
Implementing Parallel Cell-DEVS

Alejandro Troccoli

Departamento de Computación.

Pabellón I. Ciudad Universitaria

(1428). Buenos Aires.

 Argentina.

Gabriel Wainer

Department of Systems and Computing

Engineering, Carleton University. 1125

Colonel By Dr. K1S 5BE. Ottawa, ON.

Canada
gwainer@sce.carleton.ca

Abstract

Cell-DEVS is a formalism intended to model complex

physical systems as cell spaces. Cell-DEVS allow descri-
bing cellular models using timing delay constructions,

allowing simple definition of complex timing. The original

specificationw sere extended to permit parallel specifica-
tion of these models, and an associated simulation mecha-

nism allows their execution. Here we present some imple-

mentation issues related with the definition of parallel
simulators for Cell-DEVS.

1. Introduction

The DEVS formalism [1] provides a framework for the

construction of hierachical models in a modular manner,

allowing for model reuse and reducing development time

and testing. The execution of complex models requires a

computing power that stand alone computers do not pro-

vide. Therefore, the original DEVS formalism was revised

and the Parallel DEVS (P-DEVS) [2] formalism was pro-

posed. P-DEVS defines a function to handle transition

collisions and eliminates the use of a sequential function to

resolve simultaneous events. The revision eliminates all

restrictions that forced the original DEVS definition to

sequential execution.

A P-DEVS is composed by atomic models that can be

coupled in a hierarchical and modular fashion. A P-DEVS

atomic is defined as:

M = < X, S, Y, int, ext, con , , ta >
where

X: a set of input events.

S: a set of sequential states.

Y: a set of output events.

int: S S: internal transition function.

ext: Q x Xb S: external transition function,

 Xb is a set of bags over elements in X,

ext (s, e,) = (s, e)

con: S x Xb S: confluent transition function.

 : S Yb : output function.

Ta : S R0 : time advance function,

 where Q = { (s, e) | s S, 0 < e < ta(s)}

 e is the elapsed time since last state transition.

Internal transitions execute at the next event time for

all imminent components receiving no external events.

Likewise, external events generated by these imminents

trigger external transitions at receptive non-imminents

(those components for which there are no internal transi-

tions scheduled for the receiving time). However, for those

components which the internal and external transitions

collide, the confluent transition function is employed in-

stead of either the internal or external transition function to

determine the new state [2].

A coupled model is defined by:

DN = < X, Y, D, {Mi}, {Ii}, {Zi , j}>

X : a set of input events.

Y : a set of output events.

D : a set of components.

for each i in D,

 Mi is a componment.

for each i in D { self }, Ii is the influencees of i.
For each j in Ii,

 Zi , j is the i to j output translation function.

The structure is subject to the constraints that for each

i in D, Mi = < Xi, Si, Yi, int i, ext i, con i , i, tai > is a P-

DEVS, Ii is a subset of D { self }, i is not in Ii , and

Zself, j : Xself Xj

Zi , self : Yi Yself

Zi, j : Xi Yj

Here self refers to the coupled model itself and is a de-

vice for allowing specification of external input and exter-

nal output couplings.

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

In [3] the Cell-DEVS formalism was introduced. When

executing cellular models, large amounts of compute time

are required, and the use of a discrete time base poses

restrictions in the precision of the model. The Timed Cell-

DEVS formalism tries to solve these problems by using

the DEVS paradigm to define a cell space where each cell

is defined as a DEVS atomic model. The goal is to build

discrete event cell spaces, improving their definition by

making the timing specification more expressive. In [4] it

was revised to eliminate all the sequential restrictions the

original formalism presented. A parallel Cell-DEVS ato-

mic model can be formally defined as:

TDC = < Xb, Yb, I, S, , N, d, int, ext, con, , con, , D

>

Two confluent functions have been added to the origi-

nal Cell-DEVS definition: con and con. In addition, the

external transition and output functions have been changed

to handle input/output bags (Xb and Yb) for each cell. The

external transition function activates the local computa-

tion, whose result is delayed using one of both kinds of

constructions: transport or inertial delays. The output func-

tion executes prior to the internal transition function,

transmitting the present values to other models. The int

function is in charge of keeping the values for a transport

delay. The following figure shows a sketch of the contents

of each cell.

Figure 1. Cell’s definition [4].

The confluent transition function con is activated when

there are collisions between internal and external events. It

must activate the confluent local transition function con,

whose goal is to analyze the present values for the input

bags, and to provide a unique set of input values for the

cell. In this way, the cell will compute the next state by

using the values chosen by the modeler.

