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Abstract 
 

Cell-DEVS is a formalism intended to model complex 

physical systems as cell spaces. Cell-DEVS allow descri-
bing cellular models using timing delay constructions, 

allowing simple definition of complex timing. The original 

specificationw sere extended to permit parallel specifica-
tion of these models, and an associated simulation mecha-

nism allows their execution. Here we present some imple-

mentation issues related with the definition of parallel 
simulators for Cell-DEVS. 

 

 

1. Introduction 

 
The DEVS formalism [1] provides a framework for the 

construction of hierachical models in a modular manner, 

allowing for model reuse and reducing development time 

and testing. The execution of complex models requires a 

computing power that stand alone computers do not pro-

vide. Therefore, the original DEVS formalism was revised 

and the Parallel DEVS (P-DEVS) [2] formalism was pro-

posed. P-DEVS defines a function to handle transition 

collisions and eliminates the use of a sequential function to 

resolve simultaneous events. The revision eliminates all 

restrictions that forced the original DEVS definition to 

sequential execution.  

A P-DEVS is composed by atomic models that can be 

coupled in a hierarchical and modular fashion. A P-DEVS 

atomic is defined as: 

M = < X, S, Y, int, ext, con , , ta > 
where  

X: a set of input events. 

S: a set of sequential states. 

Y: a set of output events. 

int: S  S: internal transition function. 

ext: Q x Xb  S: external transition function, 

 Xb is a set of bags over elements in X, 

ext ( s, e,  ) = ( s, e ) 

con: S x Xb  S: confluent transition function. 

 : S  Yb : output function. 

Ta : S  R0   : time advance function, 

   where Q = { ( s, e ) | s  S, 0 < e < ta(s)} 

   e is the elapsed time since last state transition. 

 

Internal transitions execute at the next event time for 

all imminent components receiving no external events. 

Likewise, external events generated by these imminents 

trigger external transitions at receptive non-imminents 

(those components for which there are no internal transi-

tions scheduled for the receiving time). However, for those 

components which the internal and external transitions 

collide, the confluent transition function is employed in-

stead of either the internal or external transition function to 

determine the new state [2]. 

A coupled model is defined by: 

DN = < X, Y, D, {Mi}, {Ii}, {Zi , j}> 

X : a set of input events. 

Y : a set of output events. 

D : a set of components. 

for each i in D, 

 Mi is a componment. 

for each i in D  { self }, Ii is the influencees of i. 
For each j in Ii,  

 Zi , j  is the i to j output translation function. 

 

The structure is subject  to the constraints that for each 

i in D, Mi = < Xi, Si, Yi, int i, ext i, con i , i, tai > is a P-

DEVS, Ii is a subset of D  { self }, i is not in Ii , and 

Zself, j : Xself    Xj 

Zi , self : Yi    Yself 

Zi, j : Xi    Yj 
 

Here self refers to the coupled model itself and is a de-

vice for allowing specification of external input and exter-

nal output couplings. 
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In [3] the Cell-DEVS formalism was introduced. When 

executing cellular models, large amounts of compute time 

are required, and the use of a discrete time base poses 

restrictions in the precision of the model. The Timed Cell-

DEVS formalism tries to solve these problems by using 

the DEVS paradigm to define a cell space where each cell 

is defined as a DEVS atomic model. The goal is to build 

discrete event cell spaces, improving their definition by 

making the timing specification more expressive. In [4] it 

was revised to  eliminate all the sequential restrictions the 

original formalism presented. A parallel Cell-DEVS ato-

mic model can be formally defined as:  

 

TDC = < Xb, Yb, I, S, , N, d, int, ext, con, , con, , D 

> 

 

Two confluent functions have been added to the origi-

nal Cell-DEVS definition: con and con. In addition, the 

external transition and output functions have been changed 

to handle input/output bags (Xb and Yb) for each cell. The 

external transition function activates the local computa-

tion, whose result is delayed using one of both kinds of 

constructions: transport or inertial delays. The output func-

tion executes prior to the internal transition function, 

transmitting the present values to other models. The int 

function is in charge of keeping the values for a transport 

delay. The following figure shows a sketch of the contents 

of each cell.  

 
Figure 1. Cell’s definition [4]. 
 

The confluent transition function con is activated when 

there are collisions between internal and external events. It 

must activate the confluent local transition function con, 

whose goal is to analyze the present values for the input 

bags, and to provide a unique set of input values for the 

cell. In this way, the cell will compute the next state by 

using the values chosen by the modeler.  

