
This work was partially supported by USENIX,
ANPCYT Project 11-04460 and
UBACYT Project JW10.

Using the DEVS Paradigm to Implement a Simulated Processor

Sergio Daicz AlejandroTróccoli Sergio Zlotnik Gabriel Wainer

Departamento de Computación
Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires
Pabellón I - Ciudad Universitaria

Buenos Aires (1428) – ARGENTINA
gabrielw@dc.uba.ar

http://www.dc.uba.ar/people/proyinv/celldevs

Abstract
This work is devoted to present the design and
implementation of Alfa-1, a simulated computer
with educational purposes. The DEVS formalism
was used to attack the complexity of the design,
allowing the definition of individual components
that can be lately integrated into a modelling hier-
archy. The tool is designed for the use in Computer
Architecture and Organization courses. Its goal is
allowing the students to acquire some practice in
the design and implementation of hardware com-
ponents by using simulation.

1. Introduction

The theoretical study of computer architecture
and organization usually give the students an in-
complete and sometime erroneous view of how a
computer system works. Computer organization
bibliography (for instance, [1, 2, 3]) usually em-
phasizes the basic behavior of a computer system.
The lack of practical experience can make the un-
derlying complexity of the subsystems and their
interaction not to be completely understood.

The main problems are related with the exis-
tence of several layers to be studied. The assem-
bly language, instruction set microprogramming
and digital logic levels are usually considered.
The introduction of higher levels (programming
languages, Operating Systems) makes the task
even more difficult.

The inter-level interaction can make the stu-
dents to loose the understanding of the system
operation as a whole. In addition, the detailed be-
havior for each of the subsystems can be complex

to analyze. The existence of hardware or software
tools with educational purposes in this area is re-
duced, making difficult to make the concepts clear
through practice.

In [4] a set of tools devoted to simulate the
components of a computer were presented. These
tools cannot be applied if several levels need to be
integrated. Furthermore, detailed specification of
the components cannot be achieved easily. To
avoid these problems, the simulated computer was
completely redesigned using a formal approach.
The DEVS formalism [5] was used, due to the
hierarchical and discrete events nature of the
problem.

A real system modeled using DEVS can be de-
scribed as a set of behavioral (atomic) and struc-
tural (coupled) submodels. The models can be
hierarchically integrated, allowing model reuse.
This improves the security of the simulations, re-
duces testing time and enhances productivity. A
DEVS atomic model is described by:

M = < X, S, Y, δint, δext, λ, D >.

X: input events set;
S: state set;
Y: output events set;
δint: S → S, internal transition function;
δext: Q x X → S, external transition function,

Q = { (s, e) / s ∈ S, and e ∈ [0, D(s)]};
λ: S→Y, output function; and

D: S → R0
+, elapsed time function.

Each model uses input/output ports to commu-

nicate with others. The input external events are
received in input ports, and the model specifica-
tion defines the behavior under such inputs. The
internal events produce state changes, whose re-
sults are spread through the output ports.

DEVS coupled models are defined by:

CM = < X, Y, D, {Mi}, {I i}, {Z ij}, select >

 X is the set of input events;
Y is the set of output events;
D is an index of components, and ∀i ∈ D,
M i is a basic DEVS model;
I i are the influencees of model i, and ∀ j ∈ Ii

Zij : Yi → Xj is the i to j translation function.
Finally, select is the tie-break selector.

The tool GAD [6] implements the theoretical
concepts of the DEVS formalism. This tool was
used as a basis to develop the simulated computer,
allowing to experiment with the formal approach
defined by the DEVS formalism. The results ob-
tained will be shown in the following sections.

2. CPU architecture description

The model’s architecture is mainly based in the
specification of the Integer Unit of the SPARC
processor (Sun Microsystems). The actual design
of this processor was used, but the instruction set
and the memory management were simplified due
to educational purposes. The Figure 9 in the Ap-
pendix presents a sketch of the processor’s organi-
zation.

The design of the memory is flat (neither seg-
mentation nor pagination are included) and multi-
programming is not supported. The implementa-
tion includes two registers: Base and Size, which
defines the memory space of the program.

The processor is provided with 520 integer
registers, divided in three classes. Eight of them
are global, and the remaining 512 are divided in
windows of 24 registers each. These include input,
output and local registers for each procedure.
When a procedure starts, 16 registers are reserved
(8 local and 8 for output), and the 8 output records
of the calling procedure are used as inputs.