The external transition function activates the local

computation, whose result is delayed using one of both

kinds of constructions. The output function, which exe-

cutes prior to the internal transition function, is in charge

to transmit the present values to other models.

In case of a collision, the confluent transition function

chooses members from the bag, and updates the inputs for

the cell. After, it deletes the unnecessary members of the

bag. As = 0, an internal transition function is scheduled

immediately. The modeler should define the behavior for

the con function in each cell, thus allowing the definition

for this behavior under collisions.

DEVS separates the model from the actual simulation.

The simulation mechanism is implemented by abstract

simulators. In [5] an abstract simulator for the Parallel

DEVS formalism was presented. Based on that work, we

defined an abstract simulator for distributed simulation,

which is the subject of this paper. In a distributed envi-

ronment, there is considerable communications overhead

which can not be ignored. Therefore, the abstract simulator

should restrict the communications over the network to a

minimum. The goal of this work is to present an abstract

simulator developed to execute DEVS and Cell-DEVS

models using standard tools for distributed and parallel

programming. Several abstract simulators were imple-

mented to allow parallel execution in the CD++ toolkit [9],

entitling to have efficient execution of cellular models.

2. Parallel DEVS Abstract Simulators

As it was mentioned earlier, the modularity of the Par-

allel DEVS formalism makes it possible to separate the

model from the simulation mechanism. The original ab-

stract simulator mechanism [6] was revised to suit the

Parallel DEVS formalism [2].

As in the existing definition of the abstract simulator

[2], the DEVS processors will be specialized into two

different simulation engines, simulator and coordinator.
Basically, the role of the simulator is to invoke an atomic

model transition and external event functions. On the other

hand, a coordinator is attached to a coupled model and has

the responsibility of translating its children’ output events

and of keeping the time of the next imminent/s depend-

ants.

Every coordinator has a set of child DEVS processors.

When a simulation run in distributed fashion, coordina-

tor’s children need not be executing on the same proces-

sor. If every coupled model is associated to only one coor-

dinator, every message sent to child processors running on

a different CPU will require interprocess communication.

Figure 2(a) illustrates this case. It shows a coordinator

sending a message to its 8 children distributed on two

CPUs. Four interprocess messages are required for the

four children running on processor 1.

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

(a)

(b)

Figure 2. (a) A single coordinator sending a message to all
its child processor. Dashed lines = interprocess messages. (b) A
master- slave pair sending messages to all their children proces-
sors.

If the number of children processors is high (for in-

stance, in coupled Cell-DEVS), the number of messages

sent across the network will also be significant. This can

be avoided if every coupled model have more than one

coordinator. Figure 2(b) illustrates this case. For the same

coupled model, there are two coordinators, one in proces-

sor 0 and another in processor 1. In this case, only one

message is sent over the network.

For coupled models, coordinators will be required on

each processor where a child processor is running. Chil-

dren processors will send messages to the local coordina-

tor, which will decide how to handle the received mes-

sages. Upon receiving a message from a child, a coordina-

tor could forward this message to all the coordinators for

the model. This would require all coordinators to know

about the others. For instance, if coupled model A is a

child of coupled model B, then B´s coordinators have to

interact with A´s coordinators. If handled uncarefully, this

communication can turn out producing the same number

of interprocess messages we wanted to avoid. In such a

scenario, a way of keeping the number of interprocess

messages to a minimum is to have only one of the coordi-

nators to handle all messages to the parent´s model local

coordinator. This specialized coordinator will be known as

a master coordinator and all other model coordinators

will be slaves. The master coordinator for model A will

then be the only one that can receive or send messages to

B´s local coordinator.
With the exception of the top level DEVS processor,

known as root coordinator, all DEVS processors will have

a parent coordinator. To set the parent-child relationship

on a distributed environment, the following rules apply,

a. for each simulator, the parent coordinator will be

the parent’s model local processor (it is guaranteed that

this will exist)

b. for each slave coordinator, the parent coordinator

will be the model’s master coordinator.

c. For each master coordinator, the parent coordinator

will be the parent’s model local processor; just as if it were

a simulator.

DEVS processors exchange messages which can be

classified into two categories: synchronization messages

and content messages. The synchronization messages are (

@ , t) and (done, t) and the contents messages (y, t) and

(q , t). It is assumed that any two messages sent from the

same source to the same destination will preserve their

original ordering. The P-DEVS formalism states that all

imminent model’s output functions must be executed

before any transition function. All outputs are collected

and only after they have been sorted, the transition func-

tions can be activated. These activities are co-ordinated

using the synchronization messages.

