Design, Implementation and Localization of a

Mobile Robot for Urban Site Modeling

Atanas Georgiev

Submitted in partial fulfillment of the
requirements for the degree
of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2003

©2003
Atanas Georgiev

All Rights Reserved

ABSTRACT

Design, Implementation and Localization of a

Mobile Robot for Urban Site Modeling

Atanas Georgiev

This thesis presents a systematic and practical approach to mobile robot
localization in urban environments. It reflects work on both system and algorithmic
problems. The methods and ideas presented are generally applicable to mobile
robots operating in urban environments.

On the system level, I have designed and built a functioning autonomous
mobile robot. The design extended an existing robotic vehicle with a carefully
chosen sensor suite of a digital compass with an integrated inclinometer, a global
positioning unit, and a camera mounted on a pan-tilt head. The robot has been
equipped with wireless networking.

I have also designed and implemented a distributed software architecture for
mobile robot navigation. It addresses important issues like computation distribu-
tion, autonomy, flexibility and extensibility. A motion control component controls

the robot pose and drives the robot to its destination. A graphical user interface

allows for remote control and monitoring.

On the algorithmic level, I have developed a localization system that employs
two methods. The first method uses odometry, the compass module and the global
positioning sensor. To reduce the effect of systematic odometry errors, I have
extended an existing calibration procedure. An extended Kalman filter integrates
the sensor data and keeps track of the uncertainty associated with it. When global
positioning data is reliable, the method is used as the only localization method.
When the data deteriorates, the method detects it and and seeks additional data
by invoking the second localization method.

The second method is based on visual pose estimation. It is heavier compu-
tationally but is only used when it is needed. When invoked, it stops the robot,
chooses a nearby building to use and takes an image of it. The pose estimation is
done by matching linear features in the image with a simple and compact model
of the building. A database of the models is stored on the on-board computer. No
environmental modifications are required.

I have demonstrated the functionality of the robot and the localization meth-

ods with real-world experiments.

Contents

List of Figures

List of Tables

Acknowledgments

Chapter 1 Introduction

1.1
1.2
1.3
14

1.5

Dealing with the Real WorldisHard
The Localization Problem is Difficult
Localization is Essential
The Problem Has Not Yet Been Solved

Scope of This Work

Chapter 2 Related Work

2.1
2.2
2.3
24

2.5

Dead Reckoning Lo Lo
Global Positioning oL oL oo
Imagingo
Sensor Integration and Uncertainty Handling

Other Approaches

viii

ix

2.6

Comparison with My Approach

Chapter 3 System Design and Implementation

3.1

3.2

3.3

3.4
3.5
3.6

The AVENUE Project
Hardware
3.2.1 Choice of Sensors oL
3.2.2 Other Hardware Considerations
System Architecture
3.3.1 Background Lo o
3.3.2 Issues L
333 Design
Motion Control
User Interface L

Summary e e

Chapter 4 Localization in Open Space

4.1

4.2

4.3

Odometry
4.1.1 Systematic Errorso
4.1.2 Non-systematic Errors
Attitude Sensoro
4.2.1 Pose Estimation 0L 0oL,
4.2.2 Kalman Filters o o000

4.2.3 Integration with Odometry and Uncertainty Handling
Global Positioning Systems L.

4.3.1 Background L Lo

i

28
28
31
33
36
38
38
39
42
48
20

92

54
o4
o8

4.3.2 Coordinate Systems and Calibration 76

4.3.3 Fusing GPS with Odometry and the Attitude Sensor 79

4.4 Summaryo e e 81
Chapter 5 Visual Localization 83
5.1 Environmental Model o o000 85
5.2 Choosinga Model to Use, 88
5.3 Pose Estimation Lo o000 91
5.3.1 Preparation Lo oo 93

5.3.2 Sampling and Pose Candidate Computation 95

5.3.3 Pose Candidate Refinement 97

5.3.4 Pose Candidate Evaluation 98

5.3.5 Number of Iterations and Speedups 102

5.4 Summary 104
Chapter 6 Experiments 105
6.1 Localization in Open Space 105
6.2 Localization with Vision00 .. 108
6.3 Localization Using All Sensors 124
6.4 Summary 128
Chapter 7 Conclusion and Future Work 130
7.1 Limitations 132
7.2 Discussion and Future Worko, 135
7.2.1 View Planning L. 135

7.2.2 Feature Matching oL 136

il

7.2.3 Partial Visual Localization 137
7.2.4 Visual Pose Integration 139

7.2.5 Obtaining the Model 140

Appendix A Implementation Details of the System Architecture 143

ATl Overview. o o o 143
A.2 Description of the Hardware Servers 146
A.2.1 ATRV2Server 146
A2.2 PTUServer 146
A.2.3 AttitudeServero Lo 147
A24 GPSServero 147
A25 VideoServero 148
A2.6 ScanServer 148
A.3 Description of NavServer 149
A31 Localizer L 149
A32 Controller 149
A3.3 Navigator 150

v

3.1
3.2
3.3

3.4
3.5
3.6

4.1

4.2

4.3
4.4
4.5
4.6

5.1

5.2

List of Figures

The modeling process. 30
The mobile platform used in this thesis. 32

GPS problems in urban areas: Not enough visible satellites in urban

“canyons” (left) and signal reflections and multipath (right). ... 35
The system architecture 43
The robot reference frame and a control target point. 49
The user interface. oL L Lo 51
The ATRV kinematics 55

The resulting distribution of the robot position after moving forward

by a certain distance.o oL 63
A diagram of the extended Kalman filter configuration 68
The differential GPS technique. 75
Cartesian and ellipsoidal coordinates. 77
The campus coordinate system 79
A sample model (right) of a building facade (left) 86
An example for choosing amodel. o000 88

9.3
5.4

9.5

5.6
5.7

6.1
6.2
6.3
6.4

6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

6.15

Criteria for choosing a model: distance and viewing angle 89
Preprocessing of the 3-D line segments: the original lines from the
model (left) and the result after merging the collinear subsets (right). 94
Preprocessing of the 2-D line segments: the extracted edge lines (left)

and the result after merging the collinear subsets and removing the

short ones (right).o 94
Error metric used for pose estimation 96
Coverage of a pair of matching lines. 99
The first test run in open space 106
A second test run returning to the starting point 107

3-D models used for localization shown on a 2-D map of the test area. 109

A map of the area where the experiments were conducted showing

approximate camera locations and orientations. 110
Visual localization test: Location 1 111
Visual localization test: Location 2 111
Visual localization test: Location 3 112
Visual localization test: Location4 112
Visual localization test: Location 5 113
Visual localization test: Location 6 113
Visual localization test: Location 7 114
Visual localization test: Location 8 114
Visual localization test: Location 9 115
Visual localization test: Location 10. 115
Visual localization test: Location 11 116

vi

6.16 Visual localization test: Location 12. 116

6.17 Visual localization test: Location 13 117
6.18 Visual localization test: Location 14 117
6.19 Visual localization test: Location 15. 118
6.20 Visual localization test: Location 16 118

6.21 Initial and final alignments in the pose estimation tests with a pair

of images taken from the same location. 122
6.22 Initial and final alignments in the pose estimation tests with a pair

of images taken from the same location. 123
6.23 A map of the area showing the robot trajectory (dotted line) and the

locations where the robot used visual localization. Notice location 3

which is directly underneath a building extension. 125
6.24 Integration test: Location 1, 126
6.25 Integration test: Location2 126
6.26 Integration test: Location 3 127
6.27 Integration test: Location4 127
7.1 A building facade exhibiting repetitive feature patterns 139
7.2 Model acquisition and simplification. 141
A.1 An example for software component hierarchy 144

vii

6.1

6.2

6.3

List of Tables

Computed and actual robot position for each of the locations where
the visual localization test was performed. The last column shows
the total error. Measurements are in meters.
Robot orientation as computed by the localization method (first
three columns) and by Tsai’s method (middle three columns). The
last three columns show the discrepancies between the two estimates.
Measurements are in degrees.
Robot position and error estimated by GPS, attitude sensor and
odometry along with the corresponding improved position estimate
and error after performing visual localization. Measurements are in

meters. e e e e e e e e

viii

Acknowledgments

I would like to begin by expressing my gratitude to my advisor, Professor Peter
Allen, for his support, patience, and encouragements. He has had a profound
influence on my way of thinking — both about academic matters and in general.
He taught me how to pay attention to the “big picture” and prioritize accordingly.
Whenever hardware broke — which happened much too often — he was always
understanding and pragmatic. His insight into the American culture and the time
spent with him outside of school made my student life a lot more enjoyable. For
all that, and so much more: Thank you, Peter!

I would like to thank the members of my defense committee. Professor John
Kender, who has kindly agreed to serve as the committee chair, has helped me
improve my teaching skills and has given me a lot of food for thought with the
interesting questions he always seems to come up with. I value Professor Shree
Nayar’s help with my research as well as his sharing of his opinion and ideas about
academic research in general. T appreciate Professor Andrew Laine’s and Professor
Camillo Taylor’s interest in my work and their desire to share their feedback.

I would also like to thank the members of the Robotics Laboratory, with

whom I had the pleasure to share ideas and spend time together: Ioannis Stamos,

X

Paul Blaer, Ethan Gold, Andrew Miller, Paul Oh, Michael Reed, and Ben Smith.
Special thanks go to loannis, who provided me with code and ideas; Paul Blaer, for
writing the path planner, modifying various other programs, and helping me out
with the robot; and Ethan, for his excellent work on the user interface and the fun
he brought to the lab.

I am grateful to all my previous teachers and mentors who influenced my ca-
reer. I thank my secondary-school teacher Hopteriev, who first sparked my interest
in mathematics; Prof. Ivan Blyantov and Ivan Badev, for the wonderful years of
extracurricular study of mathematics and the chance to participate in the compe-
titions; my high-school teachers, Ognyan Gavrailov and Kosta Garov, for turning
me to Computer Science and all the soccer we played; Prof. Krassimir Manev and
Prof. Pavel Azalov, whom I had the pleasure to teach me at Sofia University; and
my former advisor, Christo Dichev, who introduced me to scientific research and
directed my work on my Master’s thesis.

I would like to thank all my friends who helped me with ideas, support, and
encouragement. I am especially thankful to Stanya Milanova, who got up early one
morning to come to Columbia and help me with an experiment.

Finally, my deepest thanks go to my parents, Georgi and Lilyana. They have
always encouraged my curiosity and have been extremely supportive in my strive
for better education. Throughout my years at Columbia, they had to live with the
thought of my absence for too long, being too far away, and seeing me at most once

a year for a couple of weeks. Mom and dad: we went through this together.

xi

To my mom, Lilyana, and my dad, Georgi

xil

Chapter 1

Introduction

Mobile robot localization can be generally defined as the process of determining and
keeping track of a mobile robot’s location in its operating environment. It was
adequately summarized by Cox in 1988 with the question “Where am 1?7 [Cox,
1988]. There are a few lessons that the brief history of Mobile Robotics has already

taught us about localization.

1.1 Dealing with the Real World is Hard

In 1970, scientists from the Stanford Research Institute introduced Shakey, the first
mobile robot that “reasons” about its actions. It was able to find a specific box in
various rooms and move it to a designated position. To do so, among other things,
it had to perform some kind of localization — it was equipped with wheel encoders,
a laser range finder and a video camera which it used to detect its position with
respect to the box and the surrounding obstacles.

The performance of Shakey turned out to be anything but satisfactory: It

took hours for the robot to find and slowly push a block. While the planning system
generated good plans, the sensory interpretation of the world was very primitive.
The environment had to be tailored to the limitations of the system: it could only
recognize simple flat-faced uniformly-colored objects and the rooms had to be spe-
cially constructed. Although the main purpose of the project was to demonstrate
the application of logical reasoning to problems from the physical world, the diffi-
culty in implementing it was by far the most important lesson learned.

What makes it so difficult to interact with the real world? Most of the
reasons can be traced back to a mobile robot having to rely on physical sensors
and actuators that operate in a physical environment. Being part of the real world
themselves, the sensors and actuators are prone to various imperfections which

introduces a lot of uncertainty and limitations:

e Measurement inaccuracy: FEach sensor measurement is accurate only to
a certain extent which is typified by the the nominal accuracy of the sensor.
Even if the theoretical accuracy is acceptable for the application, it may
still not be achieved in practice due to factors like noise or a lack of good

calibration.

e Measurement uncertainty: Beyond the accuracy of a measurement, a
big question is even whether it reflects what we think it does. This is not nec-
essarily the case. For example, wheel encoders on mobile robots are typically
used to measure the distance traveled by the wheel but what they measure in
practice is how much the wheel has turned. The two may differ significantly
if the wheel slips. Another typical example is a sonar facing a corner. Due to

multiple reflections of the ultrasonic sound from the walls, the sonar might

“see” a lot more free space ahead than there really is.

Measurement inconsistency: To reduce the effect of inaccuracies and
uncertainties, redundancy is typically sought in the form of additional sensors
that measure the same quantity, preferably in a different way. However, this
introduces other difficult problems: How does one efficiently register and fuse
different kinds of data? And how does one resolve inconsistencies between
multiple measurements? The latter problem can be encountered even with
a single sensor if it takes multiple different measurements of the same static

quantity.

Data interpretation: Some sensors, like a camera or a laser range scanner,
capture a lot of information about the environment. This is certainly desirable
but is only useful to the extent the information can be recovered from the
data. Unfortunately, this is not easy. In fact, the entire field of Computer
Vision exists to explore ways to interpret visual data. Processing range scans
is not much easier either, because of the sheer amount of data per scan and
the fact that it only represents a discrete sample of the continuous physical

world.

Various sensor limitations: In addition to the above, each kind of sen-
sor contributes with its own peculiarities and limitations. Sonars and range
finders have limited range. Compasses need special calibration to undo the
influence of the Earth’s magnetic field. Global positioning systems (GPS)
require a line of sight to a minimum number of satellites. Inertial sensors

drift. All sensors have a limited resolution/sensitivity threshold.

e Actuator accuracy and limitations: Actuators, like sensors, have limited
accuracy and other specific limitations. A step motor might turn 29.9 degrees
instead of 30, which would cause the robot to arrive a millimeter away from
the target. Motors have also limits on their speed, acceleration, torque, etc.
To account for that, sensors must be used to detect discrepancies, which

introduces all of the sensor-related problems.

e Complexity: Last but not least, the real world is simply too complex,
dynamic and unpredictable to describe in a concise and precise algorithmic
or descriptive form — the kind that is required by the computing technology

today. The best one can hope for is a practically good approximation.

1.2 The Localization Problem is Difficult

To find out where it is, a mobile robot must rely on sensors. It can use extero-
ceptive sensors to detect cues about its position from the surroundings, propri-
oceptive sensors to compute the position from measurements of its own motion,
or a combination of these. Regardless of the type of sensors used, the need for such
introduces all of the issues with their physical nature.

Localization is even further complicated by the effects sensor-related prob-
lems have on the task. A typical example for this is odometry. Theoretically,
knowing the radii of the robot wheels, if at any given moment the rotation of each
wheel can be measured, it would be straight-forward to compute the robot position
in a flat 2-D world. In practice, however, minute errors in the measurements by the

wheel encoders accumulate with the distance traveled and at some point result in a

total error exceeding any reasonable limit. It only gets worse with inertial sensors,
like gyros and accelerometers, which introduce their errors in the first or second
derivative of what one really wants to measure.

Another typical example is the time constraint. For reliability reasons, the
robot needs to update its position estimate frequently. Each iteration of the local-
ization loop should be fast enough to allow for this to happen and to spare sufficient
CPU time for the other processes to run. This places an upper limit on the time
each position estimation step can take. On the other hand, sensors like a camera
or a laser range finder, provide a lot of data that requires sophisticated algorithms
and a long time to process reliably. Clearly, there is a trade-off and a balance has
to be struck.

The time constraint is also important for a reason not directly related to
sensor imperfections. Many position estimation algorithms are based on matching
acquired sensor data to a model of the environment using distinguishing features
for clues. Even with ideal sensors, robust feature detection and matching is not
a trivial problem. In particular, if feature identities are not available, matching
the sensor data with the model can easily become intractable for a relatively small

number of features.