 

The external transition function activates the local 

computation, whose result is delayed using one of both 

kinds of constructions. The output function, which exe-

cutes prior to the internal transition function, is in charge 

to transmit the present values to other models.  

 

In case of a collision, the confluent transition function 

chooses members from the bag, and updates the inputs for 

the cell. After, it deletes the unnecessary members of the 

bag. As  = 0, an internal transition function is scheduled 

immediately. The modeler should define the behavior for 

the con function in each cell, thus allowing the definition 

for this behavior under collisions.  

 

DEVS separates the model from the actual simulation. 

The simulation mechanism is implemented by abstract 

simulators. In [5] an abstract simulator for the Parallel 

DEVS formalism was presented. Based on that work, we 

defined an abstract simulator for distributed simulation, 

which is the subject of this paper. In a distributed envi-

ronment, there is considerable communications overhead 

which can not be ignored. Therefore, the abstract simulator 

should restrict the communications over the network to a 

minimum. The goal of this work is to present an abstract 

simulator developed to execute DEVS and Cell-DEVS 

models using standard tools for distributed and parallel 

programming. Several abstract simulators were imple-

mented to allow parallel execution in the CD++ toolkit [9], 

entitling to have efficient execution of cellular models. 

 

2. Parallel DEVS Abstract Simulators 

 
As it was mentioned earlier, the modularity of the Par-

allel DEVS formalism makes it possible to separate the 

model from the simulation mechanism. The original ab-

stract simulator mechanism [6] was revised to suit the 

Parallel DEVS formalism [2]. 

 

As in the existing definition of the abstract simulator 

[2], the DEVS processors will be specialized into two 

different simulation engines, simulator and coordinator.  
Basically, the role of the simulator is to invoke an atomic 

model transition and external event functions. On the other 

hand, a coordinator is attached to a coupled model and has 

the responsibility of translating its children’ output events 

and of keeping the time of the next imminent/s depend-

ants. 

 

Every coordinator has a set of child DEVS processors. 

When a simulation run in distributed fashion, coordina-

tor’s children need not be executing on the same proces-

sor. If every coupled model is associated to only one coor-

dinator, every message sent to child processors running on 

a different CPU will require interprocess communication. 

Figure 2(a) illustrates this case. It shows a coordinator 

sending a message to its 8 children distributed on two 

CPUs. Four interprocess messages are required for the 

four children running on processor 1.  
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(a) 

 

 
(b) 

Figure 2. (a) A single coordinator sending a message to all 
its child processor. Dashed lines = interprocess messages. (b) A 
master- slave pair sending messages to all their children proces-
sors. 

 

If the number of children processors is high (for in-

stance, in coupled Cell-DEVS), the number of messages 

sent across the network will also be significant. This can 

be avoided if every coupled model have more than one 

coordinator. Figure 2(b) illustrates this case. For the same 

coupled model, there are two coordinators, one in proces-

sor 0 and another in processor 1. In this case, only one 

message is sent over the network. 

For coupled models, coordinators will be required on 

each processor where a child processor is running. Chil-

dren processors will send messages to the local coordina-

tor, which will decide how to handle the received mes-

sages. Upon receiving a message from a child, a coordina-

tor could forward this message to all the coordinators for 

the model. This would require all coordinators to know 

about the others. For instance, if coupled model A is a 

child of coupled model B, then B´s coordinators have to 

interact with A´s coordinators. If handled uncarefully, this 

communication can turn out producing the same number 

of interprocess messages we wanted to avoid. In such a 

scenario, a way of keeping the number of interprocess 

messages to a minimum is to have only one of the coordi-

nators to handle all messages to the parent´s model local 

coordinator. This specialized coordinator will be known as 

a master coordinator and  all other model coordinators 

will be slaves. The master coordinator for model A will 

then be the only one that can receive or send messages to 

B´s local coordinator. 
With the exception of the top level DEVS processor, 

known as root coordinator, all DEVS processors will have 

a parent coordinator. To set the parent-child relationship 

on a distributed environment, the following rules apply, 

a. for each simulator, the parent coordinator will be 

the parent’s model local processor (it is guaranteed that 

this will exist) 

b. for each slave coordinator, the parent coordinator 

will be the model’s master coordinator. 

c. For each master coordinator, the parent coordinator 

will be the parent’s model local processor; just as if it were 

a simulator.  