We will now proceed to describe the abstract simulator

mechanism for the simulator, master coordinator, slave
coordinator and root coordinator.

The simulator attached to an atomic model has been

implemented as in [2], with some minor changes:

when a (@ , t) message is received

if t = tN then

 y := (s)

 send (y , t) to the parent coordinator

 send (done, t) to the parent coordinator

end if
else raise error

end when

when a (q , t) message is received

lock the bag

Add event q to the bag

unlock the bag

end when

when a (* , t) message is received

case tL t < tN

 e := t - tL

 s := ext(s, e, bag)
 empty bag

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

end case

case t = tN and bag is empty

 s := int(s)

end case

case t = tN and bag not is empty

 s := con(s, bag)
 empty bag

end case

case t > tN or t < tL

 raise error

end case

tL := t

tN := ta (s)
send (done, tN) to parent coordinator

end when

The implementation of a master coordinator is now

given.

when a (@ , t) message is received from parent coor-

dinator

if t = tN then

 tL := t

for all imminent child processors i with minimum tN

send (@, t) to child i
cache i in the synchronize set

end for

wait until (done, t)’s have been received from all im-

minent processors

send (done, t) to parent coordinator

end if
else raise error

end when

For a master coordinator the set of child processors is

made by the set of slave coordinators, the set of local

child simulators and the set of child local master coordi-

nators. A processor is local if it is executing on the same

processor.

To simplify the next description it is necessary to de-

fine the function coordinator.

coordinator : M x P C

 where

M is a coupled model

P is a DEVS processor

S is a coordinator (master or slave)

coordinator (M, j) = i , where i is the coordinator as-

sociated to coupled M that is local to child j. The follow-

ing restrictions apply for the function to be well defined:

j is a DEVS processor associated to a dependant of M

i is one of the coordinators associated with M

Now we can describe the behavior of a master coordi-

nator upon receiving an output message. Two cases need

to be distinguished:

an output message (y , t) received from a child i that

is not a slave coordinator

an output message (y , i, t) forwarded from a slave
coordinator that received (y , t) from a local child i.

when a (y , t) message is received from child i

for all influencees, j of child i
 if j is a local processor

 q := zi,j (y)

 send (q, t) to child j

 cache j in the synchronize set

 else

 s := coordinator(self, j)

 if s slave-sync set then

 send (y, i, t) to s

 cache s in the slave-sync set

 cache s in the synchronize set

 end if

 end if

end for

if self Ii (y is to be transmitted upward) then

 y := zi, self (y)

 send (y, t) to parent coordinator

end if

clear slave-sync set

end when

when a (y , i, t) message is received from a slave s

cache s in the slave-sync set and proceed as if a (y , t)
message had been received from child i

end when

Here slave-sync is used to avoid forwarding an output

message twice to a slave coordinator. It is important to

note that instead of forwarding a (q, t) message to a slave
coordinator, a (y, i, t) is sent. This is done to reduce the

number of messages sent across the network. A slave

coordinator might be the parent coordinator for more than

one of the influencees of i. If (q , t) messages were to be

forwarded, then there will be one (q, t) message for each

influencee of i. For Cell–DEVS models, this can be an

important overhead. Instead, just one (y, i, t) message is

sent across the network and it will be the responsibility of

the slave coordinator to generate the appropiate (q, t)
messages.

As mentioned in [2], all children ready for a transition

are cached in a synchronize set to later distinguish active

from inactive components.

when a (q , t) message is received from parent coor-

dinator

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

lock the bag

Add event q to the bag

unlock the bag

end when

when a (* , t) message is received from parent coor-

dinator

if tL t tN

 for all q bag

 for all receivers of q, j Iself
 if j is a local processor

 q := zself, j (q)

 send (q, t) to j

 cache j in the synchronize set

 else

s := coordinator(self, j)

 if s slave-sync set then

 send (q , t) to s

 cache s in the slave-sync set

 cache s in the synchronize set

 end if

 end if

 end for

 clear slave-sync set

 end for

 empty bag

 for all i in the synchronize set

 send (*, t) to i

 end for

 wait until all (done, tN)’s are received

 tL := t
 tN := minimum of components’ tN’s

 clear the synchronize set

 send (done, tN) to parent coordinator

else raise an error

end when

When the output events are routed down to child proc-

essors, if the message is to be forwarded to a slave coordi-
nator the z translation will not be applied. Instead, the

original q message will be sent. Therefore, care must be

taken not to forward a message twice to a slave coordina-
tor. Here again, the slave-sync is used for that purpose.