1.3 Localization is Essential

There are many ways in which mobile robots can be useful and few people doubt
that the future holds an important place for them in our lives. They are expected
to help us alleviate, and possibly completely take over tedious, monotonous and

painstaking tasks. Examples include data acquisition (scanning, surveying), envi-

ronmental mapping and site modeling, material transportation and delivery, secu-
rity (area patrolling), fire safety, and recovery from disasters. Some of the earliest
adopters were the military, who have been researching uses such as hazard detec-
tion and elimination, reconnaissance, assistance and others. Commercial entities
are trying to bring mobile robots to our homes in the forms of autonomous mowers
and vacuum cleaners. Some level of autonomy is envisioned in our cars and the
wheelchairs of disabled people.

What is the role of localization in this vast sea of potential applications?

In 1991, Leonard and Durrant-Whyte — two of the prominent figures in
Mobile Robotics — summarized the problem of mobile robot navigation with three
fundamental questions: “Where am 17”7, “Where am I going?” and “How should
I get there?” They came to the conclusion that solving robustly and reliably the
localization problem (“Where am 17”) is essential to answering the remaining two
questions.

Indeed, localization is both fundamental and essential for a mobile robot. It
is fundamental because it provides the basis on which other common tasks — on
both the users’ and the developers’ ends of the spectrum — are relying. From a
developer’s perspective, one uses the current robot position as a starting point in
planning a path to the target or adjusting the robot’s motion to follow that path.
From a user’s standpoint, applications, such as surveying, environmental modeling
and hazard detection, tag their data with the location where it was acquired.

Localization is also essential since it is a prerequisite for performing almost
any useful task. Without an estimate of its own location, a robot would not be

able to find its way around an obstacle or will not know if it follows the right path.

In fact, it will get lost and will have no idea where it needs to go. Path planning
becomes meaningless, as do all the data acquisition applications.

Being fundamental and essential makes localization one of the most impor-
tant problems in Mobile Robotics. The significance of the problem has been further
demonstrated along with a comprehensive study of the state of the art by Boren-

stein et al [Borenstein and Feng, 1996b).

1.4 The Problem Has Not Yet Been Solved

Today, more than three decades after Shakey’s introduction, accurate localization
is still the focus of most of the mobile robotics research as evident by the enormous
number of publications on the subject and the special interest it receives at Robotics
conventions.

Certain progress has been made and some robots have gone out of the labs.
An excellent example for a successful system was demonstrated in the summer
of 1998 [Thrun et al., 1999]. For a period of two weeks, an autonomous robot,
Minerva, acted as a museum guide and entertained visitors to the Smithsonian’s
National Museum of American History. During this time the robot traversed a
total of more than 44 km having to constantly address issues like safe navigation in
a populated and dynamic environment.

More recently, commercial companies have started experimenting with vari-
ous autonomous devices that people can use in their homes. The company Friendly
Robotics manufactures and sells Robomower — a fully automatic lawn mower [Robo-
mower, 2000]. The UK-based Dyson sells a robotic vacuum cleaner with 50 sensors

and 3 computers on board [Dyson, 2002]. Another European company, Fureka, is

in the process of testing their version of an autonomous vacuum cleaner, the Robo
Vac [Eureka, 2001].

Unfortunately, these examples are rare exceptions, not the rule. Most mo-
bile robots of today still belong to the research labs and one of the major reasons
for that is the lack of robust localization methods in common, everyday environ-
ments. Upon closer inspection, one will find that all commercial examples above
solve the localization problem by... avoiding it — the devices simply move in a
preprogrammed or random patterns. And while Minerva did an excellent job at
not getting lost, it relied on a number of assumptions about a closed indoor type
of environment.

The progress of outdoor mobile robots is slower. As it turns out, methods
that succeeded indoors are not easily converted to outdoor operation. Many of the
simplifying assumptions, commonly accepted indoors, do not hold outside. Long
and narrow corridors, ceiling lights, constant illumination, the lack of large open
spaces are just a few examples. Popular sensors, such as sonars and most range
finders, have a very limited operating range. An extremely detailed model, such as
the evidence grids used indoors, of a reasonably large site is prohibitive, since com-
puters would not be able to store and process it. Most of all, indoor environments

are human controllable to a large extent; outdoor environments are not.

1.5 Scope of This Work

The work presented here is a systematic approach to mobile robot localization in
urban environments. It consists of both system and algorithmic components which

are equally important.

On the system level, it describes the efforts and considerations that were put
to materialize the idea of a mobile robot capable of navigating autonomously in
urban settings. A functional prototype has been built, equipped with odometry,
an attitude sensor, a GPS unit, and a camera mounted on a pan-tilt unit. A
distributed modular software architecture has been designed to address issues like
computational and storage resource limitations and provide the user with ease and
flexibility in monitoring and controlling the robot.

Key features of the localization method are the careful choice of sensors to
use, their successful integration into a single reliable system, and the intelligent
exploitation of important characteristics specific to urban sites. An important
advantage is the fact that no environmental modifications are needed. To help
reduce the complexity and ambiguity of processing the rich visual information, a
simple and compact model of the operating environment is utilized. For the purpose
of this work, the model is assumed to be given a priori, however, its automated
construction is possible and is being addressed in the closely-related AVENUE
project, described below.

Urban environments pose their own unique set of challenges. They are more
complex, dynamic and unpredictable than the well-structured and more human-
controlled indoor ones. A typical urban site can be orders of magnitude larger.
Global positioning systems have problems with the obstruction of the direct line of
sight to satellites by nearby buildings, causing multipath and degraded accuracy.

On the other hand, urban settings have unique characteristics that can be
used to facilitate the estimation of the robot location. Of all outdoor environments,

urban areas seem to possess the most structure in the form of buildings. The laws

10

of Physics dictate common architectural design principles according to which the
horizontal and vertical directions play an essential role and parallel line features
are abundant. The system presented here takes advantage of these characteristics.

The choice of urban environments is not arbitrary. A good solution to the
localization problem in urban settings would be a key factor for the development
of quality site-modeling applications. Site models are used in a number of areas,
such as city planning, urban design, fire and police planning, military applications,
virtual and augmented reality, and geographic information systems (GIS). This
modeling is currently done primarily by hand and, owing to the complexity of these
environments, are extremely painstaking. The models built are often incomplete
and updating them can be a serious problem.

My work for this thesis is a part of the larger project AVENUE!, which
addresses the above needs by developing an autonomous mobile robot system for
data acquisition and creation of 3-D photo-realistic geometrically accurate models of
urban scenes. The development of such a system involves work on both hardware
and software as well as on making them work together. The prototype system
described in the thesis serves as the mobile scanning platform for the AVENUE
project.

I see the contributions of my work in the following areas:

e The design and creation of a fully operational mobile robot platform for urban

site modeling

e The design and implementation of a distributed software architecture for au-

'AVENUE stands for an Autonomous Vehicle for Exploration and Navigation in Urban
Environments

11

tonomous mobile robot monitoring and control

e A localization method for outdoor robot localization in open areas using

odometry, an attitude sensor, and a global positioning sensor

e A novel method for mobile robot localization in urban areas using odometry,

an attitude sensor, global positioning and computer vision.

The rest of this document is organized as follows: Chapter 2 contains a
discussion of the state of the art in the area and how existing work compares to the
method presented here. Chapter 3 describes the robot along with the hardware and
system work that was done to make the real-world implementation and testing of
this method possible. Chapter 4 describes the first stage of the localization system
that functions in open areas and the following Chapter 5 focuses on the second stage
which involves the vision component. Following are Chapter 6 which presents the
experimental results and Chapter 7 which outlines the limitations of the method

along with ideas for its improvement and future extensions.

12

Chapter 2

Related Work

There has been a tremendous amount of work on mobile robot localization in the
past twenty years. Most of the research effort has been focused on indoor environ-
ments, mainly because they are simpler, more structured and easier to control. An
increasing number of researchers, however, are undertaking the challenge to take
the robots out of their labs.

Sensors and methods for indoor localization have been comprehensively re-
viewed in two books [Borenstein and Feng, 1996b, Everett, 1995]. Another excellent
book presents case studies of successful mobile robot systems [Kortenkamp et al.,
1998]. In this chapter, I will discuss existing localization methods from the perspec-
tive of outdoor applications. The next three sections review existing approaches
according to the sensing techniques used. They are followed by a section on sen-
sor integration. Various other approaches are summarized after that and the last

section of this chapter presents a comparison of my method with related ones.

13

2.1 Dead Reckoning

Dead reckoning is a localization method that involves the use of a simple mathe-
matical procedure to compute the current location of a vehicle, based on a known
previous location and measured heading and velocity information throughout the
time of travel. A typical example is odometry, which deduces the vehicle position
by monitoring the rotation of the wheels.

Because of its simplicity and low-cost, odometry is implemented on almost
every mobile robot. This also means that its inherent error accumulation problem
is omnipresent and, consequently, a lot of effort is put in making it work better.
Two orthogonal directions have been pursued: better calibration and integration
of odometry with other dead reckoning sensors.

Borenstein and Feng have extensively studied the sources of odometry errors
as well as benchmarking methods for quantifying the errors. They have classified
odometry errors into systematic, which are caused by kinematic imperfections of
the vehicle, and non-systematic [Borenstein and Feng, 1995]. They have, further,
developed a calibration method, that can reduce the effects of two major sources
of systematic errors. The method consists of having the robot traverse the same
square path a number of times both clockwise and counterclockwise. The bias of
the odometry system is computed based on the centroids of the clusters of arrival
points and is used for software compensation.

Roy and Thrun have later shown how odometry calibration can be per-
formed automatically by using an incremental maximum likelihood estimator [Roy
and Thrun, 1999]. Their experiments showed an 83% error reduction rate along

trajectories 741 m and 269 m long.

14

Gyroscopes have been frequently used to complement odometry. Two ex-
amples for this have been suggested by Borenstein and Feng [Borenstein and Feng,
1996a] and Maeyama et al [Maeyama et al., 1996]. Both of them rely on the fact that
the readings of the two sensors agree most of the time, except for when the robot
encounters irregularities, such as bumps. During such an encounter, Borenstein and
Feng simply rely on the gyroscope, while Maeyama et al use a more comprehensive
model allowing the estimation of the gyro drift and detection of sensor failures.

Two other methods have added a magnetic compass to the above sensor
configuration. Hardt et al model the vehicle dynamics and use an extended Kalman
filter to fuse the redundant information from a compass and a gyro effectively
reducing the effects of drifts and magnetic field perturbations [von der Hardt et al.,
1996]. A Kalman filter has also been used by Roumeliotis et al to estimate the robot
attitude [Roumeliotis et al., 1999]. They have considered both the 2-D and the 3-
D case. However, they point out that modeling the vehicle dynamics has serious
drawbacks when used with a Kalman filter and work around that by implementing
the indirect formulation instead.

An early approach to combining odometry with gyros and accelerometers,
has been developed by Fuke and Krotkov [Fuke and Krotkov, 1996]. The authors
consider a lunar robot vehicle and address the problem of odometry position over-
estimation due to the effects of uneven terrain. They formulate an error-state
extended Kalman filter that efficiently integrates the three sensors for improved
attitude estimation.

A method for the alignment of an inertial measurement unit has been devised

by Dissanayake et al [Dissanayake et al., 1999]. They exploit the non-holonomic con-

15

strains of their vehicle and an assumption about sufficient excitation in all degrees
of freedom to compute the roll and pitch angles of the sensor. Their method is at-
tractive in that it works on the fly and does not require any external observations.

Regardless of the improvement they achieve, all researchers agree that dead
reckoning alone is insufficient as a localization method. External references are

needed to cope with the error accumulation problem.

2.2 Global Positioning

With the rapid development of technology, GPS receivers are quickly becoming the
sensor of choice for outdoor localization. They are typically used in combination
with dead reckoning and these are the approaches that I will describe in this section.
Methods for integration of GPS with other sensors will be presented in section 2.4.
Cooper and Durrant-Whyte were among the first to advocate the combina-
tion of global positioning and inertial sensors on autonomous land vehicles [Cooper
and Durrant-Whyte, 1994]. They started with a standard eight-state extended
Kalman filter model of the vehicle position, velocity and clock drift and showed that
this model is inadequate because of time correlation in the assumed white noise se-
quence. They solved the problem by adding six additional states and demonstrated
how to correctly tune the filter. However, their experimental results showed an error
in the order of tens of meters, perhaps because they used a standalone civilian-band
receiver at times when Selective Availability was still active. The authors’ conclu-
sion was that GPS requires additional external sensors in order to be usable.
Schleppe has investigated the use of GPS for real-time attitude estima-

tion [Schleppe, 1996]. He has built a platform on which he mounted an array of

16

four GPS antennae forming a square. The attitude is estimated using interferomet-
ric techniques: The predictions of the platform attitude by an extended Kalman
filter are corrected by double differenced observations between pairs of antennae
and pairs satellites. Static field test revealed accuracies of less than two degrees for
each of the Euler angles.

Aono et al have investigated the problem of localizing an autonomous mower
on undulating ground [Aono et al., 1998]. Their sensor suite consists of a real-
time kinematic GPS, a fiber optic gyro and a roll-pitch sensor. The integration
is performed by an extended Kalman filter. To test their system, the authors
simulated various levels of noise into the otherwise accurate to 2 cm GPS readings,
and compared the results of the sensor integration algorithm with the uncorrupted
GPS data. When a noise with standard deviation of 1m was used, their system

produced estimates with an error of 0.2 m.

2.3 Imaging

Imaging sensors, such as CCD cameras and especially laser range finders, have be-
come very popular components for indoor localization and navigation applications.
Small line-based laser range finders have proven particularly attractive because of
their speed and simplicity — coordinates of the target points are easily obtained,
without the need for sophisticated calculations. Additionally, cameras are used
with considerable success, since a lot of the complexities involved in understanding
the scene are simplified by the structure of these environments.

Conversely, due to the enormous complexity and dynamics of outdoor scenes,

fewer assumptions can be made about them. 2-D laser scanners no longer depict

17

the environment accurately and the 3-D ones are either large, heavy, slow or noisy.
More computation and advanced vision techniques are needed to compensate for
that.

According to their need for a prior: information, the image-based methods
can be classified as landmark-based, model-based, and ones that do not require
any information. While the distinction between landmark-based and model-based
methods is not clear, generally, a model is a more comprehensive description than
a set of landmarks.

The landmarks that are used could be artificial or natural. The localization
process normally consists of three steps: detecting landmarks on an acquired
image, matching the detected landmarks with stored data, and computing the
position based on the matches.

The methods using artificial landmarks solve the detection step by choosing
easily distinguishable marks. A good example is the work of Lin and Tummala [Lin
and Tummala, 1997], who use a special circular pattern and develop a technique
called The Modified Elliptical Hough Transformation to detect its location and ori-
entation on an image. Their method seems to be very stable for viewing angles of
less than 20° and occlusions of less than 25%.

The main difficulty in the artificial landmark approaches is the matching
step. Since their landmarks are usually identical a many-to-many matching pro-
cedure is involved, which can lead to exponential complexity. Additional draw-
backs are the need for environmental customization. To address these issues, many
researchers are trying to use landmark features that are already present in the

environment.

18

Nayar et al [Nayar et al., 1994] have started a trend of localization ideas
by using principal component analysis to perform real-time pose estimation and
tracking of objects. They have demonstrated the efficiency of their approach on
an indoor robot manipulator. Their work has been extended to mobile robots by
Krose [Krose and Bunschoten, 1999]. A similar approach has been taken by Thrun
who trains a neural net to estimate the pose of the camera based on a maximum-
likelihood criterion [Thrun, 1998]. Sim and Dudek note that the above approaches
require an extensive training set and suggest a method that automatically detects
landmarks in images, based on local extrema, of edge density [Sim and Dudek, 1998].
Their method greatly reduces the data base size, since it stores only the principal
components of small windows around the landmarks.

None of the above methods has actually been tested outdoors although they
are in principle not limited to indoor usage. They require extensive training and
their landmarks data base is inappropriately large. They are also very sensitive
to occlusions, landmark misidentification and mismatching. The latter are better
handled by model-based approaches because of their more detailed information
about the environment.

One typical model-based approach has been demonstrated on the robot FI-
NALE [Kosaka and Kak, 1992]. The robot stores a detailed CAD model of its
operating environment. At each step, the estimated robot pose uncertainty is used
to generate an expectation of what the camera would see. When an image is taken,
the expectation map is used to apply selective feature extraction. The predicted
and extracted features are matched and an extended Kalman filter is used to update

the robot pose and its uncertainty.