DEVS processors exchange messages which can be 

classified into two categories: synchronization messages 

and content messages. The synchronization messages are ( 

@ , t) and ( done, t ) and the contents messages ( y, t ) and 

( q , t ). It is assumed that any two messages sent from the 

same source to the same destination will preserve their 

original ordering. The P-DEVS formalism states that all 

imminent model’s output functions must be executed 

before any transition function. All outputs are collected 

and only after they have been sorted, the transition func-

tions can be activated. These activities are co-ordinated 

using the synchronization messages. 

We will now proceed to describe the abstract simulator 

mechanism for the simulator, master coordinator, slave 
coordinator and root coordinator. 

The simulator attached to an atomic model has been 

implemented as in [2], with some minor changes: 

 

when a ( @ , t ) message is received 

if t = tN then 

 y := (s) 

 send ( y , t ) to the parent coordinator 

 send ( done, t ) to the parent coordinator 

end if 
else raise error 

end when 

 

when a ( q , t ) message is received 

lock the bag 

Add event q to the bag 

unlock the bag 

end when 

 

when a ( * , t ) message is received 

case tL  t < tN 

 e := t - tL 

 s := ext( s, e, bag ) 
 empty bag 
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end case 

case t = tN  and bag is empty 

 s := int( s )  

end case 

case t = tN  and bag not is empty 

 s := con( s, bag )  
 empty bag 

end case 

case  t > tN or t < tL 

 raise error 

end case 

tL := t 

tN := ta (s) 
send ( done, tN) to parent coordinator 

end when 

 

The implementation of a master coordinator is now 

given. 

 

when a ( @ , t ) message is received from parent coor-

dinator 

if t = tN then 

 tL := t 

for all imminent child processors i with minimum tN 

send ( @, t ) to child i 
cache i in the synchronize set 

end for 

wait until ( done, t )’s have been received from all im-

minent processors 

send ( done, t ) to parent coordinator 

end if 
else raise error 

end when 

 

For a master coordinator the set of child processors is 

made by the set of slave coordinators, the set of local 

child simulators and  the set of child local master coordi-

nators. A processor is local if it is executing on the same 

processor. 

To simplify the next description it is necessary to de-

fine the function coordinator. 

 

coordinator : M x P  C 

   where  

M is a coupled model 

P is a DEVS processor 

S is a coordinator ( master or slave) 

 

coordinator ( M, j) = i , where i is the  coordinator as-

sociated to coupled M that is local to child j. The follow-

ing restrictions apply for the function to be well  defined: 

 

j is a DEVS processor associated to a dependant of M 

 

i is one of the coordinators associated with M 

Now we can describe the behavior of a master coordi-

nator upon receiving an output message. Two cases need 

to be distinguished:  

 

an output message ( y , t ) received from a child i that 

is not a slave coordinator  

 

an output message ( y , i, t ) forwarded from a slave 
coordinator that received ( y , t ) from a local child i. 

when a ( y , t ) message is received from child i  

for all influencees, j of child i 
 if j is a local processor 

  q := zi,j ( y ) 

  send ( q, t ) to child j 

  cache j in the synchronize set 

 else  

  s := coordinator( self, j) 

  if s  slave-sync set then 

      send ( y, i, t) to s 

      cache s in the slave-sync set 

    cache s in the synchronize set 

  end if 

 end if 

end for 

if self  Ii ( y is to be transmitted upward) then  

 y := zi, self  ( y ) 

 send ( y, t ) to parent coordinator 

end if 

clear slave-sync set 

end when 

 

when a ( y , i, t ) message is received from a slave s 

cache s in the slave-sync set and proceed as if a ( y , t ) 
message had been received from child i  

end when 

 

Here slave-sync is used to avoid forwarding an output 

message twice to a slave coordinator. It is important to 

note that instead of forwarding a (q, t) message to a slave 
coordinator, a (y, i, t) is sent. This is done to reduce the 

number of messages sent across the network. A slave 

coordinator might be the parent coordinator for more than 

one of the influencees of i. If (q , t) messages were to be 

forwarded, then there will be one (q, t) message for each 

influencee of i. For Cell–DEVS models, this can be an 

important overhead. Instead, just one (y, i, t) message is 

sent across the network and it will be the responsibility of 

the slave coordinator to generate the appropiate  (q, t) 
messages.  

As mentioned in [2], all children ready for a transition 

are cached in a synchronize set to later distinguish active 

from inactive components. 

