged. This is a natural way of augmenting the model of uniform distribution PAC learn-
ing over the Boolean hypercube (which has been extensively studied, see, for example, Blum et al.
1994; Bshouty et al. 1999; Bshouty and Tamon 1996; Jackson 1997; Jackson et al. 2002; Kharitonov
1993; Linial et al. 1993; Verbeurgt 1990 and references therein) with the ability to exploit correlated
data.

Bartlett et al. gave polynomial-time learning algorithms in this model for several concept classes
including Boolean threshold functions in which each weight is either 0 or 1, parities of two mono-
tone conjunctions over x1, . . . ,xn, and Disjunctive Normal Form (DNF) formulas with two terms.
These learning algorithms are proper, meaning that in each case the learning algorithm constructs a
hypothesis representation that belongs to the class being learned. Since proper learning algorithms
were not known for these concept classes in the standard uniform distribution model, this gave the
first evidence that having access to random walk examples rather than uniform independent exam-
ples might bestow a computational advantage.

More recently, Bshouty et al. (2003) gave a polynomial-time algorithm for learning the unre-
stricted class of all polynomial-size DNF formulas over {0,1}n in the Random Walk model. Since
no comparable polynomial-time algorithms are known in the standard uniform distribution model—
and their existence is a well-studied open question for which an affirmative answer would yield a
$1000 prize (see Blum, 2003)—this gives stronger evidence that the Random Walk model is strictly
more powerful than the normal uniform distribution model. Thus, it is natural to now ask whether
the superiority of random walk learning over uniform distribution learning can be established under
some widely accepted hypothesis about efficient computation.

(Note that it is necessary to make some computational hardness assumption in order to separate
these two learning models. It is well known and easy to see that if P=NP, for instance, then the
concept class of all polynomial-size Boolean circuits would be efficiently learnable in both these

278



SEPARATING MODELS OF LEARNING FROM CORRELATED AND UNCORRELATED DATA

models, as well as in far weaker models, by an algorithm that nondeterministically “guesses” a cir-
cuit and then checks consistency with a polynomial-size sample. Thus without some computational
hardness assumption, essentially all considerations about the computational complexity of learning
would become trivial.)

1.2 Our Results

In this work we give a separation, under a generic cryptographic hardness assumption, between the
Random Walk model and the uniform distribution model. Our main result is a proof of the following
theorem:

Theorem 1 If any cryptographic one-way function exists, then there is a concept class over {0,1}n

that is PAC learnable in poly(n) time in the Random Walk model but is not PAC learnable in poly(n)
time in the standard uniform distribution model.

We emphasize that the separation established by Theorem 1 is computational rather than information-
theoretic. It will be evident from our construction that the concept class of Theorem 1 has poly(n)
VC dimension, and thus the class can be learned using poly(n) many examples even in the distribution-
independent PAC learning model; the difficulty is in obtaining a polynomial-time algorithm.

We remind the reader that while the existence of any one-way function is a stronger assumption
than the assumption that P6=NP (since at this point it is conceivable that P6=NP but one-way func-
tions do not exist), it is an almost universally accepted assumption in cryptography and complexity
theory. (In particular, the existence of one-way functions is the weakest of the many assumptions
on which the entire field of public-key cryptography is predicated.) We also remind the reader that
all known representation-independent computational hardness results in learning theory (where any
efficiently evaluatable hypothesis representation is allowed for the learning algorithm, as is the case
in Theorem 1 above) rely on cryptographic hardness assumptions rather than complexity-theoretic
assumptions such as P6=NP.

The rest of the paper is structured as follows: Section 2 gives necessary definitions and back-
ground from cryptography and the basics of our random walk model. Section 3 gives a partial
separation, and in Section 4 we show how the construction from Section 3 can be used to achieve a
total separation and prove Theorem 1.

2. Preliminaries

We denote by [n] the set {1, . . . ,n}. For an n-bit string r ∈ {0,1}n and an index i ∈ [n], the i-th bit
of r is denoted r[i]. We write U to denote the uniform distribution on {0,1}n.

2.1 Learning Models

Recall that a concept class C =∪n∈NCn is a collection of Boolean functions where each f ∈ Cn maps
{0,1}n → {0,1}. A uniform example oracle for f is an oracle EXU( f ) which takes no inputs and,
when invoked, outputs a pair 〈x, f (x)〉 where x is drawn uniformly and independently from {0,1}n

at each invocation.