A specialized 5-bit register, called CWP (Cir-
cular Window Pointer), marks the active window
into the register ring. Each time that a new proce-

dure is started, CWP is decremented. The 32-bit
WIM register (Window Invalid Mask, one bit per
window) avoids the superposition with a window
in use by another procedure. When CWP is decre-
mented, the hardware verifies if WIM is on for the
new window. In that case, an interrupt is raised.
The interrupt service routine saves the content of
the window, which will be overwritten. Usually,
WIM only has one bit in 1, marking the oldest
window. When that window is reached, the WIM
rotates one unit.

Besides the general use registers, the following
registers can be used:

• Y: used by the product and division op-
erations.

• TBR (Trap Base Register): it points the
memory address where the trap routine starts.

• BASE and SIZE: BASE points to the
lower address that the program can access, and
SIZE stores the program size.

• PSR (Processor Status Register): stores
the present program status.

The processor uses two program counters: PC
(containing the address of the next instruction),
and nPC (Next Program Counter, storing the ad-
dress for the following PC). Each instruction cycle
finishes by copying the nPC to the PC, and adding
4 to the nPC. If the instruction is a branch, nPC is
assigned to PC, and nPC is updated with the jump
address.

3. Architecture implementation

 The basic components were defined as DEVS
models, which have been coupled into complex
ones. Two implementations have been defined at
present. The first reproduced the basic behavior of
each component, coded as transition functions.
Then, the digital logic level was implemented. The
basic building blocks were developed as atomic
models, coupling them using digital logic con-
cepts.

3.1. Inc/Dec

This component is used to update the CWP. It
increments or decrements a 5-bit value received
through the lines OP0-OP4. Then, the output is
transmitted through RES0-RES4 (OP0 and RES0
are the MSB). This atomic model is defined by:

INC/DEC = < X, S, Y, δint, δext, λ, D >.

X ∈ {1,...,32} ∪ {0,1} ;
S ∈ { OP } ∪ { FCOD } ∪ { RES } ;
Y ∈ {0,1} ;

The following figure shows the implementa-
tion of the transition functions using the tool.

Model &IncDec::externalFunction(const
ExternalMessage &msg) {

 switch (msg.port()) {
 // When x is received in the port y;

case OP0: _OP[0] = (int) msg.value();
case OP1: _OP[1] = (int) msg.value();
case OP2: _OP[2] = (int) msg.value();
case OP3: _OP[3] = (int) msg.value();
case OP4: _OP[4] = (int) msg.value();
case FCOD: _FCOD = (int) msg.value();

 }

 if(_FCOD == 1) // increment
 _RES[0]=(_OP[0]*16+_OP[1]*8+_OP[2]*4

+_OP[3]*2+_OP[4])+1) % 32;
 else // decrement

 _RES[0]=((_OP[0]*16+_OP[1]*8+_OP[2]*4+
_OP[3]*2+_OP[4]*0)-1) %32;

 for (int i=4; i>=1; i--){ // to binary
_RES[i]=_RES[0]%2; _RES[0]=_RES[0]/2;

}

this->holdIn(active, preparationTime);
 return *this;
}

Model &IncDec::internalFunction(const
InternalMessage &) {

 this->passivate();
return *this ;

}

Model &IncDec::outputFunction(const In-
ternalMessage &msg) {

 for (int i=0; i<5; i++) {
 // If OP0..4 is different of last output
 if (_RES[i]!=_OLD[i]) { // send OP0..4
 for (int j=0; j<5; j++) {

 sendOutput(msg.time(),RESj, _RES[j]);
 _OLD[j]=_RES[j]; }

 }
 return *this ;

}

Figure 1. INC/DEC [7].

The external transition function (δext) receives
five operands as inputs, together with a function
code. According to this code, the parameter is in-
cremented or decremented. After, the model keeps
the present value during a preparation time. The
output function (λ) is activated to see if the circuit
has changed its state. In that case, it transmits its
present value. Then, the internal transition func-
tion (δint) passivates the model. The D function is

managed by the hold_in and passivate macros
used in the model.

3. 2. RegGlob

This model defines the behavior of the global
registers. It keeps the contents of the 8 global reg-
isters, allowing the read/write operations on them.