The slave coordinator will be introduced next.

when a (@ , t) message is received from parent coor-

dinator

if t = tN then

 tL := t

for all imminent child processors i with minimum tN

send (@, t) to child i
cache i in the synchronize set

end for

wait until (done, t)’s have been received from all im-

minent processors

send (done, t) to parent coordinator

end if
else raise error

end when

As it can be noticed, there is no difference on how both

master and slave coordinators handle a (@, t). However,

the set of child processor of a slave coordinator is differ-

ent. For a slave coordinator the set of child processors is

made by the set of local child simulators and the set of

local child master coordinators, only.

when a (y , t) message is received from child i
sent_to_master := false

for all influencees, j of child i

 if j is a local processor

 q := zi,j (y)

 send (q, t) to child j

 cache j in the synchronize set

 else

 if not sent_to_master

 send (y, t) to parent coordinator

 sent_to_master := true

 end if

 end if

end for

if self Ii (y is to be transmitted upward) then

 if not sent_to_master

 send (y, t) to parent coordinator

 end if

end if

end when

when a (y , i, t) message is received from parent co-

ordinator

sent_to_master := true

proceed as if a (y , t) message had been received from

child i

end when

When an output event is received from a child i, the

slave coordinator sorts the message to the influencees of i.
If any influencee is local, the z function is applied a (q , t)

message is sent. If there are non-local influencees, then the

output event is sent to the master coordinator, who will

then sort the message to other slave coordinators if neces-

sary. Only one (y , t) message should be forwarded to the

master coordinator.
When the slave coordinator receives an output event

that has been forwarded by the master coordinator on

behalf of child i, it will handle the event as if i had been

local, but no (y, t) messages will be forwarded back to the

master coordinator if there is a non-local influencee. This

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

is to avoid infinite loops of messages being forwarded

back and forth.

when (q,t) message is received from parent coordinator

lock the bag

Add event q to the bag

unlock the bag

end when

when (*,t) message is received from parent coordinator

if tL t tN

 for all q bag

 for all receivers of q, j Iself
 if j is a local processor

 q := zself, j (q)

 send (q, t) to j

 cache j in the synchronize set

 else

 do nothing

 end if

 end for

end for

 empty bag

 for all i in the synchronize set

 send (*, t) to i

 end for

 wait until all (done, tN)’s are received

 tL := t

 tN := minimum of components’ tN’s

 clear the synchronize set

 send (done, tN) to parent coordinator

else raise an error

end when

The root coordinator is a special processor that is

above the topmost coordinator. It is responsible for driving

the simulation and advancing the virtual simulation time.

Our root coordinator can also handle external events which

are stored in a sorted queue of events.

Root coordinator

load queue of external events and sort them by arrival

time.

t := minimum of tN of topmost coordinator and tN of

queue.

while t
if t = tN of queue

 for all q in queue with time t

 send (q , t) to topmost coordinator

 end for

end if

if t = tN of topmost coordinator

 send (@, t) to topmost coordinator

 wait until (done, t) is received from it

end if

send (*, t) to topmost coordinator

wait until (done, t) is received from it

end while

raise simulation completed

This abstract simulator mechanism will be able to han-

dle both, Parallel DEVS and Parallel Cell-DEVS models

because the latter one is a specialization of the first one.

3. Parallel CD++

CD++ [7] is a modeling tool for the simulation of

DEVS and Cell-DEVS models. This tool has been ex-

tended into Parallel CD++ (PCD++), a tool for the simu-

lation of Parallel DEVS and Parallel Cell-DEVS models

on a distributed environment.

PCD++ has been built on top of a modified version of

Warped [8]. All DEVS processors have been defined as

Warped objects. Warped defines a simulation API and

provides a set of different simulation kernels: a sequential

kernel for the execution of models in standalone mode, a

TimeWarp kernel for parallel execution using optimistic

synchronization mechanisms and a NoTime kernel, for

parallel and standalone simulation that uses no synchroni-

zation at all. In addition, we have developed a kernel that

uses pessimistic synchronization mechanisms. For the

parallel kernels, Warped uses MPI for communication

between CPUs. The current PCD++ has been succesfully

tested with the NoTime kernel.

