Optimal Cryptographic Hardness of Learning Monotone Functions®

Dana Dachman-Soled Homin K. Lee Tal Malkin f
Columbia University Columbia University Columbia University
Rocco A. Servedio ¥ Andrew Wan Hoeteck Wee §

Columbia University Columbia University Queens College, CUNY
October 21, 2009

Abstract

Over the years a range of positive algorithmic results have been obtained for learning various
classes of monotone Boolean functions from uniformly distributed random examples. To date,
the only negative result for learning monotone functions in this model is an information-theoretic
lower bound showing that certain superpolynomial-size monotone circuits cannot be learned to
accuracy 1/2 + w(logn)/y/n (Blum et al., FOCS ’98). This is in contrast with the situation
for non-monotone functions, where a wide range of cryptographic hardness results establish
that various “simple” classes of polynomial-size circuits are not learnable by polynomial-time
algorithms.

In this paper we establish cryptographic hardness results for learning various “simple” classes
of monotone circuits, thus giving a computational analogue of the information-theoretic hardness
results of Blum et al. mentioned above. Lower bounds of the type we establish have previously
only been known for non-monotone functions. Some of our results show cryptographic hardness
of learning polynomial-size monotone circuits to accuracy only slightly greater than 1/2+1/+/n;
this accuracy bound is close to optimal by known positive results (Blum et al., FOCS ’98). Other
results show that under a plausible cryptographic hardness assumption, a class of constant-
depth, sub-polynomial-size circuits computing monotone functions is hard to learn; this result
is close to optimal in terms of the circuit size parameter by known positive results as well
(Servedio, Information and Computation ’04). Our main tool is a complexity-theoretic approach
to hardness amplification via noise sensitivity of monotone functions that was pioneered by
O’Donnell (JCSS '04).

1 Introduction

More than two decades ago Valiant introduced the Probably Approximately Correct (PAC) model
of learning Boolean functions from random examples [Val84]. Since that time a great deal of
research effort has been expended on trying to understand the inherent abilities and limitations of
computationally efficient learning algorithms. This paper addresses a discrepancy between known

*Supported by NSF award CNS-0716245

fSupported by NSF CAREER award CCF-03-047839 and NSF award SBE-0245014

fSupported by DARPA grant HR0011-07-1-0012, NSF CAREER award CCF-0347282, NSF award CCF-0523664,
and a Sloan Foundation Fellowship.

§This research was conducted while at Columbia University.

positive and negative results for uniform distribution learning by establishing strong computational
hardness results for learning various classes of monotone functions.

1.1 Background and Motivation

In the uniform distribution PAC learning model, a learning algorithm is given access to a source of
independent random examples (z, f(x)) where each = is drawn uniformly from the n-dimensional
Boolean cube and f is the unknown Boolean function to be learned. The goal of the learner is to
construct a high-accuracy hypothesis function h, i.e., one which satisfies Pr[f(z) # h(x)] < € where
the probability is with respect to the uniform distribution and € is an error parameter given to the
learning algorithm. Algorithms and hardness results in this framework have interesting connections
with topics such as discrete Fourier analysis [Man94], circuit complexity [LMN93], noise sensitivity
and influence of variables in Boolean functions [KKL88, BKS99, KOS04, OS07], coding theory
[FGKPO06], privacy [BLR08, KLNT08|, and cryptography [BFKL93, Kha95]. For these reasons,
and because the model is natural and elegant in its own right, the uniform distribution learning
model has been intensively studied for almost two decades.

Monotonicity makes learning easier. For many classes of functions, uniform distribution
learning algorithms have been devised which substantially improve on a naive exponential-time
approach to learning via brute-force search. However, despite intensive efforts, researchers have not
yet obtained poly(n)-time learning algorithms in this model for various simple classes of functions.
Interestingly, in many of these cases restricting the class of functions to the corresponding class of
monotone functions has led to more efficient — sometimes poly(n)-time — algorithms. We list some
examples:

1. A simple algorithm learns monotone O(logn)-juntas' to perfect accuracy in poly(n) time,
and a more complex algorithm [BT96] learns monotone O(log?(n))-juntas to any constant
accuracy in poly(n) time. In contrast, the fastest known algorithm for learning arbitrary
k-juntas runs in time n "% [MOS04].

2. The fastest known uniform distribution learning algorithm for the general class of s-term
DNF, due to Verbeurgt [Ver90], runs in time n@985) o learn to any constant accuracy. In
contrast, for s-term monotone DNF [Ser04] gives an algorithm which runs in s©(°8%) time.
Thus the class of 20(V1°87)_term monotone DNF can be learned to any constant accuracy in
poly(n) time, but no such result is known for 20(VIogn)_term general DNF.

3. The fastest known algorithm for learning poly(n)-size general decision trees to constant ac-
curacy takes n@(°8™) time (this follows from [Ver90]), but poly(n)-size decision trees that
compute monotone functions can be learned to any constant accuracy in poly(n) time [OS07].

4. No poly(n)-time algorithm can learn the general class of all Boolean functions on {0,1}"

to accuracy better than % + p012yn("), but a simple polynomial-time algorithm can learn the
class of all monotone Boolean functions to accuracy % + % [BBL98]. We note also that the

result of [BT96] mentioned above follows from a 20(v7)_time algorithm for learning arbitrary
monotone functions on n variables to constant accuracy (it is easy to see that no comparable
algorithm can exist for learning arbitrary Boolean functions to constant accuracy).

'A k-junta f(z1,...,2,) is a Boolean function that only depends on k of the n input variables.

Cryptography and hardness of learning. Essentially all known representation-independent
hardness of learning results (i.e., results which apply to learning algorithms that do not have any
restrictions on the syntactic form of the hypotheses they output) rely on some cryptographic as-
sumption, or an assumption that easily implies a cryptographic primitive. For example, under
the assumption that certain subset sum problems are hard on average, Kharitonov [Kha95] showed
that the class AC! of logarithmic-depth, polynomial-size AND/OR/NOT circuits is hard to learn
under the uniform distribution. Subsequently Kharitonov showed [Kha93] that if factoring Blum
integers is 2" -hard for some fixed € > 0, then even the class AC of constant-depth, polynomial-size
AND/OR/NOT circuits similarly cannot be learned in polynomial time under the uniform distribu-
tion. In later work, Naor and Reingold [NRO4] gave constructions of pseudorandom functions with
very low circuit complexity; their results imply that if factoring Blum integers is super-polynomially
hard, then even depth-5 TC? circuits (composed of MAJ and NOT gates) cannot be learned in poly-
nomial time under the uniform distribution. We note that all of these hardness results apply even
to algorithms which may make black-box “membership queries” to obtain the value f(z) for inputs
x of their choosing.

Monotonicity versus cryptography? Given that cryptography precludes efficient learning while
monotonicity seems to make efficient learning easier, it is natural to investigate how these phenom-
ena interact. One could argue that prior to the current work there was something of a mismatch
between known positive and negative results for uniform-distribution learning: as described above
a fairly broad range of polynomial-time learning results had been obtained for various classes of
monotone functions, but there were no corresponding computational hardness results for monotone
functions. Can all monotone Boolean functions computed by polynomial-size circuits be learned to
99% accuracy in polynomial time from uniform random examples? As far as we are aware, prior to
our work answers were not known even to such seemingly basic questions about learning monotone
functions as this one. This gap in understanding motivated the research presented in this paper
(which, as we describe below, lets us answer “no” to the above question in a strong sense).