Model &Regglob::externalFunction(const
ExternalMessage &msg) {
 switch (msg.port()) {

 case cen: bcen = (int)msg.value();
 case reset:breset = (int)msg.value();
}

if(msg.port() == cin+i)
 in[i]=(int)msg.value();

if(msg.port() == asel+i) {
 sela[i]=(int) msg.value();
 selecta=sela[0]+2*sela[1]+4*sela[2];
}

if(msg.port() == bsel+i) {
 selb[i]=(int) msg.value();
 selectb=selb[0]+2*selb[1]+4*selb[2];
}

if(msg.port() == csel+i) {
 selc[i]=(int) msg.value();
 selectc=selc[0]+2*selc[1]+4*selc[2];
}
this->holdIn (active, delay);
return *this;

}

Model &Regglob::internalFunction(const
InternalMessage &msg) {

 if (bcen && (selectc>0))
 for (int i=0; i<32; i++)

g[(selectc*32)+i]=in[i];
 if (breset)

 for (int i=0; i<255; i++)g[i]=0;

this->passivate();
return *this ;

}

Model &Regglob::outputFunction(const In-
ternalMessage &msg) {

if (olda[i]!=g[selecta*32+i]) {
 this->sendOutput(msg.time(), aout+i,
 g[selecta*32+i]);
 olda[i]=g[selecta*32+i]; }

if (oldb[i]!=g[selectb*32+i]) {
 this->sendOutput(msg.time(), bout+i,

g[selectb*32+i]);
 oldb[i]=g[selectb*32+i]; }

return *this ;
}

Figure 2. RegGlob [8] .

A sketch of this model is shown in the Appen-
dix. It uses three select lines (asel, bsel, csel) to
choose the two output registers and the register to
be modified. An array of 32 integers (IN) keeps
the present input values. The boolean variable cen
stores the state of the C enable line. The reset vari-
able stores the present state of the reset line. Fi-
nally, Aout and Bout stores the previous status of
the A and B output lines.

The external transition function is in charge to
receive a pulse through the input values. If the
input signal goes to one of the selectors, the num-
ber of the chosen register is computed. The next
internal event is scheduled with a predefined de-
lay. If an external event arrives before the end of
the delay, it is restarted.

The internal transition function sees if the in-
ternal value reset is activated. In that case, it clears
the contents of every register. If the cen variable is
active and the register in the selector C is not zero,
the value of the register is updated with the input
values. After, the model passivates. The output
function just sends the contents specified by the
selectors A and B through the AOUT and BOUT
ports.

4. The digital logic level

The abstraction level of several models was
detailed with educational purposes. In this way,
the digital logic level of the integrating circuits can
be analyzed. These models were built using atomic
models representing the basic logical gates (AND,
OR, NOT, XOR). After, they were integrated in
complex models by coupling them. Two of the
implemented models will be explained following.

4.1. CMP model

Figure 3. Sketch of the Address Unit.

The CMP register is part of the Address Unit.
It must detect addresses falling out of the program
boundaries. The model receives two inputs
(through the registers OPA and OPB), and returns
the signal EQ if both values are equal, or LW if A
is lower than B.

The model is composed of several one-bit
comparators, defined as atomic models. N-bits
comparators are generated by coupling N one-bit
comparators. The following figure shows the basic
components of this building block:

Figure 4. One-bit comparator [9].

This model is formally described by:

CM = < X, Y, D, {Mi}, {I i}, {Z ij}, select >

X = {OPAn, OPBn / OPAn, OPBn ∈ {0,1} };
Y = {EQ, LW / EQ, LW ∈ {0,1} };
D = {NOT_n_1, NOT_n_2, XOR_n,

AND_n_1, AND_n_2 }; where each is an atomic
defining the corresponding building block;

I NOT_n_1 = { AND_n_1 };
I XOR_n = {NOT_n_2 };
I NOT_n_2 = { Self };
I AND_n_2 = { Self };
I AND_n_1 = { AND_n_2 };
I self = { Self, NOT_n_1, AND_n_1, XOR_n};
select = D; and
Zij is built using I, as described earlier.

The definition of this coupled model using the
tool is presented in the following figure:

[top]
components : NOT_n_1@NOT NOT_n_2@NOT

XOR_n@XOR AND_n_1@AND AND_n_2@AND
in : OPAn OPBn
out : LW EQ

Link : OPAn in@NOT_n_1
Link : OPBn ina@XOR_n
Link : OPAn inb@XOR_n
Link : OPBn inb@AND_n_1
Link : out@NOT_n_1 ina@AND_n_1
Link : out@XOR_n in@NOT_n_2
Link : out@AND_n_2 EQ
Link : out@NOT_n_2 LW

Figure 5. CMP coupled model [9].