19

Zheng and Tsuji have described a method that they have actually imple-
mented and tested in an urban area [Zheng and Tsuji, 1992]. They propose a
model of the environment around the route of the robot which they call panoramic
representation. The model is built out of vertical slices from images taken sideways
as the robot is taught its route. The localization during an autonomous task is
performed by matching the panoramic view generated so far with the memorized
version. Although tested outdoors, this method has strong limitations. It is only
applicable to localization along a single path and is sensitive to how closely this
path is followed. The model is very rich and has significant storage requirements.
Matching is also very slow: the authors report a 30 second processing time frame.

Finally, I want to mention two methods that do not require any a prior: in-
formation about the environment [Adam et al., 1999, Basri et al., 1999]. Basri et al
have been able to navigate the robot to a position and orientation from which a
specified image was taken [Basri et al., 1999]. This approach is known as localiza-
tion by homing. Its major drawback is that it requires a significant overlap between
the initial and target images. It is also strongly dependent on a good robot control
system. Adam et al use fixation on an automatically selected landmark to improve
the navigation accuracy [Adam et al., 1999]. Their method is attractive because
it requires only one landmark to be tracked, which greatly simplifies the computa-
tion. On the other hand, tracking a landmark is a very unstable and sensitive to

occlusions process.

20

2.4 Sensor Integration and Uncertainty Handling

The issues of sensor integration and uncertainty handling are tightly related because
the representation of uncertainty very often dictates the way sensor data is fused.

Three dominant ways to address this issue have been established:

1. Kalman filters. Under this scenario, both the motion and measurement
models are approximated by Gaussians. This is almost certainly used in com-
bination with a Kalman filter. There are multiple advantages to this approach:
First, a Gaussian distribution is completely characterized by its first two mo-
ments, hence, the uncertainty is represented simply by the state vector and a
variance-covariance matrix. Second, manipulating these is relatively fast and
easy — the entire well-understood apparatus of linear estimation theory can
be taken advantage of. Further, the Kalman filter provides an excellent frame-
work for the fusion of various observations from multiple sensors. A drawback

of this approach is that it can not represent multi-modal distributions.

2. Grid-based methods. These methods represent the uncertainty of the ve-
hicle pose explicitly by discretizing the state space into a number of cells and
storing into each cell the probability of the robot being there. They are attrac-
tive in cases when multi-modal distributions need to be used. One obvious
drawback is the a priori commitment to a particular resolution. Addition-
ally, they have huge storage requirements and impose excessive computational
burden as theoretically each of the cells needs to be updated with each new

measurement.

21

3. Particle-based methods. These methods were invented to address the
issues of the grid-based approaches. The idea is to describe the probability
distribution of the robot pose by a number of representative samples randomly
drawn from it, instead of discretizing the entire state space. This obviously
solves the problem with the storage and computational requirements. In fact
these methods are very easy to implement. A serious concern with them,
however, is how to make sure that the sample particles remain representative
of the distribution at each step. Another problem with these methods is the

need for a fairly complete and detailed map of the entire working area.

Below, I present a number of examples for each category.

Kotani et al have integrated GPS, vision and a fiber optic gyro [Kotani et
al., 1998]. They fuse the data from odometry, the camera and the gyro using
a standard extended Kalman filter framework. They apply a Hough transform
on the images to detect curves and straight lines and match them with a map.
Successful matches are used to correct odometry. An experimental test, performed
on a 1179 m long trajectory, demonstrates the feasibility of this approach. However,
there is no real integration between the GPS and the other sensors: GPS is only
used in the beginning to obtain the initial position and orientation of the vehicle.
Another limitation of this approach is the requirement for a full metric map to use
vision.

Significant work on the integration of odometry, a millimeter wave radar,
GPS and INS has been done at the Australian Centre for Field Robotics [Bozorg et
al., 1998, Sukkarieh et al., 1998]. Their idea consists of implementing a decentral-

ized navigation architecture with two independent loops: one, that employs data

22

from GPS and INS, and another, that fuses data from odometry and the radar
which measures the distance to beacons placed in the environment. Each loop is
implemented as an information filter, which is a form of the Kalman filter. The
estimates of the two loops are blended by an assimilation unit which can work in
both feedback and feedforward configurations.

A very elegant and general approach to sensor fusion has been published
by Neira et al [Neira et al., 1999] and explained in detail in [Castellanos and Tar-
dos, 1999]. The authors have devised an uncertainty representation model, called
the SPmodel, which can represent different types of geometric elements — such as
points, rays, segments, and corners — in the same common framework. According
to the model, the location of each element is represented by an estimation of a small
perturbation from a local base, its covariance, an estimate for the base of the per-
turbation and a binding matrix describing the possible symmetries resulting from
the specific type of the element. The model deals easily with partial and imprecise
data. The authors have adapted the extended Kalman filter to the peculiarities of
their representation and have demonstrated a working version of an indoor robot
equipped with a camera and a range finder.

A good example for a grid-based approach is the one developed by Thrun
et al [Thrun et al., 1998]. They assume a flat world and discretize the 3-D state space
consisting of the robot position (z and y) and orientation (#). To find the robot
pose, they employ a hill-climbing EM algorithm in likelihood space. The algorithm
alternates two steps: ezrpectation, in which the best robot pose is computed given
the current map estimate, and mazimization, in which a maximum likelihood map

is estimated. To cope with the computational burden, various approximations and

23

optimizations have been made.

Finally, a classical particle-based method has been developed by Dellaert
et al [Dellaert et al., 1999]. They have employed the Monte Carlo technique to up-
date the probability density representation over time. Actual tests were performed
on in the National Museum of American History and the impressive average speed

of 1.6 m/s was achieved.

2.5 Other Approaches

This section briefly outlines approaches to localization that utilize ideas other than
tracking the robot pose over time.

A very popular and successful idea is to exploit the duality between local-
ization and modeling and address both issues in the same process. This is known
as Simultaneous Localization and Map Building (SLAM). Work in this direction
has been done by Thrun etal [Thrun et al., 1998], Durrant-Whyte et al [Durrant-
Whyte et al., 1999], Leonard and Feder [Leonard and Feder, 1999], and Castel-
lanos et al [Castellanos et al., 1998]. This method, however, may not be preferable
if a map of the environment is already available and the modeling process is more
computationally demanding than the localization. It should also be pointed out
that models produced by SLAM applications are designed to facilitate localization
and are not necessarily substitutes for the detailed photo-realistic models one would
expect from a quality site-modeling application.

Fundamentally different from the above is the idea of qualitative localization,
where the goal is to determine the robot location on a coordinate-free topological

model of the environment. Levitt et al describe a landmark-based formal theory for

24

multi-level spatial representation of environmental locations encoding perceptual
knowledge. Their model is topological but also allows for smooth integration of
metric information. Localization is done by recognizing landmarks in the vicinity
and associating them with a “visual landmark memory” [Levitt et al., 1987].

Park and Kender suggest the use of topological directions for navigation in
large-scale environments [Park and Kender, 1995]. The directions are a form of an
environmental model tailored to the perceptual capabilities of the mobile robot.
The robot localizes itself by watching for events that are characterized by spatial
properties of the environment. The authors also consider the problem of error
handling by analyzing the types of errors that are detectable and recoverable.

A similar approach is taken by Taylor and Kriegman [Taylor and Kriegman,
1998]. They consider the problem of systematically exploring an unknown environ-
ment in search of one or more recognizable targets. Their exploration algorithm
is based on landmark visibility. It constructs a representation of the environment,
called boundary place graph, which records the set of recognizable objects visible
from the boundary of each configuration space obstacle. The authors provide a nec-
essary and sufficient condition under which the algorithm is guaranteed to discover
all landmarks. The robot maintains a notion of its location by measuring a relative
range — any quantity that is monotonically related to the distance to a landmark.
No absolute reference or measurements are needed.

An example for a somewhat mixed approach between topological and quan-
titative methods is the autonomous road following or highway navigation [Thorpe,
1990]. The main goal in this case is not to estimate the position of the vehicle but

to simply keep it on the road. However, due to the inertial properties of most such

25

vehicles, estimates of its velocity and relative position to obstacles or other vehicles

is strictly necessary.

2.6 Comparison with My Approach

The localization method described in this thesis is one that integrates odometry,
an attitude sensor, GPS and vision. I have implemented an extended Kalman filter
framework for sensor integration and represent the uncertainty in the robot pose
by a Gaussian distribution.

I have chosen the Kalman filter over the particle-based methods since the
availability of a complete map of the working area can not be guaranteed and there
is no clear way to sample the probability distribution of the robot pose over the
entire working area. A grid-base approach would clearly be prohibitive for such
large-scale environments.

The qualitative approaches are very appropriate for outdoor usage in that
they address the problem of limited computational resources. A topological de-
scription of the environment could be extremely compact and is best suited for
“high-level” path planning and navigation. In my case, however, the robot needs
to have a good quantitative estimate of its location as this is essential for the site
modeling application.

I am aware of two other projects specifically addressing the localization of
mobile robots in urban environments. Chen and Shibasaki have also noticed that
GPS accuracy becomes poor for navigation in many areas [Chen and Shibasaki,
1999]. They have addressed the problem with the addition of a camera and a gyro

to achieve a better and more stable performance. While their work does not discuss

26

how the sensor integration is done, it is clear that the camera and an environmental
model obtained from a geodetic information system (GIS) play key roles in their
method. The authors have considered situations where GPS, GIS or both data
are unavailable and have implemented both absolute and relative to previous pose
localization. They seem to have consistently been able to compute locations with
a sub-meter accuracy.

One of the drawbacks of their research is the requirement for a geodetic
information system with accurate data. The authors also seem to only process
vertical edges of the building structures very few of which may be visible from a
large number of places.

The second approach to vehicle localization in urban areas is one proposed
by Nayak [Nayak, 2000]. His sensor suite consists of four GPS antennae and a
low-cost inertial measurement unit. The sensor integration is done by an indirect
Kalman filter estimating the error of the inertial measurement unit, similar to my
case. Since the sensors are mounted on a car moving at sufficiently high velocities
(greater than 10m/s), he is also using the velocity and heading readings from the
GPS sensors. Tests were performed using simulated GPS outages of 20 second
duration. The resulting error in the estimate was around 9 m.

An obvious drawback to this approach is the requirement for four GPS re-
ceivers mounted on a relatively large platform. The resulting error, while sufficient
for many applications, is not acceptable for mobile robot navigation.

A closely related work is the MIT City Scanning project, whose goal is
similar to AVENUE’s — the creation of accurate three-dimensional models of urban

landscapes. Antone and Teller address the camera pose estimation problem from

27

multiple images of urban scenes. They use a mobile platform equipped with various
instrumentation to acquire images at various locations in the operating site. A
number of images are acquired at each location and used to create a data base of
hemispherical mosaic nodes. Each node is annotated with the approximate pose
derived from sensors like odometry and GPS. The data base is then processed to
align the images and compute the camera orientations [Antone and Teller, 2000b]
and positions [Antone and Teller, 2000a].

The main difference between their approach and mine is that Antone and
Teller focus on the modeling as opposed to the localization problem. They split
the process in two steps and recover the camera poses after all images are acquired.
They do not address the problem of an autonomous platform performing the ac-
quisition step. Their method is inapplicable to the task of robot localization as this
task requires on-line pose estimate computation. Further, their method precludes
sensor placement planning which is an integrable part of the modeling system used
in AVENUE.

Finally, another related work in that it employs model-based pose estimation
is the Facade project [Taylor et al., 1996]. The focus of this project is again on
the modeling not the localization aspect. It provides an interactive tool with which
a user with some manual interaction is able to construct 3-D models of buildings

from multiple images of them while simultaneously recovering the camera poses.

28

Chapter 3

System Design and

Implementation

In this chapter, I will discus the work that was done to design and build a functional
mobile robot for urban site modeling. This is the robot that was used as a test
platform for the localization methods described in the following chapters. While the
localization methods are general and independent of the modeling part, an explicit
goal of the design effort was to tailor the robot to the task of urban site modeling
as part of the AVENUE project [Allen et al., 2001]. Thus, I will begin the chapter
with a brief description of AVENUE in order to provide a better understanding of

the context in which the various design decisions were made.

3.1 The AVENUE Project

The AVENUE project targets the automation of the urban site modeling process.

The main goal is to build not only realistically looking but also geometrically accu-

29

rate and photometrically correct models of complex outdoor urban environments.
These environments are typified by large 3-D structures that encompass a wide
range of geometric shapes and a very large scope of photometric properties. The
models are needed in a variety of applications, such as city planning, urban design,
fire and police planning, and many others. However, they are typically created by
hand which is extremely slow and error prone. AVENUE addresses these problems
by building a mobile system that will autonomously navigate around a site and
create a model with minimum human interaction if any.

The entire task is complex and requires the solution of a number of funda-

mental problems:

e In order to create a single coherent model, scans and images of the scene

taken from multiple viewpoints need to be registered and merged.

e To provide full coverage, there must be a way to tell what part of the scene is
not yet in the model and where to go to ensure a good view of it. Better yet,
it is desirable to plan the data acquisition so as to minimize the cost (such as

time, price or total travel distance).

e Given a desired acquisition location, a safe path must be determined that will

take the sensors there from their current position.

e To acquire the desired data, the sensors need to be physically moved and
accurately positioned at the target locations.
e The user must be able to monitor and control the process at any given stage.

The first two problems have already been successfully addressed by Sta-

mos [Stamos, 2001]. He developed a comprehensive system for the automated

30

Initial Mdel

LR

Vi ew Pl anni ng

v

Pat h Pl anni ng

v

Navi gation

v

Data acqui sition

v

Model i ng/ Mer gi ng

Model
Conpl et e?

Fi ni shed

Figure 3.1: The modeling process.

generation of accurate 3-D models of large-scale environments using a laser range
finder and a camera and provided a framework for sensor planning utilities. He
demonstrated the feasibility of his approach by creating models of various build-
ings. Additionally, a safe trajectory generator based on Voronoi diagrams has been
developed in our lab by Paul Blaer [Gueorguiev et al., 2000)].

Here, I am addressing the remaining two items in the list by introducing an
autonomous mobile platform operating according to the following scenario (Fig-
ure 3.1): Its task will be to go to desired locations and acquire requested 3-D scans
and images of selected buildings. The locations will be determined by the sensor

planning (or view planning) system and will be used by the path planning system

31

to generate reliable trajectories which the robot will follow. When the rover arrives
at the target location, it will use the sensors to acquire the scans and images and
will forward them to the modeling system. The modeling system will register and
incorporate the new data into the existing partial model of the site (which in the
beginning could be empty) according to Stamos’s method. After that, the view
planning system will decide upon the next best data acquisition location and re-
peat the above steps. The process will start from a certain location and gradually

expand the area it has covered until a complete model of the site is obtained.

3.2 Hardware

The design of a mobile robot for urban site modelling involves a myriad of issues
related to both its safe navigation (including motion control, path planning, and
localization) and the necessary data acquisition (range scans and images). The
most important issues are: the choice of a robotic vehicle, the choice of sensors, the
sensor placement, and the means of remote communication with the robot.

Ideally, all of these items are considered at the design stage, before moving
on to implementation. In practice, some of the design decisions are already made
by virtue of existing hardware or other practical considerations. This was the case
for me with the mobile platform and the scanning equipment.

The mobile robot used as a test platform for this thesis is an ATRV-2 model
manufactured by Real World Interface, Inc (Figure 3.2). It has built-in odometry
and twelve sonars. It has a regular PC on-board and provides additional 24 —
45W of +5V and +12V power supply which amounts to about three hours of

standalone operation. Its payload of 118 kg is enough to accommodate the scanner,

32

Figure 3.2: The mobile platform used in this thesis.

its electronics box including the batteries, and the additional periphery I have
installed. The robot can move as fast as 2m/s and handle slopes of up to 45
degrees. An additional benefit is that it is a holonomic vehicle, that is it has zero
turning radius.

The choice of sensors is an important topic that I would like to discuss
in more detail in the next subsection. The rest of the hardware-related work is

described in the following subsection.