1.2 Our results and techniques: cryptography trumps monotonicity

We present several different constructions of “simple” (polynomial-time computable) monotone
Boolean functions and prove that these functions are hard to learn under the uniform distribution,
even if membership queries are allowed. We now describe our main results, followed by a high-level
description of how we obtain them.

In [BBL9S8| Blum et al. showed that arbitrary monotone functions cannot be learned to accuracy
better than % + O(i;%n)
information-theoretic bound which is proved using randomly generated monotone DNF formulas
of size (roughly) n'°8™ which are not polynomial-time computable. A natural goal is to obtain
computational lower bounds for learning polynomial-time-computable monotone functions which
match, or nearly match, this level of hardness (which is close to optimal by the (% + %)—aceuracy
algorithm of Blum et al. described above). We prove near-optimal hardness for learning polynomial-
size monotone circuits:

by any algorithm which makes poly(n) many membership queries. This is an

Theorem 1 (informal). If one-way functions exist, then there is a class of poly(n)-size monotone
circuits that cannot be learned to accuracy % + # for any fized € > 0.

Our approach yields even stronger lower bounds if we make stronger assumptions:

Hardness assumption | Complexity of f Accuracy bound| Ref.

none random n!°¢"-term mono. s+ % [BBLYS]
DNF

OWF (poly) poly-size monotone circuits % + # Thm. 1

OWF (2™%) poly-size monotone circuits s+ % Thm. 3

factoring BI (poly) monotone NC!-circuits % + # Thm. 4

factoring BI (2"") depth-d, size 2(1°8 n) O /(D % +o(1) Thm. 5
AND/OR/NOT circuits

Figure 1: Summary of known hardness results for learning monotone Boolean functions. The
meaning of each row is as follows: under the stated hardness assumption, there is a class of monotone
functions computed by circuits of the stated complexity which no poly(n)-time membership query
algorithm can learn to the stated accuracy. In the first column, OWEF and BI denote one-way
functions and Blum Integers respectively, and “poly” and “2""” means that the problems are
intractable for poly(n)- and 2""-time algorithms respectively (for some fixed o > 0). Recall that the

poly(n)-time algorithm of [BBL9S8] for learning monotone functions implies that the best possible
o)
ni/ze

accuracy bound for monotone functions is % +

e Assuming the existence of subexponential one-way functions, we improve the bound on the
accuracy to 1/2 + polylog(n)/n'/2.

e Assuming the hardness of factoring Blum integers, our hard-to-learn functions may be com-
puted in monotone NC!.

e Assuming that Blum integers are 2" -hard to factor on average (the same hardness assumption
used in Kharitonov’s work [Kha93]), we obtain a lower bound for learning constant-depth
circuits of sub-polynomial size that almost matches the positive result in [Ser04]. More
precisely, we show that for any (sufficiently large) constant d, the class of monotone functions
computed by depth-d AND/OR/NOT circuits of size 9(logm) /D not be learned to
accuracy 51% under the uniform distribution in poly(n) time. In contrast, the positive result
of [Ser04] shows that monotone functions computed by depth-d AND/OR/NOT circuits of size

20((ogm) D) can be learned to any constant accuracy in poly(n) time.

These results are summarized in Figure 1.

Proof techniques. A natural first approach is to try to “pseudorandomize” [BBL98]’s construction
of random n'°8™-term monotone DNFs. We were not able to do this directly; indeed, as we discuss in
Section 5, pseudorandomizing the [BBLI8| construction seems closely related to an open problem of
Goldreich et al. from [GGNO3]. However, it turns out that a closely related approach does yield some
results along the desired lines; in Section 4 we present and analyze a simple variant of the [BBL9S]
information-theoretic construction and then show how to “pseudorandomize” the variant. Since
our variant gives a weaker quantitative bound on the information-theoretic hardness of learning
than [BBL98], this gives a construction of polynomial-time-computable monotone functions which,
assuming the existence of one-way functions, cannot be learned to accuracy % + m under

4

the uniform distribution. While this answers the question posed above (even with “51%” in place
of “99%"), the m factor is rather far from the % factor that one might hope for as
described above.

In Section 2 we use a different construction to obtain much stronger quantitative results; another
advantage of this second construction is that it enables us to show hardness of learning monotone
circuits rather than just circuits computing monotone functions. We start with the simple observa-
tion that using standard tools it is easy to construct polynomial-size monotone circuits computing
“slice” functions which are pseudorandom on the middle layer of the Boolean cube {0,1}". Such
functions are easily seen to be mildly hard to learn, i.e., hard to learn to accuracy 1 —) We then

n
use the elegant machinery of hardness amplification of monotone functions which W\;; pioneered
by O’Donnell [O'D04] to amplify the hardness of this construction to near-optimal levels (rows
2-4 of Figure 1). We obtain our result for constant depth, sub-polynomial-size circuits (row 5 of
Figure 1) by augmenting this approach with an argument which at a high level is similar to one
used in [AHMT06], by “scaling down” and modifying our hard-to-learn functions using a variant

of Nepomnjascii’s theorem [Nep70].

1.3 Preliminaries

We consider Boolean functions f : {0,1}"—{0,1}. We view {0,1}" as endowed with the natural
partial order x < y iff x; < y; for all i = 1,...,n. A Boolean function f is monotone if x < y
implies f(z) < f(y).

Our work uses various standard definitions from the fields of circuit complexity, learning, and
cryptographic psesudorandomness; for completeness we recall this material below.

Learning. As described earlier, all of our hardness results apply even to learning algorithms which
may make membership queries, i.e., black-box queries to an oracle which gives the label f(z) of any
example = € {0,1}" on which it is queried. It is clear that for learning with respect to the uniform
distribution, having membership query access to the target function f is at least as powerful as
being given uniform random examples labeled according to x since the learner can simply generate
uniform random strings for herself and query the oracle to simulate a random example oracle.

The goal of the learning algorithm is to construct a hypothesis h so that Pry[h(z) # f(x)] is
small, where the probability is taken over the uniform distribution. We shall only consider learning
algorithms which are allowed to run in poly(n) time, so the learning algorithm L may be viewed as
an oracle p.p.t. machine which is given black-box access to the function f and attempts to output
a hypothesis h with small error relative to f.

We establish that a class C of functions is hard to learn by showing that for a uniform random
f € C, the expected error of any poly(n)-time learning algorithm L is close to 1/2 when run with
f as the target function. Thus we bound the quantity

ree BE) (M) =i h(@) = f(@)] (1)

where the probability is also taken over any internal randomization of the learning algorithm L. We
say that class C is hard to learn to accuracy % + e(n) if for every poly(n)-time membership query
learning algorithm L (i.e., p.p.t. oracle algorithm), we have (1) < % + e(n) for all sufficiently large
n. As noted in [BBL9S8], it is straightforward to transform a lower bound of this sort into a lower
bound for the usual €, formulation of PAC learning.