Definition 2 (PAC learning) A concept class C is uniform distribution PAC-learnable if there is an
algorithm A with the following property: for any n, any target concept f ∈ Cn, and any ε,δ > 0, if A

279



ELBAZ, LEE, SERVEDIO AND WAN

is given access to oracle EXU( f ) then A runs for poly(n, 1
ε ,

1
δ) time steps and with probability 1−δ

outputs a Boolean circuit h such that Prx∈U [h(x) 6= c(x)] ≤ ε.

In the (uniform) Random Walk model studied in Bartlett et al. (2002) and Bshouty et al. (2003), a
random walk oracle is an oracle EXRW ( f ) which, at its first invocation, outputs an example 〈x, f (x)〉
where x is drawn uniformly at random from {0,1}n. Subsequent calls to EXRW ( f ) yield examples
generated according to a uniform random walk on the hypercube {0,1}n. That is, if x is the i-th
example, the i+1-st example is x′, where x′ is chosen by uniformly selecting one of the n bits of x
and flipping it.

Definition 3 (PAC learning in the Random Walk model) A concept class C is said to be PAC-
learnable in the Random Walk model if there is an algorithm A that satisfies Definition 2 above but
with EXRW ( f ) in place of EXU( f ).

As in Bshouty et al. (2003), it is convenient for us to work with a slight variant of the Random
Walk oracle which is of equivalent power; we call this the Updating Random Walk oracle and denote
it by EXURW ( f ). If the last example generated by EXURW ( f ) was x ∈ {0,1}n, the Updating Random
Walk oracle chooses a uniform index i ∈ [n], but instead of flipping the bit x[i] it replaces x[i] with
a uniform random bit from {0,1} (i.e., it flips the bit with probability 1/2 and leaves x unchanged
with probability 1/2) to obtain the new example x′. We say that such a step updates the i-th bit
position.

It is easy to simulate an Updating Random Walk oracle using a Random Walk oracle by, at each
time step, flipping a fair coin and with probability 1/2 returning the previous example and with
probability 1/2 requesting a new example. Similarly, it is easy to simulate a Random Walk oracle
using an Updating Random Walk oracle by invoking the Updating Random Walk oracle until it flips
a bit (the probability that this takes more than k invocations is at most 2−k). Thus any concept class
that is efficiently learnable from one oracle is also efficiently learnable from the other. We introduce
the Updating Random Walk oracle because it is easy to see (and well known) that the updating
random walk on the hypercube mixes rapidly. More precisely, we have the following fact which
will be useful later:

Fact 4 Let 〈x, f (x)〉 be a labeled example that is obtained from EXURW ( f ), and let 〈y, f (y)〉 be the
labeled example that EXURW ( f ) outputs n ln n

δ draws later. Then with probability at least 1−δ, the
two strings x,y are uniformly and independently distributed over {0,1}n.

Proof Since it is clear that x and y are each uniformly distributed, the only thing to check for Fact 4
is independence. This follows since y will be independent of x if and only if all n bit positions are
updated in the n ln n

δ draws between x and y. For each draw, the probability that a particular bit is
not updated is (1− 1

n). Thus after n ln n
δ draws, the probability that any bit of r has not been updated

is at most n(1− 1
n)n ln n

δ ≤ δ. This yields the fact.

Note that Fact 4 implies that any concept class C that is uniform distribution PAC-learnable is
also PAC-learnable in the Random Walk model, since we can obtain independent uniform random
examples in the Random Walk model with essentially just a Θ(n logn) slowdown.

280



SEPARATING MODELS OF LEARNING FROM CORRELATED AND UNCORRELATED DATA

2.2 Background from Cryptography

We write Rn to denote the set of all 22n
Boolean functions from {0,1}n to {0,1}. We refer to a

function f chosen uniformly at random from Rn as a truly random function. We write D f to denote
a probabilistic polynomial-time (p.p.t.) algorithm D with black-box oracle access to the function f .

Informally, a one-way function is a function f : {0,1}n →{0,1}n that is computable by a poly(n)
time algorithm but is hard to invert in the sense that no poly(n)-time algorithm can successfully com-
pute f−1 on a nonnegligible fraction of outputs of f . (See Goldreich 2001 for a detailed definition
and discussion of one-way functions.) In a celebrated result, Håstad et al. (1999) showed that if any
one-way function exists, then pseudorandom function families must exist as well.

Definition 5 A pseudorandom function family (Goldreich et al., 1986) is a collection of functions
{ fs : {0,1}|s| →{0,1}}s∈{0,1}∗ with the following two properties:

1. (efficient evaluation) there is a deterministic algorithm which, given an n-bit seed s and an
n-bit input x, runs in time poly(n) and outputs fs(x);

2. (pseudorandomness) for all polynomials Q, all p.p.t. oracle algorithms D, and all sufficiently
large n, we have that

∣

∣

∣

∣

Pr
f∈Rn

[D f (1n) outputs 1]− Pr
s∈{0,1}n

[D fs(1n) outputs 1]

∣

∣

∣

∣

<
1

Q(n)
.