33

3.2.1 Choice of Sensors

The sensor suite on the robot has to provide enough data to allow for safe navigation
and accurate modeling. The modeling method already developed dictate the use
of a 3-D range finder and a color camera. Both are provided by a Cyrax 2500 laser
scanner that has a nominal accuracy of 6 mm and range of up to 100 m.

In terms of navigation, the robot needs to be able to detect unexpected
obstacles and its position in the environment. The sonars on the robot provide for
a very good solution to obstacle detection. For localization, however, the answer is
more complicated, as there are many factors to consider.

An essential requirement for localization is availability at all times, that is
at any given moment the robot has to have an idea of its location. This is best
accomplished by proprioceptive sensors — ones that deduce the robot pose by
relying only on measurements from its kinematics, such as wheel revolutions and
joint angles and velocities. Odometry (wheel encoders) is the typical choice as it
is provided in almost every mobile robot (including the ATRV-2), requires little
computation, and works in real-time.

The use of odometry, however, is not sufficient if a 3-D position is needed and
the ground plane assumption does not hold (that is, the ground surface is not flat
as it is mostly the case outdoors). In such cases, odometry is often complemented
with inertial sensors such as fiber optic gyros and accelerometers. The problem with
these sensors is that they measure the first or second derivative of the magnitude
that we need. This, combined with the fact that they tend to drift, causes error
accumulation and makes them problematic for long-range operations.

A better choice of a complementary sensor is one that directly measures the

34

desired quantity and thus produces an error bounded by a known nominal constant.
In my case, this is done by a digital compass with an integrated roll-pitch sensor
(Honeywell HMR3000), which provides fast update rates of up to 20 Hz. Its roll-
pitch accuracy is 0.6° and its heading accuracy is better than 1.5° RMS. The heading
accuracy also depends on the presence of strong magnetic sources other than the
Earth, however, the module provides a way to detect such magnetic influences.

An inherent limitation of the proprioceptive sensors is that error accumu-
lation with them is inevitable. This can only be alleviated by the addition of an
exteroceptive sensor — one that makes measurements relative to the robot envi-
ronment. One typical requirement of such sensors is an installed infrastructure,
such as radio transmitters, beacons, or fiducial marks. This is not always a plausi-
ble option. Fortunately, there are two existing and available infrastructures, GPS
and GLONASS, that are designed to address exactly this problem anywhere on
or near the Earth. State-of-the-art Real Time Kinematic (RTK) receivers achieve
accuracies in the order of centimeters and this makes them the primary candidates
for inclusion on a mobile robot. Our robot is equipped with an Ashtech GG24C
GPS+GLONASS unit that is accurate down to 1 ¢m in an RTK mode.

It is important to note that a GPS unit can not act as a substitute for
a proprioceptive sensor, since it has stringent requirements to work (e.g. line of
site visibility to enough satellites, good satellite configuration, acceptable signal-to-
noise ratio) and is not real-time. Thus, GPS can only act as a complement to the
real-time proprioceptive sensors.

The combination of a proprioceptive sensor and GPS has been proven very

beneficial. GPS is known to exhibit an unstable high-frequency behavior mani-

35

Figure 3.3: GPS problems in urban areas: Not enough visible satellites in urban
“canyons” (left) and signal reflections and multipath (right).

fested by sudden “jumps” of the position estimates when the satellite configuration
changes or a signal reflection takes place and confuses the receiver. It is fairly reli-
able, however, over a longer period of time when enough data is collected and errors
are “averaged out”. On the other hand, proprioceptive sensors drift gradually and
rarely suffer the sudden jump problem. Thus, an intelligent integration of these
two types of sensors could be done to greatly reduce the overall error.

The above combination can perform quite well for localization in open areas,
however, it often fails in urban sites. Tall buildings in the vicinity tend to obstruct
the clear view to the satellites and the signals of fewer satellites reach the receiver
(Figure 3.3, left). The signal-to-noise ratio could be attenuated by trees or large
structures standing in the way. Very difficult to deal with are signal reflections and
multipath (Figure 3.3, right). The result is unstable, wrong, or even no position
fixes at all in some areas. In such areas, additional sensors are needed.

Due to the nature of urban sites and the overall goal of AVENUE, it is

mostly around buildings that degradation in GPS performance is likely to occur.

36

This knowledge can be utilized by exploiting typical urban characteristics, such as
abundance of linear features, parallel lines, and horizontal and vertical principal
directions. These are properties that are easily captured by a camera and, thus,
a CCD camera is added to make up for the limitations of the above sensors. The
camera is mounted on a pan-tilt unit (PTU) which provides two independent of the
robot degrees of freedom for its orientation.

I would like to point out that range finders could also be a good choice
for complementing GPS and proprioceptive sensors, since they also capture many
of the typical urban features. Most range finders, however, demand a tradeoff
between speed, accuracy, and range. Additional non-trivial problems are caused
by manufacturers who refuse to release information on how to control a scanner
remotely. We have settled on a model featuring high range, high accuracy and low
noise characteristics and have sought a solution to the localization problem with
a camera. Since the localization method is general and cameras are cheaper and
more widespread, this makes it more applicable to other situations.

The resulting set — odometry, a digital-compass with a roll-pitch sensor, a
GPS unit and a color CCD camera mounted on a pan-tilt unit — forms a well-

chosen and sufficient sensor suite for localization in urban environments.

3.2.2 Other Hardware Considerations

A considerable amount of work was needed to physically install and connect the sen-
sors and the various additional periphery to the robot. Additional effort was spent
on helping set up the GPS and wireless network infrastructures on the Columbia

Morningside Campus. An RTK GPS base station was installed on the roof of the

37

Mudd building to transmit RTK corrections to the rover. Wireless access points
were installed and configured to provide outdoor network coverage.

The sensor placement decision was mainly affected by the size and the weight
of the laser range finder. It consists of two parts: a scanning box and a controller
electronics box. Given its size, two placement options existed: to mount it on
a trailer behind the robot or to attach it to a custom-designed extension of the
vehicle.

Placing the scanner on a trailer has the benefit of not adding its entire
weight to the burden of the robot motors. However, the existence of a non-rigid
link between the robot and the trailer entails non-trivial modifications to both the
path planning and the motion control algorithms: The path planner needs to take
into account a non-zero turning radius factor in narrow passages and a fine-grained
control of the scanner orientation via the non-rigid link becomes a serious challenge.
An additional problem arises with keeping track of the relative pose of the two rigid
bodies.

Instead, I have designed and built an aluminum item support frame that
I rigidly affixed to the robot chassis (Figure 3.2). The range finder was mounted
on the frame such that the resulting center of mass is on the same vertical line as
the center of odometry. This eliminated the problems with the introduction of a
non-rigid link. The rest of the sensors, were placed under the obvious constraints
that the GPS antenna needs to be high and the camera needs to face the direction
in which the robot is moving.

Communication with the robot is done through a wireless network. Two

11 Mb/s wireless IEEE 802.11 interfaces have been added. The first one was de-

38

signed to take advantage of a wireless network infrastructure, such as the one in-
stalled throughout Columbia Morningside Campus. This has the benefits that the
robot can distribute its computational work across multiple machines and can be
monitored by multiple users at different places. Since network coverage is not al-
ways guaranteed, the second wireless interface is configured to work in an “ad hoc”
mode in which it will connect directly to a portable computer without the need for

installed network infrastructure.

3.3 System Architecture

3.3.1 Background

The problem of designing a software architecture for mobile robots is complex
and multifaceted. It has tradionally been addressed by variations of two main
approaches which are sometimes refered to as horizontal and vertical.

The horizontal approach, also known as the sense-plan-act paradigm, de-
composes the robot control software into a horizontal sequence of vertical slices
(modules) according to the function they perform. Typically, roboticists have
sliced the problem into some subset of sensing, mapping sensors data into a world
representation, planning, task execution and control. Examples include works of
Crowley [Crowley, 1985], Moravec [Moravec, 1983], and Nilsson [Nilsson, 1984].

The vertical approach was first introduced by Brooks in 1986 [Brooks, 1986]
with his subsumption architecture. The idea is to decompose the problem vertically
into horizontal slices based on task achieving behaviors. He defined eight levels

of robot competence, starting with avoiding contact with objects at level 0 and

39

expanding up to level 7 which is reasoning about the behavior of other objects
in the world and modifying plans accordingly. Each successive level includes as a
subset the previous ones.

Other approaches also exist, the most popular of which is probably the one
introduced by Arkin [Arkin, 1987]. He draws from extensive knowledge of human
psychology, neurology and brain theory along with robotics experience to create a
software model of the action-perception cycle. The model is based on perceptual
and motor schemas which may be combined in various ways and which collectively
determine the overall behavior of the system.

So far, no single approach has proved universal. The behavior-based decom-
position has helped robots achieve certain skills (e.g. dealing with moving objects)
that have been traditionally hard in the sense-plan-act framework. However, this
decomposition is difficult to implement for more complex behaviors than simple ob-
stacle avoidance or road following. Because of this, and due to the vast differences
in scope and focus of the research projects, many roboticists have opted for their
own specialized architectures that serve the specific purpose better [Simmons, 1994,

Sukkarieh et al., 1998].

3.3.2 Issues

The first step to designing a mobile robot architecture is to identify and prioritize
the key issues that need to be addressed. For the tasks of mobile robot navigation
and urban site modeling, the following considerations are very important and need

to be taken into account:

40

e Distribution of computation
A major problem when designing a mobile robot architecture is the distribu-
tion of computation. As with battery power, payload, communication range,
and others, computational resources are limited and usually insufficient. This
is especially true when it comes to the processing of images or large-scale
environmental models. It is impractical for a robot to spend its limitted pro-
cessing power on application-level work when it is needed on the system level.
For computationally heavy applications, it might make more sense to dele-
gate the large computational tasks to off-board machines. This would be a
highly scalable solution as one could take advantage of the recent progress in

clustering technologies.

e Communication link independence
If a robot is to be truly autonomous, it needs to be able to carry on the
execution of its tasks regardless of whether a communication link is available
to the control stations or other software or user agents. This should hold
for both planned loss of communication (passing through a region known
to be out of range) or unexpected loss of communication (signal jamming,
excessive noise). Both the robot and its peer should handle communication
loss gracefully and resume their dialog after communication is reestablished.
This requirement is very often in conflict with the goal of distributing the

computation as any distributed system relies on the communication link.

e Flexibility
The architecture should be able to easily adapt to serve different applica-

tions or different implementations of the core system functionality. This is

41

especially important for research projects in their initial phase, as they fre-
quently involve experimentation with a number of different prototypes before

stabilizing the development.

Extensibility

The ease of adding new functionality to an already existing system is essential
for the viability of that system. This, again, is very imporatant for research
projects since they normally start with a minimal functionality and expand

as the project makes progress.

Remote monitoring and control

The architecture has to allow for convenient monitoring and control of the
robot from a remote control station. This is important for several reasons:
Being able to monitor the progress of the mission gives you the ability to
plan for tasks that depend on it. If the robot stalls or gets confused for
some reason, a certain needed functionality is not yet implemented, or the
results of a particular task are found to be unsatisfactory, the user should be
able to manually intervene and help by giving information, repeating a task
with different parameters or manually executing the missing/failing function.
Further, the ease of troubleshooting and debugging is a necessity for large

and complex projects.

Data storage and utilization
Of the limitted on-board resources, storage capacity is probably the least rel-
evant issue given the prices and capacities of state-of-the-art storage devices.

However, in distributed settings, access to the data may not be a trivial prob-

42

lem because the data may be acquired on one host and needed on another.
When the possibility of a lack of permanent communication link between
the two is factored in, this becomes a serious consideration and has to be

addressed appropriately.

3.3.3 Design

I have designed the distributed modular architecture shown in Figure 3.4. Its main
building blocks are concurrently executing distributed software components. Each
component is a software abstraction of a hardware device or a specific functionality.
For example, Odo is an abstraction of the robot odometric device, Drive is an
abstraction of the robot actuators, and Localizer computes the robot pose.
Components can communicate (via IPC — Interprocess Communication)
with one another within the same process, across processes and even across physical
hosts. The main communication channels for data exchange are called streams. A
data stream is started by a component, called a source, which generates the data or
reads it from a hardware device. Streams end with a sink — a component which is
the final recipient of the data and usually sends it directly to an actuator. Interested
components can supply data to a sink or register with a source to receive updates
every time they become available. A component may also provide an additional
interface with a set of specific commands that it can understand and execute.
Components performing related tasks are grouped into servers. A server
is a multi-threaded program that handles an entire aspect of the system, such as
navigation control or robot interfacing. Each server has a well-defined interface

that allows clients to send commands, check its status or obtain data.

43

C Scanner) C Camera) (GPS)(Attitude Sensor) PTU

| Scan | | Image | | GPS | | Attitude | | Odo || Drive | | PTU |

A 4

Localizer »{ Controller
Navigator

A A

YVvyYy

| Modeler |—>| ViewPlanner I
A t Y

User

Interface
Images, >
Models

PathPlanner

Y

A A

Figure 3.4: The system architecture. Solid rectangles represent components, dotted
rectangles are processes, and dashed rectangles group processes running on the same
machine. The arrows show the data flow between components.

To ensure maximum flexibility, each hardware device is controlled by its own

server. The hardware servers are usually simple and serve three purposes:

1. Insulate the other components from the low-level hardware details, such as

interface and measurement units.

2. Provide multiple, including user-defined, views of the data coming from the
device. For example, a server may distribute its position data with respect

to different coordinate systems.

44

3. Control the volume of data flow; for example, the rate at which images will

be grabbed.

The hardware is accessed and controlled by seven servers, that perform some
or all of the tasks above (Figure 3.4). The NavServer (beneath the hardware servers)
builds on top of the hardware servers and provides a higher-level interface to the
robot. A set of more intuitive commands, such as “go there”, “establish a local
coordinate system here”, and “execute this trajectory”, are composed out of the
low-level hardware control instructions or data. The server also provides feedback

on the progress of the current tasks. It consists of three components:

1. The Localizer is the part of the system that is the main focus of the next
two chapters. It reads the streams coming from the odometry, the attitude
sensor, the GPS, and the camera, registers their data with respect to the same
coordinate system, and produces an overall estimate of the robot pose and

velocity according to the methods described in the following chapters.

2. The Controller is a motion control component that brings the robot to a
desired pose. It executes commands of the type goto and turnto. Based
on its target and the updates from the Localizer, it produces pairs of desired

rotational and angular velocities that it feeds to the Drive component of the

ATRV2Server.

3. The Nawvigator monitors the work of the Localizer and the Controller, and
handles most of the communication with the user interface and other re-
mote components. It accepts commands for execution and reports the overall

progress of the mission. It is optimized for network traffic: it filters out

45

the unimportant information from the low-level components and provides a

compact view of the current system state to registered remote components.

A mission consists of commands that are carried out sequentially. The Nav-
igator itself does not execute most of the commands — it simply stores them and
resends them to the Controller, one at a time. It monitors the progress of the cur-
rent command and, if it completes successfully, starts the next one. Additionally,
a small group of emergency commands exists, such as stop, pause, and resume,
that are processed immediately.

The commands stored in the Navigator are accessible to other components.
This is useful in two ways. First, it allows users who have just connected to the
robot to see what it is trying to achieve and how much it has accomplished. Second,
it allows the robot to continue its mission, even if the network connectivity is
temporarily lost. Moreover, this is the only way to accomplish a mission that
requires passing through a region not covered by the wireless network.

The mission command sequence is usually composed by the Path Planner
which converts the target sensor acquisition pose obtained by the View Planner into
a sequence of navigation and data acquisition instructions according to a 2-D map
of the area. The View Planner generates a new target after the Modeler updates
the model with new scans and images reported by the ScanServer.

The architecture presented here addresses the issues pointed out in sec-
tion 3.3.2. The computation needs to be distributed because of the heavy require-
ments of the modeling application. The underlying framework and the wireless
network interface make it possible for a server to run on a computer not physically

residing on the robot.

46

The distributed nature of the system along with the communication link in-
dependence requirement brings an interesting question of how to resolve the conflict
between distributing the computational load and the need for autonomy. Obviously,
some components, which I call core components, need to be run on-board as they
are hardware related (such as interfaces to sensors or actuators) or mission-critical
(for example, the low-level control system). Components, which are too computa-
tionally intense (heavy components) need to be run on other machines.