4.2. Chip Selector

The Chip Selector (CS) circuit is devoted to
determine if an address is between two others. The
model receives a 32-bit address and an Address
Strobe (AS), and it returns the Chip Selector value,
computed as: CS = AS ∧ A ∈ Range. The range is
a set of addresses that act as a maximum and
minimum addresses for the chip selector. The AS
is devoted to activate the circuit. A sketch of the
circuit is found in the Appendix.

[top]
components: MASMAX@MAS MASMIN@MAS CMPA@CMP
CMPB@CMP and1@AND and2@AND or@OR not@NOT
in : A31 A30 A29 A28 A27 A26 A25 A24 A23
A22 A21 A20 ... A4 A3 A2 A1 A0 AS
out : CS

Link: A31 OPA31@CMPA A31 OPA31@CMPB
Link: A30 OPA30@CMPA A30 OPA30@CMPB
...
Link: A1 OPA1@CMPA A1 OPA1@CMPB
Link: A0 OPA0@CMPA A0 OPA0@CMPB

Link: out31@MASMAX OPB31@CMPA out31@MASMIN
OPB31@CMPB
Link: out30@MASMAX OPB30@CMPA out30@MASMIN
OPB30@CMPB
...
Link: out0@MASMAX OPB0@CMPA out0@MASMIN
OPB0@CMPB
Link: AS ina@and2
Link: eq@CMPA ina@or lw@CMPA inb@or
Link: lw@CMPB in@not
Link: out@or ina@and1 out@not inb@and1
Link: out@and1 inb@and2
Link: out@and2 CS

Figure 6. CS coupled model [9].

A MASK specialized model was defined. The
function of this model is to provide two 32-bit sets
containing the boundaries of the set to be com-
pared. The two input addresses (CMP A, CMP B)
are compared with these boundaries (MAX Mask,
MIN Mask). These models are comparators as
those defined in the previous section.

The result obtained is transmitted through the
ports LW and EQ for each of the comparators.
Both outputs are ORed for the first register (as we
are interested to see if CMP A ≤ MAX). After, the
LW output of the second register is inverted (as we
are interested to see if CMP B ≥ MIN). If the cir-
cuit is enabled, the result obtained is transmitted.

5. Simulation results

The present section is devoted to show some of
the results obtained when the models previously
presented are simulated. In the first case, we show
the results obtained simulating the INC/DEC
model.

INPUT OUTPUT
00:00:00:00 OP0 1
00:00:05:00 OP1 0
00:00:10:00 OP2 1
00:00:15:00 OP3 0
00:00:20:00 OP4 0
00:00:25:00 FCOD 1

00:00:05:000 res0 1
00:00:05:000 res1 0
00:00:05:000 res2 0
00:00:05:000 res3 0
00:00:05:000 res4 0

00:00:15:000 res0 1
00:00:15:000 res1 0
00:00:15:000 res2 1
00:00:15:000 res3 0
00:00:15:000 res4 0

00:00:30:000 res0 1
00:00:30:000 res1 0
00:00:30:000 res2 1
00:00:30:000 res3 0
00:00:30:000 res4 1

Figure 7. Inputs and Outputs for the
INC/DEC model.

This example shows how a value of 20 is in-
cremented by the circuit. The first step consists in
the giving an initial value. When the simulation is
started, the components have initial value of zero.
Therefore, the reception of the first event (OP0 = 1
at 00:00:00:00) will generate an output when the
phase changes (00:00:05:00).

As the second input does not generate changes
in the model, no output can be detected. In the
simulated time 10, a new input is inserted through
the port OP2. Then, this value is changed and the
output generated. As the preparation time for the
circuit is 5 time units, the outputs are produced at
simulated time 15. The following 2 inputs are not
registered. The last one changes the register by
inserting the value through the FCOD port. There-
fore, the register is incremented.

The second example shows the execution ob-
tained of the RegGlob model under different in-
puts. At the instant 0, the C enable line is acti-
vated. The register 4 is selected (csel2=1), and the
number FFFFFFFFh is used as input (cin0 = ... =
cin31=1). After, in 00:00:01:00, the register 2 is
selected (csel2=0 and csel1=1), and the number
55555555h is input (cin0=cin2=cin4...=cin30=1,
and cin1= cin3 = cin5 =... =cin30=1).