The argument 1n indicates that the “distinguisher” algorithm D must run in poly(n) time steps
since its input is of length n. Intuitively, condition (2) above states that a pseudorandom function
cannot be distinguished from a truly random function by any polynomial-time algorithm that has
black-box access to the pseudorandom function with an inverse polynomial advantage over random
guessing.

3. A Partial Separation

We will first show the difficulties presented with an obvious separation, and then show a partial
separation that will be the building block of the full separation.

3.1 A First Attempt

It is clear that in the Random Walk model a learning algorithm will get many pairs of examples that
are adjacent vertices of the Hamming cube {0,1}n, whereas this will not be the case for a learner in
the standard uniform distribution model (with high probability, a set of poly(n) many independent
uniform examples from {0,1}n will contain no pair of examples that have Hamming distance less
than n/2−O(

√
n logn)). Thus, in attempting to separate the random walk model from the standard

uniform distribution model, it is natural to try to construct a concept class using pseudorandom
functions fs but altered in such a way that seeing the value of the function on adjacent inputs gives
away information about the seed s.

One natural approach is the following: given a pseudorandom function family { fs : {0,1}k →
{0,1}}s∈{0,1}k , one could define a concept class of functions { f ′s : {0,1}k ×{0,1}logk ×{0,1} →

281



ELBAZ, LEE, SERVEDIO AND WAN

{0,1}}s∈{0,1}k as follows (so n = k + logk +1):

f ′s(x, i,b) =

{

fs(x) if b = 0,

fs(x)⊕ s[i] if b = 1,

where x is a k-bit string, i is a (logk)-bit string encoding an integer between 1 and k, and b is a single
bit. A learning algorithm in the Random Walk model will be able to obtain all bits s[1], . . . ,s[k] of
the seed s (by waiting for pairs of successive examples (x, i,b),(x, i,1− b) in which the final bit
b flips for all k possible values of i), and will thus be able to exactly identify the target concept.
However, even though a standard uniform distribution learner will not obtain any pair of inputs that
differ only in the final bit b, it is not clear how to show that no algorithm in the standard uniform
distribution model can learn the concept class to high accuracy. Such a proof would require one
to show that any polynomial-time uniform distribution learning algorithm could be used to “break”
the pseudorandom function family { fs}, and this seems difficult to do. (Intuitively, this difficulty
arises because the b = 1 case of the definition of f ′s “mixes” bits of the seed with the output of the
pseudorandom function, and because of this it is not clear how to simulate f ′s given black-box access
to fs for an unknown seed s.) Thus, we consider alternate constructions.

3.2 A Partial Separation

In this section we describe a concept class and prove that it has the following two properties: (1)
A randomly chosen concept from the class is indistinguishable from a truly random function to
any polynomial-time algorithm which has an EXU(·) oracle for the concept (and thus no such al-
gorithm can learn to accuracy ε = 1

2 − 1
poly(n) ); (2) However, a Random Walk algorithm with access

to EXRW (·) can learn any concept in the class to accuracy 3
4 . In the next section we will extend this

construction to fully separate the Random Walk model from the standard uniform model and thus
prove Theorem 1.

Our construction uses ideas from Section 3.1; as in the construction proposed there, the con-
cepts in our class will reveal information about the seed of a pseudorandom function to learning
algorithms that can obtain pairs of points with only the last bit flipped. However, each concept in
the class will now be defined by two pseudorandom functions rather than one; this will enable us to
prove that the class is indeed hard to learn in the uniform distribution model (but will also prevent a
Random Walk learning algorithm from learning to accuracy better than 3/4).

Let F be a family of pseudorandom functions { fr : {0,1}k → {0,1}}r∈{0,1}k . We construct a
concept class G = {gr,s : r,s ∈ {0,1}k}, where gr,s takes an n-bit input that we split into four parts
for convenience. As before, the first k bits x give the “actual” input to the function, while the other
parts determine the mode of function that will be applied.

gr,s(x, i,b,y) =











fs(x) if y = 0,b = 0,

fs(x)⊕ r[i] if y = 0,b = 1,

fr(x) if y = 1.

Here b and y are one bit and i is logk bits to indicate which bit of the seed r is exposed. Thus half
of the inputs to gr,s are labeled according to fr, and the other half are labeled according to either fs

or fs ⊕ r[i] depending on the value of b.