Normally, the core components are lightweight in that they do not consume
a lot of resources and can all be run on-board. This is the case with the architecture
presented here. Core servers are the ones shown in the upper portion of the block
diagram. The top row consists of hardware-related servers, while the NavServer
implements the control system and is, therefore, mission-critical.

The heavy components are the Modeler and the View Planner, however,
they are not critical for the mission and do not pose problems running remotely.
Acquired data is supplied to them when a network connection becomes available and
once a possible resulting new mission is uploaded to the Nawvigator, the connection
is no longer needed.

Note that in the general case, it is possible for a component to be both
core and heavy, that is, it is essential for the mission but is more computationally
intense that the on-board machine can handle. In such cases, I see the solution in
a variation of Brooks’ subsumption architecture. Two versions of that component
will be provided: A heavy version implementing the full computationally intense
functionality will be run remotely and a stripped-down version will be run locally

on-board. When connection is available, the result of the heavy version will be

47

used, overriding the local one. If connection is lost, the local version will act as an
emergency substitute.

The standardized way of communication between components makes servers
easily reconfigurable and replaceable and provides high flexibility. For example,
when I want to test a particular behavior of the control system indoors (where GPS
data, of course, is not available), all I need to do is run a program GPSSimulator
instead of the GPSServer. Similarly, one can test the navigation system on a
Pioneer I robot by simply running a PioneerServer instead of the ATRV2Server.

For the same reasons, the architecture is also highly extensible. Adding new
functionality on the application level could be as simple as writing another software
component which connects to existing ones. On the system level, the addition of a
new sensor, for example, might require writing a new hardware server to interface
that sensor and updating the Localizer to integrate the sensor with the others.

Due to the distributed nature of the system, the status of the robot and each
of its subsystems can be accessed and controlled remotely. This can be done either
autonomously by a client program or by the user via the user interface described
further in this chapter.

The architecture implementation is based on the Common Object Request
Broker Architecture (CORBA), which provides to a great degree platform, oper-
ating system, and programming language independence. This important practical
aspect has been demonstrated by running various pieces of AVENUE on both con-
ventional personal computers and portable digital assistants under different operat-
ing systems, such as Linux and Windows CE. A description of the implementation

details of the architecture is presented in Appendix A.

48

3.4 Motion Control

To provide a fully functional implementation of the software architecture, I have
written a motion control component. The task of the component is to position the
robot at a given target location or orientation. Each time the Localizer produces a
new estimate, or a new target is supplied by the Navigator, the Controller updates
its output to the Drive component. The controlled quantities are the translational
velocity v and the angular velocity w.

Since the kinematics of the robot is essentially two-dimensional, the control is
done in 2-D. The reference plane for this is the O-z-y plane of the robot coordinate
system. I have adopted a standard robot-fixed coordinate frame. It is centered at
the center of odometry at ground level. The z axis points forward, the y axis points
to the left, and the z axis points up (Figure 3.5).

The target is expressed in 3-D but due to the 2-D constraints, only its pro-
jection onto the reference plane is pursued. Thus, if the target is a new position
p = [z,vy, 2|7, its Cartesian coordinates p’ = [z, 3, 2’]T with respect to the robot-
fixed frame are computed, using the current robot orientation R, (a 3 x 3 matrix)

and location T, (a 3 x 1 vector):
p=RF(p-T,). (3.1)
Similarly, if the target is a new orientation expressed as the 3 x 3 matrix R,

then a vector pointing in that direction is considered relative to the robot frame:

1
pP=R'R| o |. (3.2)

0

49

ref erence
pl ane

Figure 3.5: The robot reference frame and a control target point.

After that, the target is projected on the reference plane by dropping the z

coordinate from consideration and the result is expressed in polar coordinates:

Ap = yJz?+y"? (3.3)

Af = arctan (%) (3.4)

X

The Controller implements the proportional control law. The polar coor-
dinates Ap and A#, which are current translational and rotational displacements
from the target, are multiplied by a pair of experimentally determined gains to

obtain the new velocities:

Vnew =]quP (35)

Wnew = K AD. (3.6)

Before applying these velocities certain limits are imposed. First, high ac-

celerations are suppressed:

Unew = SEM(Vnew) Min{|Vnew|, V| + Gmaz At} (3.7)

20

Whow = SEN(Wnew) Min{|wWhew|, |w| + mas At} (3.8)

where a4, and ., are the maximum translational and rotational accelerations
allowed, and At is the sampling period.

Next, velocities are restricted within an acceptable interval:

View =S80 (V) MIn{[Vey, |, Vimas } (3.9)

wﬁew = Sgn(w;ew) min{|w;ww|, Winaz } - (3.10)

Finally, the resulting velocities are sent to the Drive component and the

control cycle repeats.

3.5 User Interface

The user may monitor and control the robot at any time via the User Interface
(Figure 3.6) from a remote machine. Connection to the robot is established via its
wireless networking interface.

The user interface provides a comprehensive view of the robot location and
activities within its environment. The main window shows a perspective view of
the objects and the environment. The pose of the virtual camera can be controlled
by the user. Fixed virtual camera positions can be defined, including ones that are
referenced with respect to the robot and change as it moves.

The user interface contains software components that connect to the Nawvi-
gator and keep track of its status along with the data coming from the Localizer
and the state of the Controller. The robot is shown on the screen at the position
reported by the Localizer. As it moves, it leaves a trail on the screen to illustrate

its most recent trajectory.

State Robot View Moduleinput DataStreams Windows ShowData Options

Figure 3.6: The user interface- The robot is shown as a red pyramid leaving a trail behind it as it moves. The planned
trajectory is shown in yellow with each target marked by a flag and a number. The white lines outline obstacles
from the 2-D map used by the path planner. Simple 3-D models of the buildings are shown semitransparent with
localization models overlaid on their facades.

1¢

52

The user interface interacts with the planning components to allow the user
to exercise control and manually create or modify existing missions. A mission is
illustrated by the desired trajectory of the robot drawn on the screen with each
important target marked by a flag. A separate command list editor is available to
allow manual editing of the commands each target or the list of targets itself.

The environment may be presented in various independent ways. A two-
dimensional map outlines the obstacles at the site. The detailed 3-D models of the
buildings can be shown on top of the map. The models used for visual localization
can be also shown or hidden.

The user can simply monitor the progress of the mission or take manual
control and teleoperate the robot. The interface provides a “visual joystick” type
of direct control of the robot. This is typically used with the visual feedback from
the camera or the sonars.

The user interface is highly modular, portable and extensible. It provides
a standardized module programmer’s interface through which additional modules
can be automatically detected using introspection techniques. Debugging and trou-
bleshooting are easy, as the user interface allows access to the debug information
generated by remote components. Multiple robots are supported.

The graphical user interface was designed and written in cooperation with

Ethan Gold.

3.6 Summary

I have designed and implemented a functioning autonomous mobile robot platform

for urban site modeling which is being used as the prototype platform for the AV-

93

ENUE project. The design extended an existing robotic vehicle with a carefully
chosen sensor suite: a digital compass with an integrated inclinometer, a global po-
sitioning unit, and a camera mounted on a pan-tilt head. A large support frame was
built to accommodate the size of the range finder. Necessary wireless networking
hardware was also installed on the robot.

I have also designed a distributed modular software architecture for mobile
robot localization and navigation. This architecture has been demonstrated to
be computer platform and operating system independent. Proper attention has
been paid to important issues such as the distribution of computation and wireless
network coverage.

I have implemented the essential part of the software architecture including:

e software components to interface with the installed sensors and other hard-
ware, convert hardware-specific data to an easily used format and make it

available to the rest of the system
e a robot motion control component to drive the robot

e a software component that serves as an interface to the robot from external

machines

e a graphical user interface to control and monitor the robot remotely (joint

work with Ethan Gold)

o4

Chapter 4

Localization in Open Space

This chapter describes the part of the localization system that uses the built-in
wheel encoders and the installed attitude sensor and GPS infrastructure. This
subsystem provides updates of the robot pose in 3-D together with an estimate of
the uncertainty in those updates.

It is a fully functional localization system on its own, i.e it does not depend
on the visual component to work properly. In fact, this is the main localization
component, in the sense that it is used in a stand-alone mode during most of the
time — whenever the robot traverses open areas.

The sections that follow describe the building of the subsystem from the

ground up, with the addition of each sensor one at a time.

4.1 Odometry

Odometry is probably the most widely used localization method. This is mainly

because it comes integrated in almost every wheeled mobile robot, but also because

95

it is very simple to use and is guaranteed to provide pose estimates at all times.

There are multiple implementation variants but the principle of operation is
common and quite simple: A sensor is placed on each wheel (or shaft) of the robot
which periodically measures the amount of rotation or the rotational velocity of
the wheel. Based on this information and the parameters of the robot (wheel radii,
wheel baseline, etc), it is easy to compute the robot translational and rotational
displacements and velocities.

The ATRV-2 robot has two independently controlled wheels on each side
in a differential-drive skid-steering configuration (Figure 4.1). The robot moves
forward /backward by driving all four wheels in the appropriate direction. It turns
by driving the wheels on one side forward and the wheels on the other side backward.
It is also capable of making gradual turns by controlling the speeds of the individual
wheels. The center of odometry is the center of the rectangle formed by the four
wheels. As is standard for mobile robots, I have adopted a body-fixed coordinate
frame, whose origin is the center of odometry with the x axis facing forward, y axis

perpendicular to the left, and z axis pointing up.

Figure 4.1: The ATRV kinematics

o6

The robot odometry is based on encoders placed in the motors that generate
and count pulses as the motors spin. The firmware samples these counts at 10-15 Hz.
Each such pulse count represents the amount of rotation of the corresponding wheel
during the sampling period. If we denote the wheel baseline by b, the wheel radius
by r and the average angular displacements of the left and right wheels by Ay, and
Ay, respectively, then the total robot angular displacement and travel distance

during the sampling interval are

Ap, — A
A9 = y r (4.1)
As W , (4.2)
The robot pose x = [z,y, 8]* is then computed according to
k
O = 6o+ Ab, (4.3)
i=0
k
P« = Do+ Y As; Rot(b;)ex, (4.4)
i=0

which is a discretized and linearized approximation of the general continuous model

6(t) = 6(0) +/tw (1) dr (4.5)
p(t) = p(0)+ / 7) Rot[6(7)] ey dr. (4.6)

Here, p(t) = [z(t),y(t)]*, 0(t), v(t) and w(t) are the robot position, orientation,
linear velocity and angular velocity at time ¢. The suffixes in px and 6, denote
values at time ¢, = to + k£ At. Rot(yp) is the 2x2 rotation matrix by an angle ¢,
and e, = [1,0]7.

The above equations reveal two major problems with using odometry as a

localization tool. First, they obviously assume a planar motion of the robot and thus

o7

estimate the pose only in 2-D. It is not possible to compute a 3-D estimate based
solely on rotational and translational velocities as there is not sufficient information
to separate horizontal from vertical motion. To do that, additional sensors are
needed, such as the digital compass module described in the next section.

The second fundamental problem with odometry is apparent from equations
(4.5) and (4.6). The values of w(7) and v(7) can never be computed exactly because
of discrete sampling and measurement errors. For example, in equation (4.3), due
to discretization of (4.5), w(t) is approximated by the average rotational velocity
wr = Afi/At for each interval t € [ty,tx+1). In general, minute errors dw(7)

introduced in w(7) will cause the computation of an approximation of ()
t t
0(t) = 000) + [[w(r) + w(n)] dr = 0(t) + [bu(r) dr. (4.7)

No matter how small dw(7) is, it accumulates as the robot moves and the resulting
error in orientation

5%ﬂ=ﬂﬂ—ﬂﬂ=£%ﬂﬂ&- (4.8)
grows unbounded. Worse, 06(7) is integrated once more in equation (4.6) resulting
in even larger error for the position.

Note that this is a fundamental problem with the odometry localization
model in general — it is not particular to the discretized version (4.3)—(4.4), al-
though it is certainly exaggerated by it. In fact, the unbounded error accumulation
is an inherent problem to all proprioceptive sensors. Typically, a robot can accu-
rately traverse a few meters but for longer distances relying on such sensors becomes
impractical. The error can not be bounded without the use of an exteroceptive sen-

sor (which in my case is the GPS unit, described later in this chapter).

o8

It is possible, nonetheless, to address this problem by looking at the sources
of the errors. Borenstein and Feng have classified the errors in two categories:
systematic and non-systematic [Borenstein and Feng, 1995]. Systematic errors are
defined as ones that are directly caused by the kinematic imperfections of the vehi-
cle, while the rest of them are classified as non-systematic. Examples for systematic
errors are ones caused by mismodeling of the wheel baseline, the wheel radii, the
gear transmission ratio, and others. Examples for causes of non-systematic errors
include slippery spots, uneven terrain, surface irregularities and over-acceleration.

Both systematic and non-systematic errors can be addressed.

4.1.1 Systematic Errors

According to Borenstein and Feng, two major sources of systematic errors in a
differential-drive robot are unequal wheel radii and a misestimated wheel baseline.
Both can be estimated and compensated for by accurate calibration. Borenstein
and Feng devised a method called the UMBmark to do so [Borenstein and Feng,
1995], however, it assumes certain preliminary calibration. Below, I describe my
adaptation of the UMBmark method to the peculiarities of the ATRV-2 kinematics
and its extension into a complete calibration procedure.

As T mentioned earlier, the wheel rotations are measured with the help of
encoders mounted on the drive motors. During each short sampling interval, the
encoders show a pulse increment corresponding to the amount of wheel rotation.
These pulse increments are converted to angular displacements by the following

formula:

Ap = N =¢,N (4.9)

99

where
Agp - incremental rotation of the wheel
n - gear ratio of the reduction gear between the motor and the
drive wheel
C. - encoder resolution in pulses per revolution
- measured incremental pulse count
¢m - conversion factor that translates encoder pulses into angu-

lar wheel displacement.
The pair of measurements for the wheels on each side of the robot are averaged and
used to compute the robot rotational displacement and distance traveled increment
according to (4.1) and (4.2). If we take into account that the wheels may have

different radii, these equations become

Appr — A + N — 1N,

Ag = 2rT b oir Cm% (4.10)
Ap,r.+ A + N, N,

As = =2 T; L L AL ;” L (4.11)

where the suffix r denotes the average of the values for the front and the rear right
wheels and the suffix [denotes the average for the two left wheels.

The UMBmark procedure helps derive two coefficients related to errors in the
orientation of the robot: Ey = r,/r;, which accounts for the difference in the wheel
radii, and E, = b/by, which is the ratio between the actual wheel baseline b and the
nominal one by reported by the manufacturer. The robot is directed to traverse a
square of size L x L, n times clockwise and n more times counterclockwise. Ideally,
the robot should return to its original pose but in practice it is slightly off. The

arriving locations are recorded and the errors between actual locations and the

60

ones reported by the odometry are averaged to produce the centers of two clusters:
[Tew, Jew]” for the clockwise runs, and [Zeew, Jeew]’ for the counterclockwise runs.

Then, the coefficients Ej and E; are computed by

jcw +jccw _ jcw - jccw _ L/2
e=—" =7 > BT &mEm (412)
E, = EF=—""' 4.1
b 7T/2—O£’ d R—b0/2 (3)

Note that the procedure can not recover 7., r; and b directly unless the
nominal wheelbase and at least one of r, and r; are known. The procedure also
does not correct for translational errors. In fact, it requires that the odometry
has been accurately calibrated for translation, since otherwise the actual traversed
distance by the robot will be significantly different than 4L which is assumed in
the derivations of «, 3, and R. Thus, I had to devise a preliminary calibration
procedure to obtain the necessary information.

This is done in two steps: one that estimates the translation coefficient
¢r = ¢y, and another that recovers the rotation coefficient cg = ¢,,7;/b. The
computation in both steps requires the ratio E; of the wheel radii to be known. In
the beginning, however, it is not because it is the UMBmark that computes it. This
is not a problem: the procedure can be bootstrapped with a good initial estimate
and then the value refined in the next iteration. In almost all cases, a good initial
choice for Ej is to set it to one as the wheel radii are most likely to be the same.