At 00:00:02:00, C Enable is deactivated. The
register 4 is selected for A, and the register 2 is
chosen for B. As a result, the values previously
loaded are read (that is, FFFFFFFFh in A, and
55555555h in B).

INPUT OUTPUT
00:00:00:00 cen 1
00:00:00:00 csel2 1
00:00:00:00 cin0 1
...
00:00:00:00 cin31 1
00:00:01:00 csel2 0
00:00:01:00 csel1 1
00:00:01:00 cin1 0
00:00:01:00 cin3 0
00:00:01:00 cin5 0
...
00:00:01:00 cin29 0
00:00:01:00 cin31 0
00:00:02:00 cen 0
00:00:02:00 asel2 1
00:00:02:00 bsel1 1

00:00:02:010 aout0 1
...
00:00:02:010 aout31 1
00:00:02:010 bout0 1
00:00:02:010 bout2 1
00:00:02:010 bout4 1
...
00:00:02:010 bout30 1

00:00:04:00 reset 1
00:00:05:00 asel2 1
00:00:05:00 asel1 0

00:00:05:010 aout0 0
00:00:05:010 aout2 0
...
00:00:05:010 aout28 0
00:00:05:010 aout30 0

Figure 8. Inputs/Outputs of RegGlob.

After, Reset is activated. When the circuit is
activated to read the register 4 at 00:00:05:00, it
returns the value 00000000h.

6. Conclusion

We have presented the use of a Discrete Event
formalism and a simulation environment to build a
set of tools to simulate a simple computer. The
tools can be used in Computer Organization
courses to analyze and understand the basic be-
havior of the different levels of a computer sys-
tem. The interaction between levels can be stud-
ied, and experimental evaluation of the system can
be done.

A basic instruction set was considered, based
on the SPARC architecture, allowing to study the
main features of this processor, analyzing features
not existing in simpler processors. Several basic
circuits were also implemented, allowing to build
the computer by using them. At present, both lev-
els are being connected by a Control Unit.

The use of this set of tools allowed the students
to obtain a complete understanding of the com-
puter organization. At present, the set of tools is
being completed by including an input/output sub-
system. In addition, an assembler and linker for
the tool are being built.

These tools are public domain, and at present
they can be obtained at the author's URL.

References

[1] Stallings, W. Computer Organization and Architec-
ture. Macmillan, New York. 4th Edition. 1996.

[2] Tanenbaum, A., Structured Computer Organization,
3rd edition, Prentice Hall, New Jersey, 1990.

[3] Hennessy, J. and Patterson, D. Computer Architec-
ture: a quantitative approach. Prentice Hall Interna-
tional. 1994.

[4] Wainer, G. "ALFA-0: a simulated computer as an
educational tool for Computer Organization". Pro-
ceedings of IASTED Applied Modelling and Simulation
1998. Hawaii, USA. 1998.

[5] Zeigler, B. Theory of modeling and simulation.
Wiley, 1976.

[6] Barylko, A.; Beyoglonián, J. and Wainer, G. "GAD:
a General Application DEVS environment". Proceed-
ings of IASTED Applied Modelling and Simulation
1998. Hawaii, USA 1998.

[7] Barletta, A.; Enrique, S.; Rubinstein, D. “Definition
of ALU components for the Alfa-1 simulated proces-
sor”. (in Spanish). Internal report. Departamento de
Computación. Facultad de Ciencias Exactas y Natura-
les. Universidad de Buenos Aires. 1998.

[8] Barrionuevo, J.; Calvo, A. and Corvetto, A. “Defini-
tion of global registers components for the Alfa-1
simulated processor”. (in Spanish). Internal report. De-
partamento de Computación. Facultad de Ciencias Ex-
actas y Naturales. Universidad de Buenos Aires. 1998.

[9] Petronio, F. “Defining the digital logic level of com-
ponents for the Alfa-1”. (in Spanish). Internal report.
Departamento de Computación. Facultad de Ciencias
Exactas y Naturales. Universidad de Buenos Aires.
1999.

APPENDIX

Figure 9. Data path of the simulated processor.

Figure 10. Architecture of the processor’s registers.

Figure 11. Sketch of the Chip Selector [9].