282



SEPARATING MODELS OF LEARNING FROM CORRELATED AND UNCORRELATED DATA

The following lemma establishes that G is not efficiently PAC-learnable under the uniform
distribution, by showing that a random function from G is indistinguishable from a truly random
function to any algorithm which only has EXU(·) access to the target concept. (A standard argument
shows that an efficient PAC learning algorithm can be used to obtain an efficient distinguisher simply
by running the learning algorithm and using its hypothesis to predict a fresh random example. Such
an approach must succeed with high probability for any function from the concept class by virtue
of the PAC criterion, but no algorithm that has seen only poly(n) many examples of a truly random
function can predict its outputs on fresh examples with probability nonnegligibly greater than 1

2 .)

Lemma 6 Fix any p.p.t. algorithm A. Let gr,s : {0,1}n → {0,1} be a function from G chosen by
selecting r and s uniformly at random from {0,1}k, where k satisfies n = k + logk + 2. Let f be a
truly random function. Then for any ε = Ω( 1

poly(n)), algorithm A cannot distinguish between having

oracle access to EXU(gr,s) versus oracle access to EXU( f ) with success probability greater than
1
2 + ε.

Proof The proof is by a hybrid argument. We will construct two intermediate functions, hr and
h′r. We will show that EXU(gr,s) is indistinguishable from EXU(hr), EXU(hr) from EXU(h′r), and
EXU(h′r) from EXU( f ). It will then follow that EXU(gr,s) is indistinguishable from EXU( f ).

Consider the function

hr(x, i,b,y) =











f (x) if y = 0,b = 0,

f (x)⊕ r[i] if y = 0,b = 1,

fr(x) if y = 1.

(1)

Here we have simply replaced fs with a truly random function. We claim that no p.p.t. algorithm
can distinguish oracle access to EXU(gr,s) from oracle access to EXU(hr); for if such a distinguisher
D existed, we could use it to obtain an algorithm D′ to distinguish a randomly chosen fs ∈ F from a
truly random function in the following way. D′ picks r at random from {0,1}k and runs D, answering
D’s queries to its oracle by choosing i,b and y at random, querying its own oracle to receive a bit
q, and outputting q when both y and b are 0, q⊕r[i] when y = 0 and b = 1, and fr(x) when y = 1.
It is easy to see that if D′’s oracle is for a truly random function f ∈ R then this process perfectly
simulates access to EXU(hr), and if D′’s oracle is for a randomly chosen fs ∈ F then this process
perfectly simulates access to EXU(gr,s) for r,s chosen uniformly at random.

We now consider the intermediate function

h′r(x, i,b,y) =

{

f (x) if y = 0,

fr(x) if y = 1,

and argue that no algorithm that makes only poly(n) many oracle calls can distinguish oracle access
to EXU(hr) from access to EXU(h′r) with non-negligible success probability. When y = 1 or both
y = 0 and b = 0, both hr and h′r will have the same output. Otherwise, if y = 0 and b = 1 we have
that hr(x, i,b,y) = f (x)⊕ ri whereas h′r(x, i,b,y) = f (x). Now, it is easy to see that an algorithm
with black-box query access to hr can easily distinguish hr from h′r (simply because flipping the
penultimate bit b will always cause the value of hr to flip but will only cause the value of h′r to
flip half of the time). But for an algorithm that only has oracle access to EXU(·), conditioned on
never receiving the same string x twice (a condition that fails to hold only with inverse exponential

283



ELBAZ, LEE, SERVEDIO AND WAN

probability for any algorithm that makes poly(n) many oracle calls), it is easy to see that whether
the oracle is for hr or h′r, each output value that the algorithm sees on inputs with y = 0 and b = 1
will be a fresh independent uniform random bit. (This is simply because a random function f can
be viewed as tossing a coin to determine its output on each new input value, so no matter what r[i]
is, XORing it with f (x) yields a fresh independent uniform random bit.)

Finally, it follows from the definition of pseudorandomness that no p.p.t. algorithm can dis-
tinguish oracle access to EXU(h′r) from access to EXU( f ). We have thus shown that EXU(gr,s) is
indistinguishable from EXU(hr), EXU(hr) from EXU(h′r), and EXU(h′r) from EXU( f ). It follows
that EXU(gr,s) is indistinguishable from EXU( f ), and the proof is complete.

We now show that gr,s is learnable to accuracy 3
4 in the Random Walk model. The basic idea is

that each time bit b is flipped on an example (x, i,b,y) with y = 0, the value of r[i] is revealed, and
this happens for all i within poly(n) many steps.