Circuit complexity. We shall consider various classes of circuits computing Boolean functions,
such as NC! (polynomial-size, logarithmic-depth, bounded fan-in circuits of AND/OR/NOT gates),
AC® (polynomial-size, constant-depth, unbounded fan-in circuits of AND/OR/NOT gates) and TCO
(polynomial-size, constant-depth unbounded fan-in circuits of MAJ/NOT gates).

A circuit is said to be monotone if it is composed entirely of AND/OR gates with no negations.
Every monotone circuit computes a monotone Boolean function, but of course non-monotone cir-
cuits may compute monotone functions as well. The famous result of [Raz85] shows that there
are natural monotone Boolean functions (such as the perfect matching function) which can be
computed by polynomial-size circuits but cannot be computed by polynomial-size monotone cir-
cuits. Thus, in general, it is a stronger result to show that a function can be computed by a small
monotone circuit than to show that it is monotone and can be computed by a small circuit.

Pseudorandom functions. Pseudorandom functions [GGMS86] are the main cryptographic prim-
itive that underlie our constructions. Fix k(n) < n, and let G be a family of functions {g :
{0,1}*") —={0,1}} each of which is computable by a circuit of size poly(k(n)). We say that G is
a t(n)-secure pseudorandom function family if the following condition holds: for any probabilistic
t(n)-time oracle algorithm A, we have

Pr[A9(1") outputs 1] — Pr [A9 (1™) outputs 1]| < 1/t(n)
9g€g g'eg’

where G’ is the class of all 22°™ functions from {0,1}*(") 6 {0,1} (so the second probability above
is taken over the choice of a truly random function ¢’). Note that the purported distinguisher A
has oracle access to a function on k(n) bits but is allowed to run in time t(n).

It is well known that a pseudorandom function family that is ¢(n)-secure for all polynomials
t(n) can be constructed from any one-way function [GGM86, HILL99]. We shall use the following
folklore quantitative variant which relates the hardness of the one-way function to the security of
the resulting pseudorandom function:

Proposition 1. Fiz t(n) > poly(n) and suppose there exist one-way functions that are hard to
invert on average for t(n) time adversaries. Then there exists a constant, 0 < ¢ < 1, such that
for any k(n) < n, there is a pseudorandom family G of functions {g : {0,1}*™—{0,1}} that is
(t(k(n)))c-secure.

2 Lower Bounds via Hardness Amplification of Monotone Func-
tions

In this section we prove our main hardness results, summarized in Figure 1, for learning various
classes of monotone functions under the uniform distribution with membership queries.

Let us start with a high-level explanation of the overall idea. Inspired by the work on hardness
amplification within NP initiated by O’Donnell [O’D04, Tre03, HVV06], we study constructions of
the form

flx1, ... om) = C(f (x1),. .., fl(xm))

where C' is a Boolean “combining function” with low noise stability (we give precise definitions
later) which is both efficiently computable and monotone. Recall that O’Donnell showed that if f/

is weakly hard to compute and the combining function C' has low noise stability, then f is very
hard to compute. This result holds for general (not necessarily monotone) functions C, and thus
generalizes Yao’s XOR lemma, which addresses the case where C' is the XOR of m bits (and hence
has the lowest noise stability of all Boolean functions, see [O’D04]).

Roughly speaking, we establish an analogue of O’Donnell’s result for learning. Our analogue,
given in Section 2.2, essentially states that for certain well-structured? functions f’ that are hard to
learn to high accuracy, if C' has low noise stability then f is hard to learn to accuracy even slightly
better than 1/2. Since our ultimate goal is to establish that “simple” classes of monotone functions
are hard to learn, we shall use this result with combining functions C' that are computed by “simple”
monotone Boolean circuits. In order for the overall function f to be monotone and efficiently
computable, we need the initial f’ to be well-structured, monotone, efficiently computable, and
hard to learn to high accuracy. Such functions are easily obtained by a slight extension of an
observation of Kearns et al. [KLV94]. They noted that the middle slice f’ of a random Boolean
function on {0, 1}¥ is hard to learn to accuracy greater than 1—©(1/v/k) [BBLIS, KLV94]; by taking
the middle slice of a pseudorandom function instead, we obtain an f’ with the desired properties.
In fact, by a result of Berkowitz [Ber82] this slice function is computable by a polynomial-size
monotone circuit, so the overall hard-to-learn functions we construct are computed by polynomial-
size monotone circuits.

Organization.

In Section 2.2 we adapt the analysis in [0’D04, Tre03, HVV06] to reduce the problem of constructing
hard-to-learn monotone Boolean functions to constructing monotone combining functions C with
low noise stability. In Section 2.3 we show how constructions and analyses from [0’D04, MOO03] can
be used to obtain a “simple” monotone combining function with low noise stability. In Section 2.4
we establish Theorems 2 and 3 (lines 2 and 3 of Figure 1) by making different assumptions about
the hardness of the initial pseudorandom functions. Finally, in Section 3 we establish Theorems 4
and 5 by making specific number theoretic assumptions (namely, the hardness of factoring Blum
integers) to obtain hard-to-learn monotone Boolean functions that can be computed by very simple
circuits.

2.1 Preliminaries

Functions. Let C : {0,1}"—{0,1} and f’ : {0,1}*—{0,1} be Boolean functions. We write
C o f'®m to denote the Boolean function over ({0,1}*)™ given by

Co ™™ (@) = C(f (@), @), wherew = (a1,).

For g : {0,1}*—{0,1}, we write slice(g) to denote the “middle slice” function:

1 ifz] > [k/2)
slice(g)(x) = { g(x) if |2| = |k/2]
0 iffz| < [k/2],

where |z| denotes the number of 1’s in the string x. It is immediate that slice(g) is a monotone
Boolean function for any g.

2As will be clear from the proof, we require that f’ be balanced and have a “hard-core set.”

Bias and noise stability. Following the analysis in [0’D04, Tre03, HVV06], we shall study the
bias and noise stability of various Boolean functions. Specifically, we adopt the following notations
and definitions from [HVVO06]. The bias of a 0-1 random variable X is defined to be

Bias[X] %' | Pr[X = 0] — Pr[X = 1]].

Recall that a probabilistic Boolean function h on {0, 1}* is a probability distribution over Boolean
functions on {0, 1}* (so for each input x, the output h(z) is a 0-1 random variable). The expected
bias of a probabilistic Boolean function h is

ExpBias[h] & E,[Bias[h(z)]].

Let C : {0,1}™—{0,1} be a Boolean function and 0 < ¢ < 1. The noise stability of C' at noise rate
J, denoted NoiseStabs[C], is defined to be

NoiseStabs[C] ¥ B, ,[C(z) & Clz & v)] = 2- Pr(C(2) = Oz @)] - 1

where z € {0,1}™ is uniform random, n € {0,1}™ is a vector whose bits are each independently 1
with probability §, and & denotes bitwise XOR.
2.2 Hardness amplification for learning

Throughout this subsection we write m for m(n) and k for k(n). We shall establish the following:

Lemma 1. Let C : {0,1}""—{0,1} be a polynomial-time computable function. Let G' be the family
of all 22" functions from {0,1}* to {0,1}, where n = mk and k = w(logn). Then the class C =
{f = Coslice(9)®™ | g € G'} of Boolean functions over {0,1}" is hard to learn to accuracy

1
ne@)’

1 1 :
37t 5\/N01seStab@(1/\/E) [C] +

This easily yields Corollary 1, which is an analogue of Lemma 1 with pseudorandom rather
than truly random functions, and which we use to obtain our main hardness of learning results.