 

when a ( q , t ) message is received from parent coor-

dinator 
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lock the bag 

Add event q to the bag 

unlock the bag 

end when 
 

when a ( * , t ) message is received from parent coor-

dinator 

if tL  t  tN 

 for all q  bag 

  for all receivers of q,  j  Iself 
     if j is a local processor 

  q := zself, j (q) 

  send ( q, t ) to j 

  cache j in the synchronize set 

     else 

s := coordinator( self, j) 

  if s  slave-sync set then 

      send ( q , t ) to s 

      cache s in the slave-sync set 

    cache s in the synchronize set 

  end if 

     end if 

   end for 

  clear slave-sync set 

 end for 

 empty bag 

 for all i in the synchronize set 

  send ( *, t ) to i 

 end for 

 wait until all ( done, tN)’s are received 

 tL := t 
 tN := minimum of components’ tN’s  

 clear the synchronize set  

 send ( done, tN ) to parent coordinator 

else raise an error 

end when 
 

When the output events are routed down to child proc-

essors, if the message is to be forwarded to a slave coordi-
nator the z translation will not be applied. Instead, the 

original q message will be sent. Therefore, care must be 

taken not to forward a message twice to a slave coordina-
tor. Here again, the slave-sync is used for that purpose.  

 

The slave coordinator will be introduced next. 

when a ( @ , t ) message is received from parent coor-

dinator 

if t = tN then 

 tL := t 

for all imminent child processors i with minimum tN 

send ( @, t ) to child i 
cache i in the synchronize set 

end for 

wait until ( done, t )’s have been received from all im-

minent processors 

send ( done, t ) to parent coordinator 

end if 
else raise error 

end when 

 

As it can be noticed, there is no difference on how both 

master and slave coordinators handle a (@, t ). However, 

the set of child processor of a slave coordinator is differ-

ent. For a slave coordinator the set of child processors is 

made by the set of local child simulators and  the set of 

local child master coordinators, only. 

 

when a ( y , t ) message is received from child i  
sent_to_master := false 

for all influencees, j of child i 

 if j is a local processor 

  q := zi,j ( y ) 

  send ( q, t ) to child j 

  cache j in the synchronize set 

 else  

  if not sent_to_master 

  send ( y, t ) to parent coordinator 

  sent_to_master := true 

  end if 

 end if 

end for 

if self  Ii ( y is to be transmitted upward) then  

 if not sent_to_master 

  send ( y, t ) to parent coordinator 

 end if 

end if 

end when 

 

when a ( y , i, t ) message is received from parent co-

ordinator 
 

sent_to_master := true 

proceed as if a ( y , t ) message had been received from 

child i  

end when 

 

When an output event is received from a child i, the 

slave coordinator sorts the message to the influencees of i. 
If any influencee is local, the z function is applied a ( q , t ) 

message is sent. If there are non-local influencees, then the 

output event is sent to the master coordinator, who will 

then sort the message to other slave coordinators if neces-

sary. Only one ( y , t ) message should be forwarded to the 

master coordinator. 
When the slave coordinator receives an output event 

that has been forwarded by the master coordinator on 

behalf of child i, it will handle the event as if i had been 

local, but no ( y, t ) messages will be forwarded back to the 

master coordinator if there is a non-local influencee. This 
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is to avoid infinite loops of messages being forwarded 

back and forth.  

 

when (q,t) message is received from parent coordinator 

lock the bag 

Add event q to the bag 

unlock the bag 

end when 
 

when (*,t) message is received from parent coordinator 

if tL  t  tN 

 for all q  bag 

  for all receivers of q,  j  Iself 
     if j is a local processor 

  q := zself, j (q) 

  send ( q, t ) to j 

  cache j in the synchronize set 

     else 

  do nothing 

     end if 

   end for 

end for 

 empty bag 

 for all i in the synchronize set 

  send ( *, t ) to i 

 end for 

 wait until all ( done, tN)’s are received 

 tL := t 

 tN := minimum of components’ tN’s  

 clear the synchronize set  

 send ( done, tN ) to parent coordinator 

else raise an error 

end when 

 

The root coordinator is a special processor that is 

above the topmost coordinator. It is responsible for driving 

the simulation and advancing the virtual simulation time. 

Our root coordinator can also handle external events which 

are stored in a sorted queue of events. 

 

Root coordinator 

 

load queue of external events and sort them by arrival 

time. 

 

t := minimum of tN of topmost coordinator and tN of 

queue. 

while t   
if t = tN of queue 

 for all q in queue with time t 

  send ( q , t ) to topmost coordinator 

 end for 

end if 

 

if t = tN of topmost coordinator 

 send ( @, t ) to topmost coordinator 

 wait until ( done, t ) is received from it 

end if 

 

send ( *, t ) to topmost coordinator 

wait until ( done, t ) is received from it 

 

end while 

raise simulation completed 

 

This abstract simulator mechanism will be able to han-

dle both, Parallel DEVS and Parallel Cell-DEVS models 

because the latter one is a specialization of the first one. 