Lemma 7 There is an algorithm A with the following property: for any δ > 0 and any concept gr,s ∈
G , if A is given access to a Random Walk oracle EXRW (gr,s) then A runs in time poly(n, log(1/δ))
and with probability at least 1−δ, algorithm A outputs an efficiently computable hypothesis h such
that PrU [h(x) 6= gr,s(x)] ≤ 1

4 .

Proof As described in Section 2, for convenience in this proof we will assume that we have an
Updating Random Walk oracle EXURW (gr,s).

We give an algorithm that, with probability 1− δ, learns all the bits of r. Once the learner has
obtained r she outputs the following (randomized) hypothesis h:

h(x, i,b,y) =

{

$ if y = 0,

fr(x) if y = 1,

where $ denotes a random coin toss at each invocation. Note that h incurs zero error relative to gr,s

on inputs that have y = 1, and has error rate exactly 1
2 on inputs that have y = 0. Thus the overall

error rate of h is exactly 1
4 .

We now show that with probability 1−δ (over the random examples received from EXURW (gr,s))
the learner can obtain all of r after receiving T = O(n2k ·log2(n/δ)) many examples from EXURW (gr,s).
The learner does this by looking at pairs of successive examples; we show (Fact 10 below) that after
seeing t = O(nk · log(k/δ)) pairs, each of which is independent from all other pairs, we obtain all
of r with probability at least 1− δ

2 . To get t independent pairs of successive examples, we look at
blocks of t ′ = O(n log(tn/δ)) many consecutive examples, and use only the first two examples from
each such block. By Fact 4 we have that for a given pair of consecutive blocks, with probability
at least 1− δ

2t the first example from the second block is random even given the pair of examples
from the first block. A union bound over the t blocks gives total failure probability at most δ

2 for
independence, and thus an overall failure probability of at most δ.

We have the following simple facts:

Fact 8 If the learner receives two consecutive examples w = (x, i,0,0),w′ = (x, i,1,0) and the cor-
responding labels gr,s(w),gr,s(w′), then the learner can obtain the bit r[i].

284



SEPARATING MODELS OF LEARNING FROM CORRELATED AND UNCORRELATED DATA

Fact 9 For any j ∈ [k], given a pair of consecutive examples from EXURW (gr,s), a learning algorithm
can obtain the value of r[ j] from this pair with probability at least 1

4kn .

Proof By Fact 8, if the first example is w = (x, i,b,y) with i = j, y = 0 and the following example
differs in the value of b, then the learner obtains r[ j]. The first example (like every example from
EXURW (gr,s)) is uniformly distributed and thus has i = j, y = 0 with probability 1

2k . The probability
that the next example from EXURW (gr,s) flips the value of b is 1

2n .

Fact 10 After receiving t = 4kn · log(k/δ′) independent pairs of consecutive examples as described
above, the learner can obtain all k bits of r with probability at least 1−δ′.

Proof For any j ∈ [k], the probability that r[ j] is not obtained from a given pair of consecutive
examples is at most (1− 1

4kn). Thus after seeing t independent pairs of consecutive examples, the
probability that any bit of r is not obtained is at most k(1− 1

4kn)t . This yields the fact.

Thus the total number of calls to EXURW (gr,s) that are required is:

T = t · t ′ = O(nk log(k/δ)) ·O(n log(tn/δ)) = O(n2k log2(n/δ)).

Since k = O(n), Lemma 7 is proved.

4. A Full Separation

We would like to have a concept class for which a Random Walk learner can output an ε-accurate
hypothesis for any ε > 0. The drawback of our construction in Section 3.2 is that a Random Walk
learning algorithm can only achieve a particular fixed error rate ε = 1

4 . Intuitively, a Random Walk
learner cannot achieve accuracy better than 3

4 because on half of the inputs the concept’s value is
essentially determined by a pseudorandom function whose seed the Random Walk learner cannot
discover. It is not difficult to see that for any given ε = 1

poly(n) , by altering the parameters of the
construction we could obtain a concept class that a Random Walk algorithm can learn to accuracy
1−ε (and which would still be unlearnable for a standard uniform distribution algorithm). However,
this would give us a different concept class for each ε, whereas what we require is a single concept
class that can be learned to accuracy ε for each ε > 0.

In this section we present a new concept class G ′ and show that it achieves this goal. The idea
is to string together many copies of our function from Section 3.2 in a particular way. Instead of
depending on two seeds r,s, a concept in G ′ is defined using k seeds r1, . . . ,rk and k−1 subfunctions
gr1,r2 ,gr2,r3 , . . . ,grk−1,rk . These subfunctions are combined in a way that lets the learner learn more
and more of the seeds r1,r2, . . . , and thus learn to higher and higher accuracy, as she receives more
and more examples.