Figure 3. PCD++ layered architecture

In the abstract simulator mechanism that we presented

for distributed environments, the time advance is con-

trolled by the root coordinator. Therefore, no synchroniza-

tion is required because no processor will execute an out

of order event. The NoTime kernel is very well suited for

this case because it provides the necessary communication

primitives and avoids the overhead of TimeWarp. Figure 4

shows the Warped API.

MPI

WARPED

PCD++

MODEL

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

class TimeWarp {

// Methods the user defines

virtual void initialize();

virtual void finalize();

virtual void executeProcess();

BasicState* allocateState();

//Simulation kernel services

void sendEvent (BasicEvent *);

BasicEvent* getEvent();

};

class BasicEvent {

int size;

Vtime sendTime;

Vtime recvTime;

int sender;

int dest;

}

class BasicState {

BasicState* copyState(BasicState*);

}

Figure 4. Warped API

To define new atomic models, PCD++ provides an ab-

stract class Atomic that the modeler has to extend using

inheritance. Coupled models, need no programming. In-

stead, they are defined writing a model file using a specifi-

cation language PCD++ provides for that purpose. This

specification language is also used for the definition of

Cell-DEVS models.

class Atomic {

// Methods the user should def

Model& internalFunction();

Model& externalFunction (MessageBag&)

Model& outputFunction();

Model& confluentFunction();

ModelState* allocateState();

//Simulation kernel services

void sendOutput (Port&, BasicMsgValue*);

const Vtime& lastChange();

void holdIn(state, Vtime);

};

Figure 5. The Atomic class

Finally, having defined the model and the set of avail-

able machines, it only remains to define how the models

will be distributed. The modeler has to create a partition

file that tells PCD++ which machine each atomic model

should run on. This tells PCD++ where each simulator

should be placed. The location of the coordinators is de-

cided by PCD++.

4. A heat diffusion model

PCD++ has been used to simulate a heat diffusion

model. A surface is represented by a 50 x 50 cellular

automaton, each cell containing a temperature. In each

simulation cycle, the temperature of the cell is updated to

the average of the values of the neighborhood. In addition,

a heat generator is connected to the cells (25, 25) and (10,

10), generating temperatures in the range [24, 40] with

uniform distribution. Also, a cold generator that creates

temperatures in the range [10, 15] with uniform distribu-

tion, has been connected to the cells (10, 40) and (40, 40).

Both generators create values after x seconds, where x
follows an exponential distribution with mean 50 seconds.

When any of the generators outputs a new value, the cell

to which it is connected will take that value.

The definition of the model using the language pro-

vided by the tool is showed in Figure 6. The top model and

its components are defined between lines 1 and 4. Between

lines 6 and 26, the model representing the surface is de-

fined. It is composed of a cellular automata of 50x50 cells

with an initial temperature of 24° C. In the lines 28 and 29

the local transition function is defined.

Lines 31 and 32 define the transition function upon re-

ceiving an external event from the heat generator, and

lines 34 and 35 for transition triggered by external events

coming from the cold generator. Lines 37 to 47 define the

distribution parameters for the generators.

01 [top]

02 components : surface generatorHeat@Generator

 generatorCold@generator

03 link : out@generatorHeat inputHeat@surface

04 link : out@generatorCold inputCold@surface

05

06 [surface]

07 type : cell

08 width : 50

09 height : 50

10 delay : transport

11 defaultDelayTime : 100

12 border : wrapped

13 neighbors : (-1,-1) (-1,0) (-1,1)

14 neighbors : (0,-1) (0,0) (0,1)

15 neighbors : (1,-1) (1,0) (1,1)

16 initialvalue : 24

17 in : inputHeat inputCold

18 link : inputHeat in@surface(25,25)

19 link : inputHeat in@surface(10,10)

20 link : inputCold in@surface(40,40)

21 link : inputCold in@surface(10,40)

22 localtransition : heat-rule

23 portInTransition : in@surface(25,25) setHeat

24 portInTransition : in@surface(10,10) setHeat

25 portInTransition : in@surface(40,40) setCold

26 portInTransition : in@surface(10,40) setCold

27

28 [heat-rule]

29 rule : { ((0,0) + (-1,-1) + (-1,0) + (-1,1) + (0,-1)

 + (0,1) + (1,-1) + (1,0) + (1,1)) / 9 } 10000 { t }

30

31 [setHeat]

32 rule : { uniform(24,40) } 1000 { t }

33

34 [setCold]

35 rule : { uniform(-10,15) } 1000 { t }

36

37 [generatorHeat]

38 distribution : exponential

39 mean : 50

40 initial : 1

41 increment : 0

42

43 [generatorCold]

44 distribution : exponential

45 mean : 50

46 initial : 1

47 increment : 0

Figure 6. Definition of the heat diffusion model

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

The model has been simulated on a 12 PC network

running Linux. Different tests were done, each with a

different model partition.