First, the translation conversion coefficient is determined by having the robot
move forward by a certain distance (I used 20m) and the actual distance traveled

is measured. Denote the latter by L;. Then:

N, N Eq4r N, N 2L

= (414
2 2 E,N, + N, (4.14)

61

Next, the rotational conversion coefficient is determined by using pure ro-
tation. The robot is manually controlled (via a joystick or a simple program) to
make m (I used m = 5) revolutions in place. Then:

’I“TNT - ’I“lNl —¢ EdTlNr - T'lNl N = 2mm
b o b 7 E4N, - N,
(4.15)

2mm = A0 = ¢,

From the last two equation, we recover the true wheel baseline

b="T (4.16)

Cr

At this point, a sufficiently accurate odometry model based on the average

wheel radius is available, and the UMBmark procedure can be performed. Note
that even after the estimate for F, is obtained, the values of . and r; may still not
be recovered. However, they are not really needed, since the following coefficients

are sufficient

¢ = or (4.17)

¢ = FEger (4.18)

and the final computation of the robot motion becomes

N, — aN,

Al = % (4.19)
N, + ¢N,

As = %J“c” (4.20)

If the result of UMBmark is not satisfactory, its estimate for F; can be used
to perform another iteration of the two preliminary steps and further refine the
conversion coefficients. Generally, more than two such iterations should not be
needed as the effect of the systematic errors will be reduced to negligible compared

to the non-systematic ones.

62

4.1.2 Non-systematic Errors

Non-systematic errors can not be compensated for since they are by definition
random and unpredictable. However, we can try to model their accumulation so
that we keep track of the uncertainty in the robot pose estimates. This helps in
the fusion of these estimates with the ones of other sensors.

This can be done formally in a probabilistic fashion. Two models are created:
one of the robot kinematics and another of the robot odometry. The first one is
used to estimate the error in the robot pose introduced in the execution phase
by the actuators. The second model represents the error of the odometry due to
inaccurate measurements, discretization, etc.

Due to uncertainty in the execution phase, the robot pose can be modeled by
a conditional probability density function Pk (x'|x,d) which determines the prob-
ability of the robot pose being x' if it was previously at x and executed the control
input d. This function imposes constraints on the robot pose. If there is a prior
probabilistic estimate P(x) of the pose, then the probability of the robot being at

x' after the execution of d is
P(x) = / Pr(x'|x,d) P(x) dx (4.21)

The function Pk (x'|x,d) can be determined by running statistical experi-
ments for different control inputs d and creating a lookup table for the resulting
distribution or approximating it with an analytical expression. For example, if the
robot is directed to move forward by a certain distance, the result (2-D position
only) might look like the one shown in Figure 4.2(top).

Grid-based localization methods typically approximate this by adding Gaus-

63

/]
ZEITT 1

ey
%

72

227
2227

ey,

yy

Figure 4.2: The resulting distribution of the robot position after moving forward
by a certain distance. The plots on the left show a perspective 3-D view of the
distribution denoted by height of the surface. The robot starts from the center
of the near edge and moves away. The plots on the right show a top view of the
same distribution, denoting higher probabilities with darker color. The robot starts
from the center of the bottom edge and moves up: (top row) a typical result of a
statistical experiment; (middle row) an accurate model; (bottom row) a close
approximation of the model.

64

sian white noise to both the expected final orientation and distance traveled. The
model for the example above would look as in Figure 4.2(middle). The problem
with this kinematic model is that the probability density function of the robot pose
becomes very difficult to represent analytically in a simple and compact form after
a few iterations of (4.21). It is also a practical problem to perform the integration
efficiently. These issues are addressed by discretizing the state space and represent-
ing P(x) for each state cell explicitly which necessarily confines the applicability of
this approach to a small-scale 2-D world.

In large-scale 3-D environments, Pk (x'|x, d) needs a more manageable form.
Thus, I have chosen another popular approximation which described as a 2-D Gaus-
sian noise centered at the expected destination pose of the robot and with standard
deviation determined as above. If the robot is moving according to the plant model

x = f(x,d, t), then the pose at time ¢ is
t

x(t) = x(to) + / £(x,d, 7) dr + u(t)
to

where u(t) is a zero-mean white Gaussian noise with standard deviation propor-
tional to the distance traveled.

A clear benefit of this model is that it causes equation (4.21) to always pro-
duce a Gaussian distributed pose. Furthermore, since a Gaussian is completely
characterized by its first two moments, the integral in (4.21) can be replaced by a
simple matrix multiplication, as it will be shown in the next section. For compari-
son, Figure 4.2(bottom) shows this model under the same conditions as before.

The odometry measurements are modeled in a similar fashion producing a
probability density function Pu/(x'|x,d) representing the probability of the odom-

etry estimate being x’ if the robot started at x and the robot actuators executed

65

the control input d precisely. This can also be estimated statistically by measur-
ing the difference between the actual robot trajectory and the one reported by the

odometry.

4.2 Attitude Sensor

In many cases, mostly for indoor applications, the assumption for a planar ground
is reasonable and working with 2-D pose estimates makes sense. In a typical large-
scale outdoor environment however it is more often than not necessary to utilize all
three dimensions. I have added an attitude sensor to augment odometry to 3-D.
The Honeywell HMR3000 unit installed on the robot consists of a two-axis
tilt module that makes absolute measurements of the roll and pitch angles of the
platform and an integrated digital magnetic compass that measures the azimuth
angle relative to the magnetic North. The tilt accuracy of the sensor is +0.6° and

the nominal heading error is less than 1.5° RMS.

4.2.1 Pose Estimation

The combination of an attitude sensor and odometry helps estimate the robot
motion in 3-D by approximating it with a piece-wise planar trajectory. Denote by
p = [7,y, 2|7 the coordinates of the robot, ¢ = [p,6,%]’ the vector of the three

Euler angles and let R(¢) be the roll-pitch-yaw matrix
R(¢) = Rot,(v) Rot,(0) Roty(¢), (4.22)

where Rot,(p) is the 3 x 3 rotation matrix about axis a by an angle ¢. Suppose

that at time t, the robot is at position p; and the compass module provides the

66

attitude measurements ¢. Establish a local coordinate system that coincides with
the robot attitude at this time, so that a point p’ expressed with respect to the

local coordinate system is related to its world coordinates p by:

P =P+ R(d) P (4.23)

During the interval [t, x41), no new measurements are available and there-
fore the robot orientation is assumed to be changing only because of its angular
velocity. Thus, the robot is assumed to be moving on a local plane, orthogonal
to its current local z axis, with a constant linear velocity v(tf) = v and angular
velocity w(t) = wy for t € [tg,tgy1). In the local coordinate system, the motion is

expressed as a trivial extension of equations (4.5) and (4.6):

W) = [wlr)dr = w1 (4.24)

23
sin[wg (t — tx)]
Pl = [o) Rotly/(nlexdr = | 1 —cosunt—10)] | (429
0

where e, = [1,0,0]7 here. Equation (4.25) has singularity at w; = 0 which may
cause numerical problems for small angular velocities. This can be worked around
by using a second order Taylor’s approximation for the sines and cosines in the

rotation matrix:

v (t — tr) cos|wg (t — tx)] — wrvk (t — tx)? sinfwg (¢ — tx)]/2
P'(t) ~ | vt — tg) sinfwg(t — tx)] + wrve(t —)2 coslwy (t — t;)]/2 | (4.26)
0

Converting back to world coordinates, we get

P(t) = Pe+ R(¢)P (1) (4.27)

67

Rlp(t)] = R(¢x) Rot.[wy(t — ti)]. (4.28)

Equations (4.27) and (4.28) are a good approximation for the robot motion
during the time interval [ty,tx11). When new measurements arrive at time ty1,
the robot orientation ¢ or the velocities v and w are updated (depending on the

source of the new measurements) and the process repeats.

4.2.2 Kalman Filters

The above process does not provide means for managing uncertainty and the contri-
bution of each sensor. There is some measurement redundancy that can be exploited
since, as equation (4.28) shows, odometry can also produce accurate short-term ori-
entation estimates.

To improve on the blending of the data from the two sensors, I have employed
an extended Kalman filter (EKF) framework. A benefit of this framework is that
it is an optimal estimator for linear processes and a near-optimal one for non-linear
processes of low-dynamics. Besides efficient estimation and uncertainty handling,
this framework also provides an elegant way of adding additional sensors, such as
the GPS receiver described in the next section.

As it will be shown in the next subsection, the process of the robot motion is
non-linear (4.29). To utilize the EKF framework, linearization needs to take place.
Before proceeding, however, I would like to point out two important decisions that
have been made here.

First, a Kalman filter could be either direct or indirect. The direct Kalman
filter operates on the total state of the process, which means that among its variables

are the quantities that we want to estimate. The indirect formulation estimates the

68

error state — the differences of the quantities we are interested in from their actual
values.

There are some serious drawbacks to choosing the direct formulation here.
Being a linear estimator, the Kalman filter behaves well for linear systems and
systems of low dynamics. Since we have a highly non-linear process, a linear model
will fail to adequately represent it and will quite likely diverge. Another problem
is that the filter will have troubles separating high-frequency noise from legitimate
dynamic situations. Also, the amount of smoothing or low-pass filtering is directly
related to the time delay of the filter output resulting in sluggish response. On
the other hand, regardless of the dynamics of the process, a relatively accurate
error model used in an indirect formulation will cause the errors to exhibit the low
frequency behavior the filter is best suited for.

The other consideration is whether to use a linearized as opposed to an
extended formulation. The linearized form uses a reference trajectory about which
the linearization takes place. The error estimates from the filter are added to the

reference trajectory to obtain the estimate but the reference trajectory itself is never

true pose
-- odometry errors corrected odometry pose >
Odometry <
odometry error estimates
h(x)

c Z + Zi- h(x) > Kalman
ompass true orientation odometry errors Filter
+ compass errors + + compass/GPS errors

Zi
GPS true position
+ GPS errors

Figure 4.3: A diagram of the extended Kalman filter configuration

69

updated. This is known as feedforward configuration. Conversely, in a feedback
configuration, the reference trajectory gets updated with each iteration of the filter
and the next linearization takes place about the updated trajectory. Both versions
have their strengths. In this case, however, there is no good choice of a reference
trajectory, if the linearized formulation is adopted. A bad choice would most likely
diverge from the actual one beyond acceptable limits. Thus, the extended version
is more appropriate. A diagram of the filter configuration I have implemented is

shown in Figure 4.3.

4.2.3 Integration with Odometry and Uncertainty Handling

The state vector of the process of the robot motion consists of the robot pose
x = [p, ¢|T which is a 6-vector of the three coordinates x,y, z and the Euler angles
©,0,%. The control input to the robot is d = [v,w]”. The process differential

equations are:

f = fdy = | POV || vh@e T, (4.29)

 £,(6,) w M(6) e +uy
1 siny tanf cosp tanf

M(¢) = [0 cosg —sing (4.30)

0 sing secl cosp sect

The matrix M (¢) transforms the 3-D angular rate to the Euler angle time deriva-
tives. The rotation, as before, is of magnitude w about the robot z axis and
e, = [0,0,1]". The vectors u, and ugs are added zero-mean Gaussian white noise
due to effects like discretization and system misrepresentation.

I have chosen to linearize about the estimated trajectory from odometry.

70

This is a good choice, since odometry is sampled very frequently and usually drifts
slowly with the distance traveled. Denote by X = [p, q;]T the odometry pose esti-

mate. For convenience, the errors will be defined as

X = x—X (4.31)
v = v—70 (4.32)
w = w—0o. (4.33)
Then
Pp=p-—D = fo(d+ 30,7+ v) —fo(h,) + up (4.34)
66 = -0 = £5(d+ 06,0+ 0w) — £5(6,@) + u, (4.35)

and applying first-order Taylor’s expansion, we arrive at

op = Fpdop+Gpov+u, (4.36)
§¢p = Fud¢+ Gyow+ uy, (4.37)

which is combined into
x = Fox+Gv+u, (4.38)

where G is a 6 x 6 diagonal matrix composed of the elements of G, and G, and

0|F,
F = . (4.39)

0|F,

Equation (4.38) linearly approximates the process of error accumulation.
The term Gv represents the contribution of the rotational and translational velocity

errors, using the random-variable v ~ N (0, Sy), Sy = diag(c?,02%,02%,0%,02,02),

71

with o2 and o2 being obtained empirically. The random vector u ~ N(0, S,)
accounts for the errors due to inaccuracies in the model such as undulation of the
ground traversed during the measurement interval. Its variance-covariance matrix
consists of diagonal terms proportional to the maximum slope of the terrain.
From (4.38), we obtain an approximation for the state transition matrix from

time t; to time tj11:
B (tpyr, ty) = e WF T4 (4, —t,)F. (4.40)

Knowing ®y = ®(ty41,1x), we can use the standard Kalman filter prediction equa-

tions [Brown and Hwang, 1997]:

0%, = D% =0 (4.41)

Py = Pl +Q (1.42)

In the above, the minus sign superscript denotes predicted values from the pre-
vious step, before the current measurements are processed. Conversely, the plus
sign superscript denotes values updated with the current measurements. The first
prediction equation results in the null vector, because in an extended Kalman filter
the errors 0%} at the end of each iteration are fed back to the odometry and the

filter state variable is zeroed out. The matrix Qy is computed from

le+1
Qy = / " ®(ty41,7) [Gic Sy GF + Su] 8T (b1, 7)dr. (4.43)

L

The observation model for the compass module is quite simple. It is already

linear:

ze = [p, 0, Y]" H.= [0 I] R. = diag(o?,07,07), (4.44)

72

with the tilt and heading variances, o7 and o7, obtained from the manufacturer
specifications. The compass is calibrated using publicly available magnetic devia-
tion charts for the local area. It is setup to trigger an alarm whenever the magnetic
field strength is too low or too high. In such a case, the heading information is
unreliable and is ignored by zeroing the bottom right element of H..

When a new measurement sample is obtained at time #;1, the filter is pre-
sented with the difference zy 1 — Hyy1 X ; = 2z — He X, between the actual
observation and the one predicted using the current odometry estimate x,. The

error state is updated according to the well-known EKF equations

Kipn = Py HYy (Hin Py Hiy 4 Rig) (4.45)
0%, = 0%y + K1 [Zrs1 — Hepr Xy — Hiepr 0% 4] (4.46)
p:+1 = (I - Kit1 Hita) f’;:“- (4.47)

Finally, the error is transferred from the error state to the total state, clearing the

error state variable, and the loop reiterates.

4.3 Global Positioning Systems

The abbreviation GPS typically refers to the NAVSTAR! Global Positioning System
which is a United States satellite-based navigation system that provides instanta-
neous accurate information about time, position and velocity anywhere on or near

the Earth. There are in fact two existing satellite-based systems for global posi-

tioning — the US NAVSTAR GPS and the Russian GLONASS? — with a third

INAVSTAR — Navigation System with Timing and Ranging.
2GLONASS — Global Navigation Satellite System.

73

one in the works®. All operate according to the same principles but differ in imple-
mentational details. For the purposes of my thesis, they are indistinguishable and

I will use the abbreviation GPS to refer to any or all of them.

4.3.1 Background

A satellite-based navigation system consists of three segments: a space segment, a
control segment and a user segment. The space segment consists of a constellation
of satellites orbiting the Earth at an altitude of more than 20000 km. The number
of satellites and their orbits are designed such that at least the minimum number
of satellites needed for positioning are visible anywhere at any time. The control
segment consists of monitor stations, which track the satellites, a master control
station, which processes the data from the monitoring stations to compute the exact
satellite orbits, locations and clock parameters, and ground control stations, which
are used to upload data to the satellites. Finally, the user segment consists of the
GPS receivers people use in their applications.

The satellites broadcast spread spectrum radio signals which are carrier sig-
nals at predetermined frequencies modulated by various codes and the navigation
message. The navigation message contains the health status, the clock and the
broadcast ephemerides of the satellite, the satellite almanac and various other data.
The ephemerides are essentially a set of data containing three records: general in-
formation, orbital parameters and clock parameters of the satellite. The parameters

are used by the receiver to compute its position and velocity. They are uploaded

3The European Space Agency’s Galileo will have its first satellite launched in 2004 and is
expected to reach full operational capability in 2008. It will be compatible with both GPS and
GLONASS.

74

to the satellite after the master control station processes the latest tracking data.
The almanac is a shorter low-accuracy version of the ephemerides of all satellites.
Its primary purpose is to aid the receiver in its search for other satellites or to help
construct visibility charts for planning tasks.