285



ELBAZ, LEE, SERVEDIO AND WAN

4.1 The Concept Class G ′

We now describe G ′ in detail. Each concept in G ′ is defined by k seeds r1, . . . ,rk, each of length k.
The concept g′r1,...,rk

is defined by

g′r1,...,rk
(x, i,b,y,z) =

{

grα(z),rα(z)+1(x, i,b,y) if α(z) ∈ {1, . . . ,k−1},
frk(x) if α(z) = k.

As in the previous section x is a k-bit string, i is a logk-bit string, and b and y are single bits. The
new input z is a (k−1)-bit string, and the value α(z) ∈ [k] is defined as the index of the leftmost bit
in z that is 1 (for example if z = 0010010111 then α(z) = 3); if z = 0k−1 then α(z) is defined to be
k. By this design, the subfunction gr j,r j+1 will be used on a 1/2 j fraction of the inputs to g′. Note
that g′ maps {0,1}n to {0,1} where n = 2k + logk +1.

4.2 Uniform Distribution Algorithms Cannot Learn G ′

We first show that G ′ is not efficiently PAC-learnable under the uniform distribution. This is implied
by the following lemma:

Lemma 11 Fix any p.p.t. algorithm A. Let g′
r1,...,rk

: {0,1}n → {0,1} be a function from G ′ chosen
by selecting r1, . . . ,rk uniformly at random from {0,1}k, where k satisfies n = 2k + logk + 1. Let f
be a truly random function. Then for any ε = Ω( 1

poly(n)), algorithm A cannot distinguish between

having access to EXU(g′r1,...,rk
) versus access to EXU( f ) with success probability greater than 1

2 +ε.

Proof Again we use a hybrid argument. We define the concept classes H (`) = {hr1,...,r`; f : r1, . . . ,r` ∈
{0,1}k, f ∈ Rk} for 2 ≤ ` ≤ k. Each function hr1,...,r`; f takes the same n-bit input (x, i,b,y,z) as
g′r1,...,rk

. The function hr1,...,r`; f is defined as follows:

hr1,...,r`; f (x, i,b,y,z) =

{

grα(z),rα(z)+1(x, i,b,y) if α(z) < `,

f (x) otherwise.

Here as before, the value α(z) ∈ [k] denotes the index of the leftmost bit of z that is one (and we
have α(z) = k if z = 0k−1).

We will consider functions that are chosen uniformly at random from H (`), that is, r1, . . . ,r`

are chosen randomly from {0,1}k and f is a truly random function from Rk. Using Lemma 6, it
is easy to see that for a distinguisher that is given only oracle access to EXU(·), a random function
from H (2) is indistinguishable from a truly random function from Rn. We will now show that,
for 2 ≤ ` < k, if a random function from H (`) is indistinguishable from a truly random function
then the same is true for H (` + 1). This will then imply that a random function from H (k) is
indistinguishable from a truly random function.

Let hr1,...,r`+1; f be taken randomly from H (` + 1) and f be a truly random function from Rn.
Suppose we had a distinguisher D that distinguishes between a random function from H (`+1) and
a truly random function from Rn with success probability 1

2 + ε, where ε = Ω( 1
poly(n)). Then we

can use D to obtain an algorithm D′ for distinguishing a randomly chosen fs ∈ F from a randomly
chosen function f ∈ Rk in the following way. D′ first picks strings r1, . . . ,r` at random from {0,1}k.
D′ then runs D, simulating its oracle in the following way. At each invocation, D′ draws a random
(x, i,b,y,z) and behaves as follows:

286



SEPARATING MODELS OF LEARNING FROM CORRELATED AND UNCORRELATED DATA

• If α(z) < `, then D′ outputs 〈(x, i,b,y,z),grα(z),rα(z)+1(x, i,b,y)〉.

• If α(z)= `, then D′ calls its oracle to obtain 〈x′,β〉. If y = b = 0 then D′ outputs 〈(x′, i,b,y,z),β〉.
If y = 0 but b = 1 then D′ outputs 〈(x′, i,b,y,z),β ⊕ r`[i]〉. If y = 1 then D′ outputs
〈(x′, i,b,y,z), fr`(x)〉.

• If α(z) > `, D′ outputs the labeled example 〈(x, i,b,y,z),r(x)〉 where r(x) is a fresh random
bit for each x. (The pairs (x,r(x)) are stored, and if any k-bit string x is drawn twice—which
is exponentially unlikely in a sequence of poly(n) many draws—D′ uses the same bit r(x) as
before.)