Proof of Lemma 1: Let k,m be such that mk = n, and let C : {0,1}""—{0,1} be a Boolean
combining function. We prove the lemma by upper bounding

geg’,:cir{m}n LI(1") — h; h(z) = f(ac)] (2)

where L is an arbitrary p.p.t. oracle machine (running in time poly(n) on input 1) that is given
oracle access to f oo slice(¢)®™ and outputs some hypothesis h : {0,1}"—{0,1}.
We first observe that since C' is computed by a uniform family of circuits of size poly(m) <

poly(n), it is easy for a poly(n)-time machine to simulate oracle access to f if it is given oracle
access to g. So (2) is at most

9eq, 55{071}" LI(A™) — h; h(z) = (C oslice(g)®™)(x)|. (3)

To analyze the above probability, suppose that in the course of its execution L never queries g on
any of the inputs z1,..., 2, € {0,1}*, where = (x1,...,2,,). Then the a posteriori distribution
of g(z1),...,9(xm) (for uniform random g € G') given the responses to L’s queries that it received
from g is identical to the distribution of ¢'(z1),...,4¢ (zy,), where ¢’ is an independent uniform
draw from G’: both distributions are uniform random over {0,1}™. (Intuitively, this just means
that if L never queries the random function g on any of z1,...,z,,, then giving L oracle access to
g does not help it predict the value of f on x = (21,...,2,).) Since L runs in poly(n) time, for any

m-poly(n)
2k

fixed z1,...,x,, the probability that L queried g on any of z1,...,x,, is at most . Hence

(3) is bounded by

Pr LI(1") — h; h(z) = (C'o ince(g’)®m)(:1:)] L m-poly(n) (4)
g,9'€G’, ze{0,1}" 2k

The first summand in (4) is the probability that L correctly predicts the value C o slice(g)®™(z),
given oracle access to g, where g and ¢’ are independently random functions and x is uniform over
{0,1}™. Tt is clear that the best possible strategy for L is to use a maximum likelihood algorithm,
i.e., predict according to the function A which, for any fixed input x, outputs 1 if and only if the
random variable (C o slice(¢g')®™)(x) (we emphasize that the randomness here is over the choice of
¢') is biased towards 1. The expected accuracy of this h is precisely

1 1
5t3 ExpBias|C o slice(g")®™]. (5)
Now fix § % (Lk1;2j)/2k = O(1/vk) to be the fraction of inputs in the “middle slice” of {0,1}*.

We observe that the probabilistic function slice(¢’) (where ¢’ is truly random) is “§-random” in
the sense of ([HVVO06], Definition 3.1), meaning that it is balanced, truly random on inputs in the
middle slice, and deterministic on all other inputs. This means that we may apply the following
technical lemma (Lemma 3.7 from [HVV06], see also [O’D04]):

Lemma 2. Let h: {0,1}"—{0,1} be a function that is 6-random. Then

ExpBias[C o h¥™] < /NoiseStab;[C].

Applying this lemma to the function slice(¢’) we obtain

ExpBias[C o slice(¢')®™] < y/NoiseStabs[C]. (6)
Combining (4), (5) and (6) and recalling that k = w(logn), we obtain Lemma 1.

Corollary 1. Let C : {0,1}"™—{0,1} be a polynomial-time computable function. Let G be a pseu-
dorandom, family of functions from {0,1}* to {0,1} which are secure against poly(n)-time adver-
saries, where n = mk and k = w(logn). Then the class C = {f = Coslice(¢)®™ | g € G} of Boolean
functions over {0,1}" is hard to learn to accuracy

1
ne@)’

1 1 X
3+ 5\/N01seStab@(1/\/E) [C] +
Proof. The corollary follows from the fact that (3) must differ from its pseudorandom counterpart,

460, 201y [Lg(l”) — h; h(z) = (Co ince(g)®m)(:17)], (7)

by less than any fixed 1/ poly(n). Otherwise, we would easily obtain a poly(n)-time distinguisher
that, given oracle access to g, runs L to obtain a hypothesis h and checks whether h(z) = (C o
slice(¢)®™)(x) for a random z to determine whether g is drawn from G or G'. [

By instantiating Corollary 1 with a “simple” monotone function C' having low noise stability, we
obtain strong hardness results for learning simple monotone functions. We exhibit such a function
C' in the next section.

2.3 A simple monotone combining function with low noise stability

In this section we combine known results of [0’D04, MOO03] to obtain:

Proposition 2. Given a value k, let m = 3'd2? for £,d satisfying 3° < kS < 3"+ and d < O(k3?).
Then there exists a monotone function C : {0,1}"" — {0,1} computed by a uniform family of
poly(m)-size, log(m)-depth monotone circuits such that

kS logm).

NoiseStabg /7 [C] = O(-

(8)

Note that in this proposition we may have m as large as 20(-*) but not larger. O’Donnell
2

[O’D04] gave a lower bound of Q(long) on NoiseStabg /) [C] for every monotone m-variable

function C, so the above upper bound is fairly close to the best possible (within a polylog(m)

factor if m = 2k®(1)).

Following [O’D04, HVV06], we use the “recursive majority of 3” function and the “tribes”

function in our construction. We require the following results on noise stability:

Lemma 3 ([0’D04]). Let Rec-Maj-3, : {0, 1}3Z—>{O, 1} be defined as follows: for x = (zt, 22, 23)
where each x* € {0,1}3 7"

Rec-Maj-3,(z) o Maj(Rec-Maj-3,_; (z'), Rec-Maj-3,_; (%), Rec-Maj-3,_; (z%)).
Then for £ >log, 1(1/6), we have NoiseStabs[Rec-Maj-3,] < 6~ 11(36)~15.

Lemma 4 ([MOO03]). Let Tribes, : {0,1}%2°—{0,1} denote the “tribes” function on d2¢ variables,
i.e., the read-once 2%-term monotone d-DNF

Tribesg(x1, ..., T d) dzef(ajl N ANxg) V(Tgp1 A NTag) V- - .

Then if n = O(1/d), we have NoiseStab 1, [Tribesy] = O(%) = O(zid).
2

Lemma 5 ([O’D04)). If h is a balanced Boolean function and ¢ : {0,1}" — {0,1} is arbitrary,
then for any 6 we have NoiseStabs[1) o h¥"] = NoiseStab, Noisestangin] [¥]-
2

2

Proof of Proposition 2: We take C to be Tribes, o Rec—Maj-B?dzd. Since Rec-Maj-3, is balanced,
by Lemma 5 we have

NoiseStabs[C] = NoiseStab; NoisestabsRec-Maj-3,] [Tribesg].
27 2

10

Setting § = @(1/\/%) and recalling that 3 < k%, we have ¢ > log; ;(1/6) so we may apply Lemma 3
to obtain
NoiseStabQ(l/\/E)[Rec—Maj_?,e] < @((\/E)l'l)(k6)—~15 — O(k—).