 

3. Parallel CD++ 
 

CD++ [7] is a modeling tool for the simulation of 

DEVS and Cell-DEVS models. This tool has been ex-

tended into Parallel CD++ ( PCD++ ), a tool for the simu-

lation of Parallel DEVS and Parallel Cell-DEVS models 

on a distributed environment. 

PCD++ has been built on top of a modified version of 

Warped [8]. All DEVS processors have been defined as 

Warped objects. Warped defines a simulation API and 

provides  a set of different simulation kernels: a sequential 

kernel for the execution of models in standalone mode, a 

TimeWarp kernel for parallel execution using optimistic 

synchronization mechanisms and a NoTime kernel, for 

parallel and standalone simulation that uses no synchroni-

zation at all. In addition, we have developed a kernel that 

uses pessimistic synchronization mechanisms. For the 

parallel kernels, Warped uses MPI for communication 

between CPUs. The current PCD++ has been succesfully 

tested with the NoTime kernel. 

 

 

 

 

 

 

 

 

 

Figure 3. PCD++ layered architecture 
 

In the abstract simulator mechanism that we presented 

for distributed environments, the time advance is con-

trolled by the root coordinator. Therefore, no synchroniza-

tion is required because no processor will execute an out 

of order event. The NoTime kernel is very well suited for 

this case because it provides the necessary communication 

primitives and avoids the overhead of TimeWarp. Figure 4 

shows the Warped API. 

 

 

MPI 

WARPED 

PCD++ 

MODEL 
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class TimeWarp { 

// Methods the user defines  

virtual void initialize(); 

virtual void finalize(); 

virtual void executeProcess(); 

BasicState* allocateState(); 

 

//Simulation kernel services 

void sendEvent (BasicEvent * ); 

BasicEvent* getEvent(); 

}; 

 

class BasicEvent { 

int size; 

Vtime sendTime; 

Vtime recvTime; 

 

int sender; 

int dest; 

} 

 

class BasicState { 

BasicState* copyState( BasicState*); 

} 

Figure 4. Warped API 
 

To define new atomic models, PCD++ provides an ab-

stract class Atomic that the modeler has to extend using 

inheritance. Coupled models, need no programming. In-

stead, they are defined writing a model file using a specifi-

cation language PCD++ provides for that purpose. This 

specification language is also used for the definition of 

Cell-DEVS models. 

 
class Atomic { 

// Methods the user should def  

Model& internalFunction(); 

Model& externalFunction (MessageBag&) 

Model& outputFunction(); 

Model& confluentFunction(); 

ModelState* allocateState(); 

 

//Simulation kernel services 

void sendOutput ( Port&, BasicMsgValue* ); 

const Vtime& lastChange(); 

void holdIn( state, Vtime ); 

}; 

Figure 5. The Atomic class 
 

Finally, having defined the model and the set of avail-

able machines, it only remains to define how the models 

will be distributed. The modeler has to create a partition 

file that tells PCD++ which machine each atomic model 

should run on. This tells PCD++ where each simulator 

should be placed. The location of the coordinators is de-

cided by PCD++.  

 

4. A heat diffusion model 
 

PCD++ has been used to simulate a heat diffusion 

model. A surface is represented by a 50 x 50 cellular 

automaton, each cell containing a temperature. In each 

simulation cycle, the temperature of the cell is updated to 

the average of the values of the neighborhood. In addition, 

a heat generator is connected to the cells (25, 25) and (10, 

10), generating temperatures in the range [24, 40] with 

uniform distribution. Also, a cold generator that creates 

temperatures in the range [10, 15] with uniform distribu-

tion, has been connected to the cells (10, 40) and (40, 40). 

Both generators create values after x seconds, where x 
follows an exponential distribution with mean 50 seconds. 

When any of the generators outputs a new value, the cell 

to which it is connected will take that value. 

The definition of the model using the language pro-

vided by the tool is showed in Figure 6. The top model and 

its components are defined between lines 1 and 4. Between 

lines 6 and 26, the model representing the surface is de-

fined. It is composed of a cellular automata of 50x50 cells 

with an initial temperature of 24° C. In the lines 28 and 29 

the local transition function is defined.  