It is straightforward to check that if D′’s oracle is EXU( fs) for a random fs ∈ F , then D′ simulates
an oracle EXU(hr1,...,r`+1; f ) for D, where hr1,...,r`+1; f is drawn uniformly from H (`+1). On the other
hand, we claim that if D′’s oracle is EXU( f ) for a random f ∈ Rk, then D′ simulates an oracle
that is indistinguishable from EXU(hr1,...,r`; f ) for D, where hr1,...,r`; f is drawn uniformly from H (`).
Clearly the oracle D′ simulates is identical to EXU(hr1,...,r`; f ) for α(z) 6= `. For α(z) = `, D′ simulates
the function hr` as in Equation 1 in the proof of Lemma 6, which is indistinguishable from a truly
random function as proved in the lemma.

Thus the success probability of the distinguisher D′ is the same as the probability that D suc-
ceeds in distinguishing H (` + 1) from H (`). Recall that H (`) is indistinguishable from a truly
random function, and that D succeeds in distinguishing H (`+1) from a truly random function with
probability at least 1

2 +ε by assumption. This implies that D′ succeeds in distinguishing a randomly
chosen fs ∈ F from a randomly chosen function f ∈ Rk with probability at least 1

2 + ε− 1
ω(poly(n)) ,

but this contradicts the pseudorandomness of F .
Finally, we claim that for any p.p.t. algorithm, having oracle access to a random function from

H (k) is indistinguishable from having oracle access to a random function from G ′. To see this, note
that the functions hr1,...,r`; f and g′r1,...,r`

differ only on inputs (x, i,b,y,z) that have α(z) = k, that is,
z = 0k−1 (on such inputs the function gr1,...,r` will output frk(x) whereas hr1,...,r`; f will output f (x)).
But such inputs are only a 1

2Ω(n) fraction of all possible inputs, so with overwhelmingly high proba-
bility a p.p.t. algorithm will never receive such an example.

4.3 Random Walk Algorithms Can Learn G ′

The following lemma completes the proof of our main result, Theorem 1.

Lemma 12 There is an algorithm B with the following property: for any ε,δ > 0, and any con-
cept gr1,...,rk ∈ G ′, if B is given access to a Random Walk oracle EXRW (gr1,...,rk), then B runs in
time poly(n, log(1/δ),1/ε) and can with probability at least 1− δ output a hypothesis h such that
PrU [h(x) 6= gr1,...,rk(x)] ≤ ε.

Proof The proof is similar to that of Lemma 7. Again, for convenience we will assume that we
have an Updating Random Walk oracle EXURW (gr1,...,rk). Recall from Lemma 7 that there is an
algorithm A that can obtain the string r j with probability at least 1−δ′ given t ′ = O(nk · log(n/δ′))
independent pairs of successive random walk examples

(

〈w,gr j,r j+1(w)〉,〈w′,gr j,r j+1(w
′)〉

)

.

287



ELBAZ, LEE, SERVEDIO AND WAN

r1 r2

gr1,r2

r2 r3

gr2,r3

r3 r4

gr3,r4

r1 r2

gr1,r2

r2 r3

gr2,r3

r3 r4

gr3,r4

r1 r2

gr1,r2

r2 r3

gr2,r3

r3 r4

gr3,r4

Figure 1: Stages 1, 2 and 3 of Algorithm B. Each row represents the output values of g′
r1,...,rk

. After
stage j the algorithm “knows” r1, . . . ,r j and can achieve perfect accuracy on the shaded
region.

Algorithm B works in a sequence of v stages. In stage j, the algorithm simply tries to obtain t ′

independent example pairs for gr j,r j+1 and then uses Algorithm A. Assuming the algorithm succeeds
in each stage, after stage v algorithm B has obtained r1, . . . ,rv. It follows directly from the definition
of G ′ that given r1, . . . ,rv, Algorithm B can construct a hypothesis that has error at most 3

2v+2 (see
Figure 1) so we may take v = log 1

ε +1 to obtain error at most ε. (Note that this implicitly assumes
that log 1

ε +1 is at most k; we deal with the case log 1
ε +1 > k at the end of the proof.)

If the learner fails to obtain r1, . . . ,rv, then either:

1. Independence was not achieved between every pair of examples;

2. Algorithm B fails to acquire t ′ pairs of examples for gr j,r j+1 in some stage j; or

3. Algorithm B acquires t ′ pairs of examples for gr j,r j+1 but Algorithm A fails to obtain r j in
some stage j.

We choose the total number of examples so that each of these probabilities is bounded by δ/3
to achieve an overall failure probability of at most δ.