Since O(k~3°) < O(1/d), we may apply Lemma 4 with the previous inequalities to obtain

. 1
NoiseStabg /) [C] = O(ﬁ)'
The bound (8) follows from some easy rearrangement of the bounds on k,m,d and £. It is easy to
see that C' can be computed by monotone circuits of depth O(¢) = O(log m) and size poly(m), and
the proposition is proved. |

2.4 Nearly optimal hardness of learning polynomial-size monotone circuits

Given a value of k, let m = 3%d2? for ¢,d as in Proposition 2. Let G be a pseudorandom family
of functions {g : {0,1}*—{0,1}} secure against poly(n)-time adversaries, where n = mk. Since we
have k = w(logn), we may apply Corollary 1 with the combining function from Proposition 2 and
conclude that the class C = {C oslice(g)®™ | g € G} is hard to learn to accuracy

3 3.5
1 0(7’“ @) Fo(l/n) <+ 4 0(7]€ \/@)
2 vm 2 vn
We claim that in fact the functions in C can be computed by poly(n)-size monotone circuits.
This follows from a result of Berkowitz [Ber82] which states that if a k-variable slice function is
computed by a AND/OR/NOT circuit of size s and depth d, then it is also computed by a monotone
AND/OR/MAJ circuit of size O(s+k) and depth d+1. Combining these monotone circuits for slice(g)
with the monotone circuit for C, we obtain a poly(n)-size monotone circuit for each function in C.
By making various different assumptions on the hardness of one-way functions, Proposition 1 lets
us obtain different quantitative relationships between k (the input length for the pseudorandom
functions) and n (the running time of the adversaries against which they are secure), and thus
different quantitative hardness results from (9) above:

9)

Theorem 2. Suppose that standard one-way functions exist. Then for any constant € > 0 there is
a class C of poly(n)-size monotone circuits that is hard to learn to accuracy % + #

Proof. 1f poly(n)-hard one-way functions exist then we may take k = n° in Proposition 1 for

arbitrarily small constant ¢; this corresponds to taking d = ylog k for v a large constant in Propo-
sition 2. The claimed bound on (9) easily follows. (We note that while not every n is of the
required form mk = 3%d2%, it is not difficult to see that this and our subsequent theorems hold
for all (sufficiently large) input lengths n by padding the hard-to-learn functions.) |

Theorem 3. Suppose that subexponentially hard (2" for some fived o > 0) one-way functions

exist. Then there is a class C of poly(n)-size monotone circuits that is hard to learn to accuracy
1 polyk}g(n)
2 nl/2 °

Proof. As above, but now we take k = log” n for some sufficiently large constant « (i.e., d = clog k
for a small constant c). |

11

3 Hardness of learning simple circuits

In this section we obtain hardness results for learning very simple classes of circuits computing
monotone functions under a concrete hardness assumption for a specific computational problem,
namely factoring Blum integers. Naor and Reingold [NR04] showed that if factoring Blum integers
is computationally hard then there is a pseudorandom function family which we denote G* that
is computable in TC®. From this it easily follows that the functions {slice(g) | g € G*} are also
computable in TCC.

We now observe that the result of Berkowitz mentioned earlier [Ber82| for converting slice
circuits into monotone circuits applies not only to AND/OR/NOT circuits, but also to TCO circuits
(composed of MAJ and NOT gates).

This means that the functions in {slice(g) | ¢ € G*} are in fact computable in monotone TCC,
i.e., by polynomial-size, constant-depth circuits composed only of AND/OR/MAJ gates. Since
the majority function can be computed by polynomial-size, O(logn)-depth AND/OR circuits, (see
e.g. [AKS83]), the functions in {slice(g) | g € G*} are computable by O(logn)-depth AND/OR
circuits. Finally, using the parameters in Theorem 2 we have a combining function C that is a
O(log n)-depth poly-size AND/OR circuit which implies the following lemma:

Lemma 6. Let C' be the monotone combining function from Proposition 2 and G* be a family of
pseudorandom functions computable in TC®. Then every function in {C o slice(q)®™ | g € G*} is
computable in monotone NCL.

This directly yields a hardness result for learning monotone NC! circuits (the fourth line of
Figure 1):

Theorem 4. If factoring Blum integers is hard on average for any poly(n)-time algorithm, then
for any constant € > 0 there is a class C of poly(n)-size monotone NC! circuits that is hard to learn

to accuracy % + #

Now we show that under a stronger but still plausible assumption on the hardness of factoring
Blum integers, we get a hardness result for learning a class of constant-depth monotone circuits
which is very close to a class known to be learnable to any constant accuracy in poly(n) time.
Suppose that n-bit Blum integers are 2""-hard to factor on average for some fixed a@ > 0 (this
hardness assumption was earlier used by Kharitonov [Kha93]). This means there exists n®/?.
secure pseudorandom functions that are computable in TC®. Using such a family of functions in
place of G* in the construction for the preceding theorem and fixing ¢ = 1/3, we obtain:

Lemma 7. Assume that Blum integers are 2™ -hard to factor on average. Then there is a class C of
poly(n)-size monotone NC! circuits that is hard for any 27 time algorithm to learn to accuracy
5+

Now we “scale down” this class C as follows. Let n’ be such that n’ = (logn)* for a suitable
constant £ > 20/, and let us use “n/” as the “n” in the construction of the previous lemma; we
call the resulting class of functions C’. In terms of n, the functions in ¢’ (which are functions over
{0,1}™ which only depend on the first n variables) are computed by (log n)?*)-size, O(log log n)-
depth monotone circuits whose inputs are the first (logn)® variables in z1,...,z,. We moreover
have that C’ is hard for any ()220 _ o(logn)ra/20
accuracy 3 -+ W =1+0(1).

We now recall the following variant of Nepomnjaséii’s theorem that is implicit in [AHM™06].

= w(poly(n))-time algorithm to learn to some

12

Lemma 8. For every language £ € NL, for all sufficiently large constant d there are ACS circuits

. O(1)/(d+1 .
of size 2" WD 4t recognize L.

Since every function in €’ can be computed in NC! which is contained in NL, combining Lemma 8
with the paragraph that proceeds it, we obtain the following theorem (final line of Figure 1):

Theorem 5. Suppose that Blum integers are subexponentially hard to factor on average. Then
there is a class C of monotone functions which is hard for any poly(n)-time algorithm to learn to
accuracy % + o(1) and which, for all sufficiently large constant d, are computed by ACS circuits of
size 2(ogn) 7/ (L)

This final hardness result is of interest because it is known that constant-depth circuits of only
slightly smaller size can be learned to any constant accuracy in poly(n) time under the uniform
distribution (without needing membership queries):

Theorem 6 ([Ser04] Corollary 2). For all d > 2, the class of ACY circuits of size 20((logm)!/(@+1)
that compute monotone functions can be learned to any constant accuracy 1 — e in poly(n)-time.

Theorem 5 is thus nearly optimal in terms of the size of the constant-depth circuits for which
it establishes hardness of learning.