When a GPS receiver catches a satellite signal for the first time, it decodes
the navigation message and starts tracking the satellite. With each consecutive
message, the receiver uses the satellite clock information to compute the difference
At between the time the message was sent and the time it was received. From

there, using the speed of light ¢, the pseudorange p to the satellite is

p=cAt=p-+cit. (4.48)

The pseudorange differs from the actual range p because it does not take into
account the time offset d¢ between the satellite and receiver clocks.

From the navigation message, the satellite position xg with respect to an
Earth-fixed coordinate system is also known. If we denote the receiver position by
X, then

p= s — |- (4.49)

Thus, if the receiver locks onto at least four satellites, it can solve the non-linear
system of equations (4.49) and obtain its position. It can similarly compute its
velocity by using the Doppler principle of radio signals.

Obviously, this model assumes a straight-line path of the signal from the
satellite to the receiver. Thus, it is susceptible to various kinds of errors as the
signal deviates from the straight line due to refractions in the troposphere and

the ionosphere. Other sources of errors are the inaccuracies of the satellite orbits,

75

base
station

station

Figure 4.4: The differential GPS technique.

relativistic effects and signal reflections. These sources can typically contribute
position errors of up to 30 m. A major concern until it was turned off in 2000 was
also Selective Availability — the intentional denial of accuracy for civilian users of
NAVSTAR GPS by the US Department of Defense.

It turns out, however, that the errors affecting observers standing close to
each other are strongly correlated and this fact is used in the differential GPS
(DGPS) technique to improve the accuracy. The basic principle of DGPS is to use
two receivers (Figure 4.4). One, called a base station is permanently affixed at a
known location while the remote receiver is used as intended by the user. Both
receivers compute their positions as usual. However, the base station, knowing its
true location, subtracts it from its measurements to obtain a differential correction
vector. This correction is sent over a radio link to the remote receiver which applies
it to its own estimate. The result is a much improved accuracy, typically below a
meter for distances of a few kilometers from the base station.

With the advance of the interferometric techniques, an even more accurate

76

GPS method was invented. The real-time kinematic GPS (RTK GPS), also known
as carrier-phase differential GPS (CPD GPS), measures the phase of the carrier
signal instead of its time of flight. It does this with a precision that allows for a more
accurate estimation of the pseudorange to the satellite. Since only the phase shift
is measured directly, however, this leaves some ambiguity in the integer number
of cycles the signal makes on its way. This ambiguity is resolved by using both
the carrier and the code phase measurements. This process, known as ambiguity
resolution or carrier phase initialization, takes up to several minutes and depends on
the baseline length, the number of satellites in view, their configuration and required
reliability. When the convergence process is complete, the receiver produces the so-

called fized solutions which are of centimeter-level accuracy.

4.3.2 Coordinate Systems and Calibration

The satellite coordinates broadcast in the ephemerides are with respect to an Earth-
fixed coordinate system. The official reference frame for the NAVSTAR GPS, for
example, is the World Geodetic System 1984 (WGS-84). For the convenience of
surveyors and most other users, the receivers usually convert the computed position
automatically to ellipsoidal coordinates (latitude, longitude, and altitude). In the
case of robot navigation, however, a local “world” Cartesian coordinate system
is preferred to act as a reference frame. The data from the receiver needs to be
converted accordingly.

The first step is to convert the latitude ¢, the longitude A and the altitude

7

%\«Actual Earth’s surface

Ellipsoidal model

ﬁf the Earth

Figure 4.5: Cartesian and ellipsoidal coordinates.

h to Cartesian Earth-fixed coordinates (Figure 4.5). According to WGS-84:

2

N = ¢ (4.50)
\/a2 cos? ¢ + b2sin?
X = (N +h)cospcos (4.51)
Y = (N+h)cospsinA (4.52)
b? _
Z = (EN + h)sin ¢, (4.53)

where a = 6,378,137m and b = 6,356,752.31425 m are the Earth’s major and minor
semi-axes.

Next, the Earth-fixed coordinates are converted to an intermediate right-
handed coordinate system centered at the origin [Xj, Yy, ZO]T of the “world” coor-

dinate system and having its axes in the east, north and up directions (ENU). The

formula is:
T
TENU —sin\g —singcos Ay €os @y cos Ag X — X,
YEnu | = cos\g —singysin g €os Qg sin Ag Y-Y, | (4.54)

ZENU 0 €Os g sin @q VARSI

78

where g and Ay are the latitude and longitude of the center of the chosen world
coordinate system.

Finally, a rotation is applied to adjust for the different orientation of the
“world” coordinate system. Since in most cases it is desirable to have the z axis

pointing up, the adjustment is simply a rotation about the z axis:

x TENU
Y = ROtz(’l/)()) YENU . (455)
z ZENU

For the tests on the Columbia University Morningside Campus, described in
this thesis, I have chosen a world coordinate system, centered at an easily accessible
location and oriented along the major directions of the campus, the map of which
is shown in Figure 4.6. The center of the coordinate system, marked on the map, is
precisely defined as being 2m to the left of the vegetation planter next to it. The
x axis runs approximately from west to east parallel to the streets, the y axis runs
approximately from south to north parallel to the avenues, and the z axis points
up.

Since the directions of this coordinate system are not precisely east-north-
up, some calibration was necessary to obtain its orientation angle . This was
done by surveying two fairly distant points along the y axis. The GPS antenna was
positioned at each point and left stationary for enough time to allow the convergence
to a fixed solution. Then, the position fixes were recorded for a few minutes,
averaged for a statistically better accuracy and converted to ENU coordinates.

The orientation angle is given by:

ENU ENU
) (4.56)

.,r2ENU _ mlEIVU

79

Figure 4.6: The campus coordinate system

4.3.3 Fusing GPS with Odometry and the Attitude Sensor

The EKF framework described in the previous section allows to easily integrate
additional sensors. This is demonstrated here with the addition of a GPS receiver
which is used to keep the position uncertainty from accumulating beyond acceptable
limits.

The GPS receiver provides absolute position information via the standard
GGA message and the variance of the pose computation along the main axes via the

standard GST message. Every time a new update from the GPS becomes available,

80

it is incorporated in the EKF by augmenting the measurement vector with the
expected position of the GPS antenna. Denote the coordinates of the antenna with
respect to the robot by p;. The measurement prediction of the absolute position

py of the antenna is:
h(x) = p + R(¢) py- (4.57)
Since this is not linear in the state variables, we need to linearize to obtain the

measurement matrix

oh
Hy = opl. (4.58)

Xk

The variance of the measurement is converted from ENU to the world coor-

dinate system by

o2 0 0
Rit1 = Rot,(1o) | 0 05 0 | Rot] (o), (4.59)
0 0 o2

where 02, 05 and o2 are the reported by the receiver variances along the east, north
and up directions.

The filter is presented with the difference between the actual position fix
zy 41 and the predicted by odometry measurement h(%,_,) and the computation

proceeds as in equations (4.45)—(4.47), except that equation (4.46) now becomes:
0%, 1 = 0%y 1 + Ky [z — h(Ricy1) — Hicr1 0%5c,4]- (4.60)

Since the GPS is the only sensor in this method that makes exteroceptive
position measurements, the overall accuracy of the method depends strongly on the
accuracy of the GPS fixes. If GPS quality deteriorates, the uncertainty in the pose

estimates may become too large. In such cases, positioning data is needed from

81

other exteroceptive sensors. But in order to seek such data, there has to be a way
to detect such situations.

The probability distribution of the pose estimates is a six-dimensional Gaus-
sian represented by the 6 x 6 variance-covariance matrix Py +1- This matrix defines
a generalized 6-D ellipsoid whose rotational axes are the eigenvectors of the matrix
of length their corresponding eigenvalues. Each of the eigenvalues is the variance of
the corresponding element (position or orientation coordinate) of the state vector.

Whenever a new GPS update is processed by the filter, a test is performed
to check the uncertainty in the overall pose estimate. The eigenvalues of Py 41 are
computed by using the Jacobi method [Press et al., 1992]. If any of the ones asso-
ciated with translation is greater than a threshold, this is considered an indication
that the uncertainty is too large and an attempt is made to use the visual localiza-
tion method described in the next chapter. Only the uncertainy in translation is
considered because if the orientation is wrong it will quickly cause the translation

error to increase too.

4.4 Summary

This chapter presented a complete mobile robot localization system for use in large-
scale open environments. The system is based on three sensors: odometry, an
attitude sensor, and a global positioning sensor.

I use the robot odometry as a foundation for the other sensors to build upon.
Its high update rates and low-dynamics error profile make it an excellent source
to fall back to when nothing else is available. Its inherent problem with error

accumulation has been addressed by reducing the impact of the systematic errors

82

and by integration with the other sensors.

The systematic errors are reduced by careful calibration. I have designed a
complete calibration procedure tailored to the peculiarities of the ATRV-2 robot. It
extends the method of Borenstein and Feng and recovers the necessary parameters
to undo the gross effects of kinematic mismodeling.

I have combined the odometry with an attitude sensor to form a dead reckon-
ing system that produces estimates in 3-D. I have also added a global positioning
sensor which provides the needed external reference to keep the dead reckoning
error from accumulating infinitely.

The data from the three sensors is integrated efficiently by an extended
Kalman filter. The system keeps track of both the pose of the robot and the
uncertainty associated with it. The method is light in computation and can be
performed in real-time.

The overall accuracy of the system depends on the quality of the GPS data.
When reliable GPS fixes are available, as it is normally the case in open areas,
the system should be able to handle the localization task on its own. When the
robot enters an area of poor GPS coverage, by monitoring the variance-covariance
matrix, it can detect the increased uncertainty in the estimates and decide to use

additional sensors.

83

Chapter 5

Visual Localization

One of the most appealing characteristics of visual images is the rich information
they convey. Unfortunately, processing the images to extract this information is
not very easy. There is a clear trade-off between the time one is allowed to spend
on processing the image and the quality and robustness of the results.

In many visual localization algorithms, the focus has been placed on the
(near) real-time performance. The perceived necessity for quick processing has put
an unwieldy burden on these algorithms. This has typically led to a simplistic
“visual odometry” type of an implementation, where one or a set of features are
tracked from frame to frame and the absolute pose of the robot is computed as
the composition of the relative poses between each pair of successive frames. This
approach suffers from the same problem as conventional odometry: unbounded
error accumulation. An additional problem is that tracking occasionally fails as
features are lost or misidentified across frames.

There is no compelling reason why visual localization has to be done as

frequently and quickly as possible. Most mobile robots today are equipped with

84

good enough wheel encoders to be able to navigate for some time without the
need for external reference. Combined with additional sensors, such as the attitude
sensor and GPS in my case, a fast and light on computational resources localization
system is achieved that allows for good navigation throughout most of the operating
environment.

To expand the working range of such a system, it is sufficient to provide oc-
casional “on-demand” additional updates only when the above configuration fails.
Visual pose-estimation algorithms are well poised to do that. By acting less fre-
quently and on demand, they can be allowed more time for heavy image processing
operations which can be used to increase the robustness of the overall system. This
also improves the efficiency in the use of limited computational resources.

This is the underlying idea in the use of my visual localization subsystem. As
the robot moves, it uses the method described in Chapter 4 to keep track of its pose
along with the uncertainty associated with it. Aslong as it is confident in these pose
estimates, no attempts are made to use vision. If the confidence becomes low, then
the robot is allowed to stop and take reasonable time to compute a more accurate
estimate using the vision-based pose estimation method described in this chapter.
Since this happens relatively rarely and because of the large-scale environments, the
time the robot spends in place doing image processing is negligible to the overall
travel time for a given mission.

The visual pose estimation is based on matching an image of a building taken
by the camera with a model of that building. The next section describes the model
in detail. The following sections explain how the appropriate building to use is

chosen and how the pose is computed.

85

5.1 Environmental Model

To make good use of an environmental model, it needs to be carefully designed.
The design depends on the application that will use it, as one model could be very
appropriate for a certain application and completely unusable for a host of other
applications. For the task of visual localization, the following characteristics are

important:

e Detail — the scale of the features modeled

Coverage — the extent to which the model covers the area of interest

e Accuracy — how closely does the model match the real environment in terms

of metric information, such as width, height, length, distance, etc

Size — how much space does it take on the computer

Ease of creation — how easy it is to obtain the model from existing data

or build one from scratch.

The environmental model for my visual localization method uses has been
designed with the above properties in mind. It is in fact a data base of smaller-
scale facade models. Each facade model depicts the features of a near-planar region
around a building facade (Figure 5.1). The features modeled are typical and abun-
dant in a human-made environments — they are dominant straight lines formed
mainly by surface discontinuities, however, other straight lines, such as ones formed
by color discontinuities, can also be used. All lines are finite segments represented
by the 3-D coordinates of their endpoints in a local for the model reference coor-

dinate system. The origin of the coordinate system, called the reference point, and

86

Figure 5.1: A sample model (right) of a building facade (left)

the orientation of the axes can be picked arbitrarily. An essential part of the facade
model is the transformation between its reference frame and the world coordinate
system used as a reference throughout the entire environment of operation.

In order to be useful, each facade model needs to capture features with a
certain level of detail to provide sufficient information for the robot to find its pose.
The level of detail varies across buildings and depends on the appearance of each
facade. In some cases, the boundaries of the facade along with the largest ledges
may suffice, while in others the window frames and surrounding elements need to
be used. Beyond that level, however, adding more detail quickly reaches the point
where it does not help the pose estimation. Hence the facade models are simple
and light.

There is no particular reason to require complete coverage — in other words,
there is no need to model every facade of every building. What is needed is that
enough building facades are modeled to allow continuous localization throughout
the area of interest. It is sufficient, that wherever the robot stops, it finds a suitable

model to use for localization. Moreover, areas with proven good and stable GPS

87

reception may not require any modeling.

The size of the model is of concern not so much because of limited computer
memory, but because of the time it would take to process. The model I use is com-
pact since it only describes a small part of the environment with simple geometric
primitives. Not every building facade is modeled and only a few prominent features
of each chosen facade are picked. This allows the localization method to scale well
with the size of the operating environment which is important for every outdoor
application.

It is essential that the model is accurate, since the accuracy of the model de-
termines the accuracy of the overall performance of the visual localization. Precise
metric information is required about the location, orientation and length of each
line segment. Additionally, the location and orientation of each modeled facade
with respect to the established world coordinate system is also needed.

The model is easy to derive from available sources or build from scratch.
Normally, architectural plans for the buildings contain the necessary information
to create models of the building facades. If these are not available, a few key
measurements with a ruler of the dimensions of the windows and the ledges around
them is typically enough. The relative building positions can be obtained from 2-D
maps of the area or measured using a 3-D scanner or an electronic theodolite.

In this thesis, I assume that the environmental models are already available.

My ideas on how to create these models are discussed in Chapter 7.

88

//,/ .\\\
./ ‘\
e - rFr-=-=-=-=-=a1 it
./ .
' 7 1 l\
H / 1 1
: e 1 [IEN
' g 1 1 \
/ .
. .
e /= ——— | — \ A
/ \
h T \
ll - N \
/ \ \
' i \
R -=- L OB -i----- 1 [INFEEEEE
\ I !
| \ v 1 !
\ AN :/,/ 1 1
\ Seet 1 !
\ . 1 /
\ H J ! s
[— _-\‘_ [EE— L ‘/
\ 7
N /
N, %
S 7
[N, -
H S i PR
S e '
DTN 1 - '
' =~ - '
['

Figure 5.2: Choosing a model: A top-down view of modeled facades of buildings
are shown on the map. The two circles show the minimum and maximum distance
allowed. The dotted lines are models that are outside of this range. The dashed
lines are models that are within the range but are viewed at a very low (or negative)
angle. The solid lines are good to use. The thick one is chosen because it is closest
to the robot.

5.2 Choosing a Model to Use

When visual pose estimation is attempted, a rough estimate of the robot pose is
still available from the other sensors. This estimate is used to search the model
data base for the most appropriate building facade to use for visual localization.
This is done in two steps according to two criteria: distance and viewing angle
(Figure 5.2).