As will be clear from the analysis of cases (2) and (3) below, in total Algorithm B will use
4 · 2v+1t ′ pairs of examples in stages 1 through v, where t ′ will be bounded later. Each pair of
examples is obtained by using the first two examples from a block of s = O(n log(v · 2v+1t ′n/δ))

288



SEPARATING MODELS OF LEARNING FROM CORRELATED AND UNCORRELATED DATA

many consecutive examples from the Updating Random Walk oracle. With this choice of s, the
same argument as in the proof of Lemma 7 shows that the total failure probability for independence
is at most δ

3 .

We bound (2) assuming full independence between all pairs of examples. In stage j, Algorithm
B uses 4 · 2 jt ′ pairs of examples. Observe that each pair of examples has both examples from
gr j,r j+1 with probability at least 2−( j+1). By a Chernoff bound, the probability that less than t ′ of the

example pairs in stage j are from gr j,r j+1 is at most e−
t′
8 . Thus the overall probability of failure from

condition (2) is at most ve−
t′
8 which is at most δ/3 for t ′ ≥ ln(3v/δ).

We bound (3) assuming full independence between all pairs of examples as well. In stage j, we
know by Fact 10 that after seeing t ′ = O(nk log(3vk/δ)) pairs of examples for gr j,r j+1 , the probability
of failing to obtain r j is at most δ/3v. Hence the overall failure probability from condition (3) is at
most δ

3 .

We thus may take t ′ = O(nk log(3vk/δ)) and achieve an overall failure probability of δ for
obtaining r1, . . . ,rv. It follows that the overall number of examples required from the Updating
Random Walk oracle is poly(2v,n, log 1

δ) = poly(n, 1
ε , log 1

δ), which is what we required.

Finally, we observe that if log 1
ε + 1 > k, since k = n

2 −O(logn) a poly( 1
ε )-time algorithm may

run for, say, 22n time steps and thus build an explicit truth table for the function. Such a table can be
used to exactly identify each seed r1, . . . ,rk and output an exact representation of the target concept.

Acknowledgments

We warmly thank Tal Malkin for helpful discussions and the anonymous referees for useful sugges-
tions that improved the presentation and readability of the paper.

References

D. Aldous and U. Vazirani. A Markovian extension of Valiant’s learning model. In Proceedings of
the Thirty-First Symposium on Foundations of Computer Science, pages 392–396, 1990.

P. Bartlett, P. Fischer, and K.U. Höffgen. Exploiting random walks for learning. Information and
Computation, 176(2):121–135, 2002.

A. Blum. Learning a function of r relevant variables (open problem). In Proc. 16th Annual COLT,
pages 731–733, 2003.

A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich. Weakly learning DNF and
characterizing statistical query learning using Fourier analysis. In Proceedings of the Twenty-
Sixth Annual Symposium on Theory of Computing, pages 253–262, 1994.

N. Bshouty and C. Tamon. On the Fourier spectrum of monotone functions. Journal of the ACM,
43(4):747–770, 1996.

289



ELBAZ, LEE, SERVEDIO AND WAN

N. Bshouty, J. Jackson, and C. Tamon. More efficient PAC learning of DNF with membership
queries under the uniform distribution. In Proceedings of the Twelfth Annual Conference on
Computational Learning Theory, pages 286–295, 1999.

N. Bshouty, E. Mossel, R. O’Donnell, and R. Servedio. Learning DNF from Random Walks. In
Proceedings of the 44th IEEE Symposium on Foundations on Computer Science, pages 189–198,
2003.

D. Gamarnik. Extension of the PAC framework to finite and countable Markov chains. In Pro-
ceedings of the 12th Annual Conference on Computational Learning Theory, pages 308–317,
1999.

O. Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge University Press,
New York, 2001.

O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of the
Association for Computing Machinery, 33(4):792–807, 1986.

J. Håstad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator from any one-way
function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

J. Jackson. An efficient membership-query algorithm for learning DNF with respect to the uniform
distribution. Journal of Computer and System Sciences, 55:414–440, 1997.

J. Jackson, A. Klivans, and R. Servedio. Learnability beyond AC0. In Proceedings of the 34th ACM
Symposium on Theory of Computing, pages 776–784, 2002.

M. Kharitonov. Cryptographic hardness of distribution-specific learning. In Proceedings of the
Twenty-Fifth Annual Symposium on Theory of Computing, pages 372–381, 1993.

N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform and learnability.
Journal of the ACM, 40(3):607–620, 1993.

S. Roch. On learning thresholds of parities and unions of rectangles in random walk models. Ran-
dom Structures and Algorithms, 2006.

L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

K. Verbeurgt. Learning DNF under the uniform distribution in quasi-polynomial time. In Proceed-
ings of the Third Annual Workshop on Computational Learning Theory, pages 314–326, 1990.

290