4 A Computational Analogue of [BBL98|’s Lower Bound

In this section we first present a simple variant of the [BBLI8| lower bound construction, obtaining
an information-theoretic lower bound on the learnability of the general class of all monotone Boolean
functions. The quantitative bound our variant achieves is weaker than that of [BBLIS8], but has
the advantage that it can be easily “pseudorandomized”. Indeed, as mentioned in Section 5 (and
further discussed below), our construction uses a certain probability distribution over monotone
DNFs, such that a typical random input x satisfies only poly(n) many “candidate terms” (terms
which may be present in a random DNF drawn from our distribution). By selecting terms for
inclusion in the DNF in a pseudorandom rather than truly random way, we obtain a class of
poly(n)-size monotone circuits which is hard to learn to accuracy % + m (assuming one-way
functions exist).

Below we start with an overview of why it is difficult to obtain a computational analogue of the
exact construction of [BBL98] using the “pseudorandomization” approach sketched above, and the
idea behind our variant, which overcomes this difficulty. We then provide our information theoretic
construction and analysis, followed by its computational analogue.

4.1 Idea

Recall the [BBLI8| information-theoretic lower bound. It works by defining a distribution Ps over
monotone functions {0,1}"—{0,1} which is as follows. (Here s is a numerical parameter which
should be thought of as the number of membership queries that a learning algorithm is allowed
to make.) Take t = log(3sn). A draw from P; is obtained by randomly including each length-¢
monotone term in the DNF independently with probability p’, where p’ is chosen so that the function
is expected to be balanced on “typical inputs” (more precisely, on inputs with exactly n/2 1’s).
The naive idea for pseudorandomizing this construction is to simply use a pseudorandom function

13

with bias p’ to determine whether each possible term of size ¢ should be included or excluded in
the DNF. However, there is a problem with this approach: we do not know an efficient way to
determine whether a typical example x (with, say, n/2 ones) has any of its ("l{ 2) candidate terms
(each of which is pseudorandomly present/not present in f) actually present in f, so we do not
know how to evaluate f on a typical input z in less than ("{2) time.

We get around this difficulty by instead considering a new distribution of random monotone
DNFs. In our construction we will again use a random function with bias p to determine whether
each possible term of length ¢ is present in the DNF. However, in our construction, a typical example
x will have only a polynomial number of candidate terms that could be satisfied, and thus it is
possible to check all of them and evaluate the function in poly(n) time.

The main difficulty of this approach is to ensure that although a typical example has only
a polynomial number of candidate terms, the function is still hard to learn in polynomial time.
We achieve this by partitioning the variables into blocks of size k and viewing each block as a
“supervariable” (corresponding to the AND of all k variables in the block). We then construct the
DNF by randomly choosing length-¢ terms over these supervariables. It is not difficult to see that
with this approach, we can equivalently view our problem as learning a t-DNF f with terms chosen
as above, where each of the n/k variables is drawn from a product distribution with bias 1/2*. By
fine-tuning the parameters that determine ¢ (the size of each term of the DNF) and k (the size
of the partitions), we are able to achieve an information-theoretic lower bound showing that this
distribution over monotone functions is hard to learn to accuracy 1/2 + o(1).

4.2 Construction

Let us partition the variables x1, ..., x, into m = n/k blocks By, ..., B,, of k variables each. Let X;
denote the conjunction of all k variables in B; (Xi,...,X,, are the supervariables). The following
is a description of our distribution P over monotone functions. A function f is drawn from P as
follows (we fix the values of k, ¢ later):

e Construct a monotone DNF f; as follows: each possible conjunction of ¢ supervariables chosen
from {X1,..., X} is placed in the target function f; independently with probability p, where
p is defined as the solution to:

m/ k
(1-p)") =172, (10)
Note that for a uniform = € {0,1}", we expect the corresponding “superassignment” X =
(X1,...,Xp) to have m/2k 1’s in it, and any superassignment with this many 1’s will be
satisfied by (m/fk) many terms. Thus p is chosen such that a “typical” example X, with
m/2F ones, has probability 1/2 of being labeled positive under f;.

o Let

fi(z) if the number of supervariables satisfied in x is at most m/2 4 (m/2%)?/3

fz) =

1 otherwise.
Note that because of the final step of the construction, the function f is not actually a DNF

(though it is a monotone function). Intuitively, the final step is there because if too many su-
pervariables were satisfied in z, there could be too many (more than poly(n)) candidate terms to

14

check, and we would not be able to evaluate f; efficiently. We will show later that the probabil-
ity that the number of supervariables satisfied in z is greater than m/2F + (m/2¥)%/® is at most
2e=(m/2)1/2/3 1/n“’(1), and thus the function f is 1/n“(1)—close to f1; so hardness of learning
results established for the random DNFs f; carry over to the actual functions f. For most of our
discussion we shall refer to P as a distribution over DNFs, meaning the functions f;.

4.3 Information-Theoretic Lower Bound

As discussed previously, we view the distribution P defined above as a distribution over DNF's of
terms of size t over the supervariables. Each possible combination of ¢ supervariables appears in
f1 independently with probability p and the supervariables are drawn from a product distribution
that is 1 with probability 1/2* and 0 with probability 1 — 1/2*. We first observe that learning f
over the supervariables drawn from the product distribution is equivalent to learning the original
function over the original variables. This is because if we are given the original membership query
oracle for n-bit examples we can simulate answers to membership queries on m-bit “supervariable”
examples and vice versa. Thus we henceforth analyze the product distribution.

We follow the proof technique of [BBLI8|. To simplify our analysis, we consider an “augmented”
oracle, as in [BBL98]. Given a query X, with 1’s in positions indexed by the set Sx, the oracle will
return the first conjunct in lexicographic order that appears in the target function and is satisfied
by X. Additionally, the oracle returns 1 if X is positive and 0 if X is negative. (So instead of
just giving a single bit as its response, if the example is a positive one the oracle tells the learner
the lexicographically first term in the target DNF that is satisfied.) Clearly, lower bounds for this
augmented oracle imply the same bounds for the standard oracle.

We are interested in analyzing Ps, the conditional distribution over functions drawn from the
initial distribution P that are consistent with the information learned by A in the first s queries.
We can think of P; as a vector V; of (T’) elements, one for each possible conjunct of size ¢. Initially,
each element of the vector contains p, the probability that the conjunct is in the target function.
When a query is made, the oracle examines one by one the entries that satisfy X. For each entry
having value p, we can think of the oracle as flipping a coin and replacing the entry by 0 with
probability 1 — p and by 1 with probability p. After s queries, Vs will contain some entries set to
0, some set to 1 and the rest set to p. Because Vi describes the conditional distribution P given
the queries made so far, the Bayes-optimal prediction for an example X is simply to answer 1 if
Vs(X) > 1/2 and 0 otherwise.

We now analyze V;(X), the conditional probability over functions drawn from P that are
consistent with the first s queries that a random example, X, drawn from the distribution, evaluates
to 1, given the answers to the first s queries. We will show that for s = poly(n), for X drawn from
the product distribution on {0,1}", with probability at least 1 — 1/n“(}) the value V(X) lies in
% + bln. This is easily seen to give a lower bound of the type we require.

Following [BBL9S8|, we first observe that after s queries there can be at most s entries set to
one in the vector V. We shall also use the following lemma from [BBL98|:

Lemma 9 ([BBL9S|). After s queries, with probability 1 — e=5/*, there are at most 2s/p zeros in
Vs.