01 0 : generatorHeat generatorCold

02 0 : surface(0,0)..(24,24)

03 1 : surface(25,0)..(49,24)

04 2 : surface(0,25)..(24,49)

05 3 : surface(25,25)..(49,49)

Figure 7. Model partition for 4 processors.

Figure 7 shows a model partition for running the heat

diffusion model on 4 machines. There are a total of 252

simulators that have to be assigned to 4 CPUs. Line 1

defines the location for the simulators associated to the

generatorHeat and generatorCold atomic models. Lines 2

to 5 set where the simulators for the cells of the surface

model will be running.

In addition, there are two coupled models: the top

model and the surface model. For the surface model,

PCD++ will create four coordinators: a master coordina-

tor running on processor 0 and three slave coordinators,

each running in one of the CPUs 1 to 3. For the top model,

there will only be one master coordinator on processor 0.

The results of running the simulation on 1, 2, 4 and 8

processors are shown below. For this test, the simulation

was configured to use the NoTimekernel.

processors Time (sec)

1 590

2 476

4 383

8 369

Figure 8. Simulation execution time

As it can be appreciated, there is a significant reduction

in the simulation time as more processors are used. The

speedups are not exponential, but they add up to the per-

formance provided by Cell-DEVS. The following figure

shows the execution time of Cell-DEVS models (ACA)

against traditional Cellular Automata for this particular

model.

0

100

200

300

400

500

600

5 10 50 100

Cell's delay (milliseconds)

E
x
e

c
u

ti
o

n
 t

im
e

 p
e

r

tr
a

n
s
it
io

n

AC

ACA

Figure 9. Simulation execution times of Cell-DEVS models

5. Conclusion

CD++ is a tool for the simulation of Parallel DEVS and

Cell-DEVS models that implements this distributed ab-

stract simulator mechanism. The tool has proven to reduce

the execution time models with a high number of simulta-

neous events.

Distributed environments have a communications

overhead that can be quite significant. The extension of the

Parallel-DEVS abstract simulator here presented keeps to

a minimum the number of messages sent across machines.

This was possible by assigning each coupled model one

master coordinator and zero, one or more slave coordina-

tors. Messages that have to cross a processor boundary are

always sent between master and slave coordinators, which

then forward the received messages to their local depend-

ants.

A new abstract simulator that will allow for out of or-

der execution of events is being studied. For this new

mechanism the Warped TimeWarp kernel will be used.

References

[1] ZEIGLER, B.; KIM, T.; PRAEHOFER, H. "Theory of Mode-

ling and Simulation: Integrating Discrete Event and Continuous

Complex Dynamic Systems". Academic Press. 2000.

[2] ALEX C. CHOW; BERNARD P. ZEIGLER. Parallel DEVS:

A parallel, hierarchical, modular modeling formalism. In Winter

Simulation Conference Proceedings, Orlando, Florida, 1994.

SCS.

[3] WAINER, G.; GIAMBIASI, N. "Timed Cell-DEVS: mode-

lling and simulation of cell spaces ". In "Discrete Event Mode-

ling & Simulation: Enabling Future Technologies", to be publis-

hed by Springer-Verlag. 2001.

[4] WAINER, G. “Improved cellular models with parallel Cell-

DEVS”. In Transactions of the SCS. June 2000.

[5] ALEX C. CHOW, DOO H. KIM; BERNARD P. ZEIGLER.

"Abstract Simulator for the parallel DEVS formalism". AI, Simu-

lation, and Planning in High Autonomy Systems. Dec., 1994

[6] BERNARD P. ZEIGLER. Object Oriented Simulation with

Hierarchical, Modular Models. Academic Press, San Diego,

California, 1990.

[7] RODRIGUEZ, D.; WAINER, G. "New Extensions to the

CD++ tool". In Proceedings of SCS Summer Multiconference on

Computer Simulation. 1999.

[8] MARTIN, D.; MCBRAYER, T.; RADHAKRISHNAN, R.;

WILSEY, P. "TimeWarp Parallel Discrete Event Simulator''.

Technical Report. Computer Architecture Design Laboratory,

University of Cincinnati. December 1997.

Proceedings of the 36th Annual Simulation Symposium (ANSS’03)

1080-241X/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