Lines 31 and 32 define the transition function upon re-

ceiving an external event from the heat generator, and 

lines 34 and 35 for transition triggered by external events 

coming from the cold generator. Lines 37 to 47 define the 

distribution parameters for the generators.  

 
01   [top] 

02 components : surface generatorHeat@Generator  

                  generatorCold@generator  

03   link : out@generatorHeat inputHeat@surface  

04   link : out@generatorCold inputCold@surface  

05  

06   [surface] 

07   type : cell 

08   width : 50 

09   height : 50 

10   delay : transport 

11   defaultDelayTime  : 100 

12   border : wrapped  

13   neighbors : (-1,-1) (-1,0) (-1,1)  

14   neighbors : (0,-1)  (0,0)  (0,1) 

15   neighbors : (1,-1)  (1,0)  (1,1) 

16   initialvalue : 24 

17   in : inputHeat inputCold 

18   link : inputHeat in@surface(25,25) 

19   link : inputHeat in@surface(10,10) 

20   link : inputCold in@surface(40,40) 

21   link : inputCold in@surface(10,40) 

22   localtransition : heat-rule 

23   portInTransition : in@surface(25,25)  setHeat 

24   portInTransition : in@surface(10,10)  setHeat 

25   portInTransition : in@surface(40,40)  setCold 

26   portInTransition : in@surface(10,40)  setCold 

27 

28   [heat-rule] 

29   rule : { ((0,0) + (-1,-1) + (-1,0) + (-1,1) + (0,-1) 

      + (0,1) + (1,-1) + (1,0) + (1,1)) / 9 } 10000 { t }  

30 

31   [setHeat] 

32   rule : { uniform(24,40) } 1000 { t } 

33 

34   [setCold] 

35   rule : { uniform(-10,15) } 1000 { t } 

36 

37   [generatorHeat] 

38   distribution : exponential 

39   mean : 50 

40   initial : 1 

41   increment : 0 

42 

43   [generatorCold] 

44   distribution : exponential 

45   mean : 50 

46   initial : 1 

47   increment : 0 

Figure 6. Definition of the heat diffusion model 
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The model has been simulated on a 12 PC network 

running Linux. Different tests were done, each with a 

different model partition.  

 
 

01   0 : generatorHeat generatorCold 

02   0 : surface(0,0)..(24,24) 

03   1 : surface(25,0)..(49,24) 

04   2 : surface(0,25)..(24,49) 

05   3 : surface(25,25)..(49,49) 

 

Figure 7.  Model partition for 4 processors. 
 

Figure 7 shows a model partition for running the heat 

diffusion model on 4 machines. There are a total of 252 

simulators that have to be assigned to 4 CPUs. Line 1 

defines the location for the simulators associated to the 

generatorHeat and generatorCold atomic models. Lines 2 

to 5 set where the simulators for the cells of the surface 

model will be running. 

In addition, there are two coupled models: the top 

model and the surface model. For the surface model,  

PCD++  will create four coordinators: a master coordina-

tor running on processor 0 and three slave coordinators, 

each running in one of the CPUs 1 to 3. For the top model, 

there will only be one master coordinator on processor 0. 

The results of running the simulation on 1, 2, 4 and 8 

processors are shown below. For this test, the simulation 

was configured to use the NoTimekernel.  

 
processors Time (sec) 

1 590 

2 476 

4 383 

8 369 

Figure 8. Simulation execution time 
 

As it can be appreciated, there is a significant reduction 

in the simulation time as more processors are used. The 

speedups are not exponential, but they add up to the per-

formance provided by Cell-DEVS. The following figure 

shows the execution time of Cell-DEVS models (ACA) 

against traditional Cellular Automata for this particular 

model.  
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Figure 9. Simulation execution times  of Cell-DEVS models 

 

5. Conclusion 
 

CD++ is a tool for the simulation of Parallel DEVS and 

Cell-DEVS models that implements this distributed ab-

stract simulator mechanism. The tool has proven to reduce 

the execution time models with a high number of simulta-

neous events. 

Distributed environments have a communications 

overhead that can be quite significant. The extension of the 

Parallel-DEVS abstract simulator here presented keeps to 

a minimum the number of messages sent across machines. 

This was possible by assigning each coupled model one 

master coordinator and zero, one or more slave coordina-

tors. Messages that have to cross a processor boundary are 

always sent between master and slave coordinators, which 

then forward the received messages to their local depend-

ants.  

A new abstract simulator that will allow for out of or-

der execution of events is being studied. For this new 

mechanism the Warped TimeWarp kernel will be used. 
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