We thus may henceforth assume that there are at most 2s/p zeros in V.
We now establish the following, which is an analogue tailored to our setting of Claim 3 of
[BBL9S]:

15

Lemma 10. For any vector Vi of size (T) with at most s entries set to 1, at most 2s/p entries set

to 0, and the remaining entries set to p, for a random example X (drawn from {0,1}™ according
to the 1/2k—biased product distribution), we have that with probability at least 1 — €1, the quantity
Vs(X) lies in the range

[(m/Zkf(m/Qk)l/a)_ 23\/51
: 2 < V(X) <1 (1)

m/2k+(m/2k)1/3)
t

1-(1-p) (11)

Here 5
€1 =5- (ﬂ 4 1)27K 4 9e= (/23 (12)
p

Proof. Let X be a random example drawn from the 1/2*-biased product distribution over {0,1}.
Consider the following 3 events:

e None of the 1-entries in V; are satisfied by X.

There are at most s l-entries in V; and the probability that any one is satisfied by X is
27kt Therefore the probability that some 1-entry is satisfied by X is at most s2~** and the
probability that none of the 1-entries in Vj are satisfied by X is at least 1 — 527,

e At most (25,/n/p)27* of the 0-entries in V, are satisfied by X.

Since there are at most 2s/p entries set to 0 in Vs, the expected number of O-entries in Vj
satisfied by X is at most (2s/p)2~*. By Markov’s inequality, the probability that the actual
number exceeds this by a y/n factor is at most 1//n.

e The number of 1’s in X lies in the range m/2" & (m/2F)?/3.

Using a multiplicative Chernoff bound, we have that this occurs with probability at least
1 — 2e=(m/29'%/3 Note that for X’s in this range, f(X) = fi(X). So conditioning on this
event occuring, we can assume that f(X) = fi(X).

Therefore, the probability that all 3 of the above events occurs is at least 1 — ¢; where ¢; =
S - (M + 1)2—kt + 26—(7”/216)1/3/3.

Given that these events all occur, we show that Vi(X) lies in the desired range. We follow the
approach of [BBL9S].

For the lower bound, V4(X) is minimized when X has as few 1’s as possible and when as many
of the 0-entries in V; are satisfied by X as possible. So V5(X) is at least

m/Zkf(m/2k)2/3) 23\/E]
t p2kt .

Vi(X)>1- (1 p)l

For the upper bound, Vi(X) is maximized when X has as many 1’s as possible and as few 0’s as
possible. So V(X)) is at most

m/2k+(m/2k)2/3)
t .

Vi(X) <1 (1-p)

16

Now let us choose values for k and t. What are our goals in setting these parameters? First
off, we want (mézk) to be at most poly(n) (so that there are at most poly(n) candidate terms to
be checked for a “typical” input). Moreover, for any s = poly(n) we want (11)’s two sides to both
be close to 1/2 (so the accuracy of any s-query learning algorithm is indeed close to 1/2 on typical
inputs), and we want €; to be small (so almost all inputs are “typical”). With this motivation, we
set k = O(logn) to be such that m/2% (recall, m = n/k) equals log®n, and we set t = \/Togn.
This means (mézk) = (i}’%} < 26logllogn)Viogn « p Now (10) gives p > 1/n; together with
k = O(logn), for any s = poly(n) we have ¢; = 1/n*()

Now we analyze (11). First the lower bound:

m /2 =(m/2)2/%) sy

1--p)t t
)2k _ (m2k)2/3 3s\/n
1—(1—p)(/2 (t/z))(ezﬂkt>

/2K (m ok 2/3
(/2 (t/2))(

Vo(X)

v

v

= 1-(1-p) 1+1/n“’(1))

1- [2—(’"/ o 2“2/3)/(’"12’6)} : (1 + 1/nw(1>>

(In the last step here we are using the definition of p from (10).) Let us bound the exponent:

m/2F _(m/2%)2/3 t
(/2 (t /2%)) - m/2k _ (m/2k)2/3 ¢
(") - m/2*

logn —log*n — \/logn> logm

< log®n

<log n — 2log? n)m
o log n

Viogn
_ (1)
log n
> 1-
log
So
‘/S(X) > 11— [2—(1—2/ log"® n) (1 + 1/7’Lw(1) 1 _ 1
N 2 logn

Now for the upper bound:

(m/2k+(7tn/2k)2/3)

Vi)

IN

1-(1-p)

L g (e miaty

17

Again bounding the exponent:

: 0g% n+log*n
gy (i
m/2k ogbn
(") (Vo)

< log®n + log*n) loam
log®n — /logn

21log*n logm
< (1Y
log”n — /logn
4
< 14—
— 10g1.5n
So
- 4 1 1
Vi(X) <1-2 () < Ly :
2 logn

The above analysis has thus established the following.

Lemma 11. Let L be any poly(n)-time learning algorithm. If L is run with a target function that
is a random draw f from the distribution P described above, then for all but a 1/n“’(1) fraction of
inputs x € {0,1}", the probability that h(x) = f(x) (where h is the hypothesis output by L) is at

1 1
most 5+ Togn "

It is easy to see that by slightly modifying the values of ¢ and & in the above construction, it is

actually possible to replace @ with any in the above.

1
polylogn

4.4 Computational Lower Bound

To obtain a computational analogue of Lemma 11, we “pseudorandomize” the choice of terms in a
draw of f; from P.

Recall that the constuction P placed each possible term (conjunction of ¢ supervariables) in the
target function with probability p, as defined in (10). We first consider a distribution that uses
uniform bits to approximate the probability p. This can be done by approximating log(p~!) with
poly(n) bits, associating each term with independent uniform poly(n) bits chosen this way, and
including that term in the target function if all bits are set to 0. It is easy to see that the resulting
construction yields a probability distribution which is statistically close to P, and we denote it by
Pstat.

Now, using a pseudorandom function rather than a truly random (uniform) one for the source of
uniform bits will yield a distribution which we denote by PSR, Similar arguments to those we give
elsewhere in the paper show that a poly(n) time adversary cannot distinguish the resulting con-
struction from the original one (or else a distinguisher could be constructed for the pseudorandom
function).

To complete the argument, we observe that every function f in the support of PPSR can be
evaluated with a poly(n)-size circuit. It is obviously easy to count the number of supervariables
that are satisfied in an input z, so we need only argue that the function f; can be computed
efficiently on a “typical” input = that has “few” supervariables satisfied. But by construction, such

18

an input will satisfy only poly(n) candidate terms of the monotone DNF' f; and thus a poly(n)-size
circuit can check each of these candidate terms separately (by making a call to the pseudorandom
function for each candidate term to determine whether it is present or absent). Thus, as a corollary
of Lemma 11, we can establish the main result of this section:

Theorem 7. Suppose that standard one-way functions exist. Then there is a class C of poly(n)-size

monotone circuits that is hard to learn to accracy % + Wog(n).

5 Discussion and Future Work

An obvious goal for future work is to establish even sharper quantitative bounds on the crypto-
graphic hardness of learning monotone functions. In [BBL9S8], Blum et al. obtain their % + w(ﬁ%m
information-theoretic lower bound by considering random monotone DNF which are constructed
by independently including each of the (1ogn) possible terms of length logn in the target function.
Can we match this hardness with a class of polynomial-size circuits?

As mentioned in Section 1, it is natural to consider a pseudorandom variant of the [BBLIS]
construction in which a pseudorandom rather than truly random function is used to decide whether
or not to include each of the (logn) candidate terms. However, we have not been able to show that
a function f constructed in this way can be computed by a poly(n)-size circuit. Intuitively, the
problem is that for an input x with (typically) n/2 bits set to 1, to evaluate f we must check
the pseudorandom function’s value on all of the (lzg 2n) potential “candidate terms” of length logn
which x satisfies. Indeed, the question of obtaining an efficient implementation of these “huge
pseudorandom monotone DNF” has a similar flavor to Open Problem 5.4 of [GGNO03|. In that
question the goal is to construct pseudorandom functions that support “subcube queries” which
give the parity of the function’s values over all inputs in a specified subcube of {0,1}". In our
scenario we are interested in functions f which are pseudorandom only over the (1 Og n) inputs with
precisely logn ones (these inputs correspond to the “candidate terms” of the monotone DNF') and
are zero everywhere else, and we only need to support “monotone subcube queries” (i.e., given an

input z, we want to know whether f(y) =1 for any y < x).

References

. Allender, L. Hellerstein, P. McCabe, T. Pitassi, an . Saks. Minimizing

AHM™06] E. Allender, L. Hell in, P. McCabe, T. Pitassi d M. Saks. Minimizing DNF
Formulas and AC’S Circuits Given a Truth Table. In Proc. 21st IEEE Conference on
Computational Complexity (CCC), pp. 237-251. IEEE Comp. Soc. Press, 2006.

[AKS83] M. Ajtai, J. Komlds, and E. Szemerédi. An O(nlogn) sorting network. Combinatorica,
3(1):1-19, 1983.

[BBL98] A. Blum, C. Burch, and J. Langford. On learning monotone boolean functions. In Proc.
39th FOCS, pp. 408-415. IEEE Comp. Soc. Press, 1998.

[Ber82] S. J. Berkowitz. On some relationships between monotone and non-monotone circuit
complexity. Technical report, University of Toronto, 1982.

19

[BFKL93]

[BKS99)]

[BLROS]

[BT96]

[FGKP06]

[GGMS6]

[GGNO3]

[HILL99)

[HVV06]

[Kha93]

[Kha95]

[KKLSS]

[KLN*08]

[KLV94]

[KOS04]

[LMN93]

A. Blum, M. Furst, M. Kearns, and R. Lipton. Cryptographic Primitives Based on
Hard Learning Problems. In Advances in Cryptology (CRYPTO), volume 773 of Lecture
Notes in Computer Science, pp. 278-291. Springer, 1993.

1. Benjamini, G. Kalai, and O. Schramm. Noise sensitivity of Boolean functions and
applications to percolation. Inst. Hautes Etudes Sci. Publ. Math., 90:5-43, 1999.

A. Blum, K. Ligett, and A. Roth. A learning theory perspective on data privacy: New
hope for releasing useful databases privately. In Proc. 40th STOC, pp. 609-618. ACM
Press, 2008.

N. Bshouty and C. Tamon. On the Fourier spectrum of monotone functions. J. ACM,
43(4):747-770, 1996.

V. Feldman, P. Gopalan, S. Khot, and A. Ponnuswami. New results for learning noisy
parities and halfspaces. In Proc 47th FOCS, pp. 563-576. IEEE Comp. Soc. Press,
2006.

O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. J.
ACM, 33(4):210-217, 1986.

O. Goldreich, S. Goldwasser, and A. Nussboim. On the Implementation of Huge Ran-
dom Objects. Technical report, ECCC Technical Report 045, 2003. Also appears in
Proc. 44th FOCS, pp. 68-79. IEEE Comp. Soc. Press, 2003.

J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator from
any one-way function. SIAM J. Comput., 28(4):1364-1396, 1999.

A. Healy, S. Vadhan, and E. Viola. Using Nondeterminism to Amplify Hardness. STAM
J. Comput., 35(4):903-931, 2006.

M. Kharitonov. Cryptographic hardness of distribution-specific learning. In Proc. 25th
STOC, pp. 372-381. ACM Press, 1993.

M. Kharitonov. Cryptographic lower bounds for learnability of Boolean functions on
the uniform distribution. J. Comput. System Sci., 50:600-610, 1995.

J. Kahn, G. Kalai, and N. Linial. The influence of variables on boolean functions. In
29th FOCS, pp. 68-80. IEEE Comp. Soc. Press, 1988.

S. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith. What can
we learn privately? In Proc 49th FOCS, pp. 531-540. IEEE Comp. Soc. Press, 2008.

Michael J. Kearns, Ming Li, and Leslie G. Valiant. Learning boolean formulas. J. ACM,
41(6):1298-1328, 1994.

A. Klivans, R. O’Donnell, and R. Servedio. Learning intersections and thresholds of
halfspaces. J. Comput. System Sci., 68(4):808-840, 2004.

N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform and
learnability. J. ACM, 40(3):607—620, 1993.

20

[Man94]

[MOO3]

IMOS04]

[Nep70]

[NROA]

[0'D04]

[0S07]

[Raz85]

[Ser04]

[Tre03]

[Val84]
[Ver90]

Y. Mansour. Learning Boolean functions via the Fourier transform, pp. 391-424. In
Theoretical advances in neural computation and learning, V. Roychowdhury, K.-Y. Siu
and A. Orlitsky, editors, pp. 391-424. Kluwer Academic Publishers, 1994.

E. Mossel and R. O’Donnell. On the noise sensitivity of monotone functions. Random
Struct. Algorithms, 23(3):333-350, 2003.

E. Mossel, R. O’Donnell, and R. Servedio. Learning functions of k relevant variables.
J. Comput. System Sci., 69(3):421-434, 2004.

V.A. Nepomnjascii. Rudimentary predicates and Turing calculations. Math Dokl.,
11:1462-1465, 1970.

M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random
functions. J. ACM, 51(2):231-262, 2004.

R. O’Donnell. Hardness amplification within NP. J. Comput. System Sci., 69(1):68-94,
2004.

R. O’Donnell and R. Servedio. Learning monotone decision trees in polynomial time.
SIAM J. Comput., 37(3):827-844, 2007.

A. Razborov. Lower bounds on the monotone network complexity of the logical per-
manent. Mat. Zametki, 37:887-900, 1985.

R. Servedio. On learning monotone DNF under product distributions. Inform. and
Comput., 193(1):57-74, 2004.

L. Trevisan. List-Decoding Using the XOR Lemma In Proc. J4th FOCS, pp. 126-135.
IEEE Comp. Soc. Press, 2003.

L. Valiant. A theory of the learnable. C. ACM, 27(11):1134-1142, 1984.

K. Verbeurgt. Learning DNF under the uniform distribution in quasi-polynomial time.
In Proc. Third Annual Workshop on Computational Learning Theory (COLT), pp. 314—
326. Morgan Kaufmann, 1990.

21