The first step is to scan through the model database index to determine
the facade models that are within a good distance from the robot. Both minimal

and maximal limits are imposed: If a building is too close, it may not have enough

89

/
/
noiel '—’——————
/
-t
| —
di stance

node
ref erence caner a

y‘,pmim

Figure 5.3: Criteria for choosing a model: distance and viewing angle

visible features on the image. Further, the edge detection may detect a lot of small-
scale line features that are not really important (for example, brick boundaries). If
a building is too far, the accuracy of the result becomes low because of the fixed
camera resolution.

The distance (Figure 5.3) is computed between the estimated current po-
sition of the robot and the mass center of the facade model. The mass center is
defined as the average of the sum of the coordinates of the endpoints of all line
segments in the model. The distance computation is done very quickly, because

the mass center is precomputed from the model and is immediately available.

90

The first step manages to quickly eliminate the majority of the models that
are clearly inappropriate for use at the current robot location. This ensures the
manageability of the model data base in potentially very large scale environments.
The models that are within the good range are indexed for further consideration;
the rest of them are disregarded.

The second step is to eliminate those facade models from the first step based
on the viewing angle (Figure 5.3). The viewing angle is defined as the angle between
the reference plane of the model (its O-z-y plane) and the direction from the robot
to the center of the model. The angle is positive, when the robot is on the side
of that plane with negative z coordinates, and negative otherwise. A right angle
means that the camera is looking straight at the building; a negative angle means
the facade is not visible as it is facing away from the camera.

Only models that are viewable under a larger than a positive threshold angle
are considered. This eliminates both the facades that are not visible and the ones
that are visible but at a very low angle. Low viewing angles are not desirable due
to the foreshortening effect: many line features project very close to one another
on the image and it becomes difficult to find the correct correspondence with the
model.

The models that successfully pass this two-step selection process form the
set, of good candidate models to use. Any subset of this set can be used in the pose
estimation step. As the processing time is not trivial, however, I choose only the
one that is closest to the robot. Because of the finite resolution of the camera, this
choice is likely to provide the most accurate result.

Finally, the camera is turned toward the chosen facade. The mass center of

91

the model is converted from model-based Cartesian coordinates to robot-centered
spherical coordinates using the current estimate of the robot pose. This gives the
pan and tilt angles the camera is expected to turn to in order to look directly at
the center of the model. The pan-tilt unit is commanded to turn in this direction
and an image is acquired.

In practice, the final orientation of the PTU is different from the ideal one,
because the angles computed are only approximations which depend on the ac-
curacy of the current robot pose estimate. For the distances involved, however,
and the typical accuracy of the pose estimates, the resulting orientation error of
the camera is usually small enough and does not effect the following computation.
Further, since the camera is aimed at the center of the model, any small deviation

will have minimal effect.

5.3 Pose Estimation

At this stage, a pair of an image and a model of the building facade are available
and the task is to determine the pose of the robot. Since the pose of the camera is
tracked by the pan-tilt unit rigidly affixed to the robot, if the pose of the camera is
known, the pose of the robot can be easily derived. Thus, the focus in this section
is the computation of the camera pose.

The pose computation is done by matching identical linear features in the
image and the model. This is the well-known data association problem which in
general is intractable because of the sheer number of possible associations between
detected features on the image and the ones in the model. On the one hand, there

is a set of ny 2-D line segments extracted from the image, and on the other — nj

92

3-D line segments are available from the model. Some of the lines from the model
have matching lines from the image. Of course, not all lines from the model do,
as well as not all 2-D lines have a match in the model. Thus, an ordered list of n
matching segments needs to be determined from each set, where n is only known
to be not greater than the minimum of ny and n;.

A brute-force approach is not feasible because of its extreme computational

requirements. If all possible combinations need to be tried, the total number of

by = () () o (5.1)

This is computationally prohibitive for any practical values of ny, n3 and n.

iterations ky is:

Instead, I have adopted a probabilistic approach following the well-known
RANSAC paradigm first introduced by Fischler and Bolles [Fischler and Bolles,

1980]. The method consists of the following steps:

—t

. Preparation

N

. Sampling

3. Pose candidate computation

4. Pose candidate refinement

5. Pose candidate evaluation

Step 1 is executed once, while the rest of the steps are repeated in a loop with a

predetermined number of iterations.

93

5.3.1 Preparation

The purpose of the preparation step is to obtain the line segments and do some
pre-processing necessary for the later steps. Depending on the task at hand, two
collinear lines with distinct endpoints can be considered different lines or different
representations of the same infinite line. In the latter case, the two lines are redun-
dant and may greatly increase the computational burden. Thus, in the preparation
step, two versions of each line segment set are created (Figures 5.4 and 5.5). The
first one, called the original set, keeps the collinear lines separate for the pose eval-
uation step. The second set, called the merged set, combines all collinear segments
into a single representative in order to keep the computation light in the sampling,
pose computation and pose refinement steps.

The 3-D line segments are explicitly represented in the model of the facade
and need little processing. They are used as the original set of 3-D lines (Figure 5.4,
left). Their merged version is obtained by detecting the collinear subsets and re-
placing each one of them with a single line whose endpoints are the two outermost
end points of the subset (Figure 5.4, right). Note that the merged lines are not ex-
actly treated as infinite lines since their endpoints are used in the alignment metric
below.

The image of the building is processed to obtain the 2-D line segments. A
Canny edge detector is applied to locate edgels and then the incremental line fitting
technique is used to connect them in straight line segments which form the original
set (Figure 5.5, left). Next, the collinear subsets are detected and merged, replacing
each such subset by a single line segment of length which is the sum of the length

of the individual segments (Figure 5.5, right). Resulting segments that are shorter

94

Figure 5.4: Preprocessing of the 3-D line segments: the original lines from the
model (left) and the result after merging the collinear subsets (right).

Figure 5.5: Preprocessing of the 2-D line segments: the extracted edge lines (left)
and the result after merging the collinear subsets and removing the short ones

(right).

95

than a given threshold are eliminated from further consideration and the rest of

them are used in the sampling and pose computation steps.

5.3.2 Sampling and Pose Candidate Computation

The idea behind RANSAC is to solve the pose estimation problem a number of
times using randomly chosen matches between a minimum number of 2-D and 3-
D line segments. The minimum number of matching pairs in my case is three:
the problem has six unknowns (three for position and three for orientation of the
camera) and each matching pair of segments provides a two-degrees-of-freedom
constraint. The equations are non-linear and more than one solution is possible,
however, the initial pose estimate from the other sensors is usually good enough to
converge to the correct one. Thus, in the sampling step, I randomly select three
pairs of lines and, based on this selection, compute an estimate for the camera pose.

The camera pose candidate is found by using the pose estimation method
proposed by Kumar and Hanson [Kumar and Hanson, 1994]. A perspective camera
model is used and the calibration parameters of camera are assumed to be known.
An error function is composed and minimized that quantifies the misalignment of
the 3-D line and its matching 2-D line from the sample. For each 2-D line I,
consider the plane that is formed by that line and the camera center of projection
(Figure 5.6). Let the normal to that plane is IV;. Suppose, [; is matched with the
3-D line segment s; whose endpoints P;; and P;, have world coordinates p;1 and
p;j2. If R and T are the rotation and translation that align the world coordinate

system with the one of the camera, then

dij=(Ni- (R-pja+T))*+(N;i- (R-pj2+T7))° (5.2)

96

3D line feature - o _
e ,7 \‘\

e — - PJ',Z P
e L
-
~
—~
—~
“-.__distances from.’
3D line endpoints
to plane formed
by edge line
2D edge on
theimage
world coordinate
R,T system

Figure 5.6: Error metric used for pose estimation

is the sum of squared distances of the endpoints of s; to the plane formed by [;
(Figure 5.6). The error function that is minimized is the sum of d; ; for the three

matching pairs:

1,jEMatches

This function is minimized with respect to the six degrees of freedom for
the camera pose: three for the rotation R and three for the translation vector 7.
The computation follows the method proposed by Horn [Horn, 1990]. If the camera
undergoes an infinitesimal incremental rotation dw and an infinitesimal incremental

translation dT’, the resulting error function will become

E' = E(R(dw) - R, T + dT), (5.4)

97

where R(dw) is the rotation matrix that rotates a point p by dw:

R(dw) -p =p + dw X p. (5.5)

Differentiating (5.4) with respect to dw and dT" and setting the result to zero
gives us a linear system of six equations with six unknowns, which are the elements
of dw and dT. The solution to this system provides incremental updates to the
current rotation matrix R and translation vector 7'. This is repeated a number of
times until the error metric becomes smaller than a threshold or until a maximum

number of iterations are performed.

5.3.3 Pose Candidate Refinement

The pose candidate refinement step uses the consensus set to fine tune the estimate.
The consensus set is the set of all matching pairs of 2-D edge segments from the
image and 3-D line segments from the model that agree with the initially computed
pose candidate.

For each 3-D line segment in the model, a neighborhood of its projection on
the image is searched for 2-D edges and their distance from the 3-D line segment
is computed according to (5.2). The 2-D edge with the smallest distance is taken
to be the match, if that distance is less than a threshold and if the 2-D line is not
closer to another 3-D line. If no such 2-D edge is found, then the 3-D line segment
is assumed to have no match.

The above matching scheme ensures a one-to-one match. However, recall
that the lines used in this step are from the merged set and each such line represents

a number of collinear original line segments. Consequently, each matching pair

98

of merged lines represents a number of possibly many-to-many matches between
original line segments. The pose candidate refinement step does not attempt to
establish matches between the original line segments, because they are not needed
at this stage. This keeps the computation simple and fast.

The consensus set is used together with equation (5.3) to compute a better
pose estimate. This is done iteratively a number of times starting with a large value
for the consensus threshold and gradually decreasing it. The large initial value for
the threshold makes sure that a roughly correct consensus set will be generated
initially which will be later refined to eliminate the false positives and increase the
accuracy. The result of the last iteration is the pose candidate that is evaluated in

the next step.

5.3.4 Pose Candidate Evaluation

The quality of each pose candidate is judged by a metric ¢(R,T) which quantifies
the amount of support for the pose by the matches between the model and the
edge. The idea is to check what portion of the model is covered by matching edge
lines. The larger the coverage, the better the pose candidate. Ideally, the entire
visible portion of the model should be covered by matching 2-D edge lines.

After the last refinement iteration, the consensus set contains pairs of match-
ing 3-D lines from the model and 2-D lines from the edges. Consider one 3-D line
s; in the consensus set and its matching 2-D counterpart. Since the matching is
one-to-one, neither of these lines matches any other line.

Now, recall that s; and /; were obtained in the preparation step by merging a

number of original line segments. For clarity, let S; = {s; 1, Sj2, ..., Sjn} be the set

99

- sj,l

Figure 5.7: Coverage of a pair of matching lines. The light lines denote original
edge line segments. The thick lines are the projections of the original 3-D lines from
the model. The merged 3-D and 2-D lines are shown in dashed and dot-dashed style
respectively. The covered portion of the model is shown as extra thick.

of all segments from the model that were merged into s; and L; = {l;1,li2, .., lijm }
be the set of all edge segments that were merged into /;. Denote the projection of s;
onto the image by sj. Then the line segments in S; project onto a set of segments
S ={8}1,8; 9, 8} of s; because s; was constructed as a geometric superset of
the lines in S;.

Next, project all line segments in L; orthogonally onto s’ (Figure 5.7). The
projection defines the region of s’ that is considered covered by L;. By geometrically
intersecting this projection with the line segments in Sj’-, we obtain the portion of
S} that is covered by L;. The total length of the lines in the intersection is the
amount of coverage c(s;) of s. Thus the total coverage of the entire model for the

pose candidate R, T is:
CRT)= Y els) (5.6)
s;€Model

The dependence on R and T is implicit as the consensus set and the projections s

100

depend on the pose.

Note that the coverage is a quantity which is computed in 2-D space. As
such, it depends on the scale of the model as well. If the camera moves away from
the building, the visible size of the model will diminish and C(R,T) will decrease
even if the match is perfect. Hence normalization needs to take place.

There are two ways to normalize the coverage: divide by the total projected
length of the model or divide only by the visible projected length. The former
approach will tend to underrate the correct pose in cases when the model is slightly
outside of the field of view. The latter approach will do fine in such cases but will
overrate poses for which very little of the model is visible and the visible portion can
easily match arbitrary edge lines. I choose to use the latter method and compute

the pose evaluation metric as

¢(R,T)=C(R,T)/V(R,T) (5.7)

where V(R,T) is the total length of the visible projection of the model on the
image.

To avoid the pitfalls of choosing an overrated pose, a number of safety checks
are applied. There are three criteria by which a given pose candidate is eliminated

from consideration:

1. If the pose candidate is outside of a validation gate, it is immediately rejected
as unlikely. The validation gate is determined by the total state estimate
of the extended Kalman filter. It is the region of minimum volume around
that estimate which contains a given probability mass under the Gaussian

assumption. If x is the pose candidate (R and T') expressed in terms of the

101

total state of the filter, then it is within the validation gate, if
b — x)T Py [x — x] < 7, (5.8)

where x;, is the current EKF estimate of the pose and Py is the correspond-
ing covariance matrix. The parameter 7y is a threshold controlling the volume
of the region (in terms of number of sigmas) around the EKF estimate to
be included in the gate. It is chosen from tables of the chi-square distribu-

tion [Bar-Shalom, 1987].

Note that in this case the expensive metric computation is not performed at
all. As this is most often the case since the probability of a correct random

sample is quite low, significant time savings are achieved by this step.

2. If the visible portion of the model on the image is less than a threshold, the
pose is also rejected as there is no sufficient basis to evaluate it, even if it is
the correct one. If this is case, the entire localization step is likely to fail,
because the camera was pointed way off target. Note that in this case, the

metric computation is also skipped, resulting in speed improvements.

3. If the value ¢(R,T) for the current pose candidate is less than a threshold,

the pose is also rejected as there is insufficient support for it.

Of all the pose candidates that pass the three tests, the one with the highest
score after the loop is the best one and is accepted to be the correct pose. The
uncertainty is set to a diagonal matrix consisting of statistically obtained values
scaled by the distance to the model. The values are obtained by running the

algorithm a number of times on various images for which ground truth is available,

102

and taking the standard deviation of the errors of all successful results normalized
by the corresponding distance between the robot and the building.

If no good pose is found, the visual localization step fails. This is not fatal,
however, as the robot simply moves a little further along its route and attempts
another visual localization step. This is repeated until either the visual localization
succeeds, or the GPS picks up a good signal and corrects it pose to reduce the

uncertainty.

5.3.5 Number of Iterations and Speedups

The decision on how many iterations to perform is based on the expected number
of trials k, required to get a correct match. If the number of line segments obtained
from the image is no, the number of line segments in the model is n3, and n of them
appear in both the model and the image, then the probability of a single sample

being correct is

P= (n%) (;_—11) (:3_—22) (n%) <n21— 1) (n21—2)' (5:9)

The expected value E(k,) of the number of trials is then

Blk) = Yip(1-p) = ; (5.10)

Of course, F(k,) depends on the number of matching lines segments which
is impossible to know in advance. To resolve this problem, I use a fixed number of
iterations that only depends on the model. This number is computed on the basis
of the number of lines in the model and the average number of edge lines produced
at the preparation step for the particular building facade. It can be controlled to a

large degree by setting appropriately the length threshold for the merged edge lines

103

in the preparation step: if a large number of edge lines is generated, increasing the
threshold will let only the longest (and thus most reliable) edge lines be used for
sampling. Conversely, if too few edge lines are generated, decreasing the threshold
will help exhaust more combinations.

It is important to note that in (5.9), ny and nz refer to the much smaller
number of line segments after their collinear subsets are merged into a single line,
not the ones originally extracted from the image or the model.

It is also important to note that even with the speedup resulting from merg-
ing the collinear segments, the number of iterations is too large for practical pur-
poses. Typical values for the number of segments are ny, = 30, n3 = 30, n = 20.
This results in an expected number of 86, 755.8 iterations which take significantly
longer than one can comfortably allow for visual localization.

Additional decrease in the number of iteration is achieved by splitting the
line segments into two disjoint groups: mostly horizontal and mostly vertical ones.
This is easy to do for the lines from the model, since the information is directly
available. It is also possible to do it for the edge lines, because the tilt of the robot
is accurately measured by the attitude sensor and the building facade is assumed
to be vertical, near planar surface. Misclassifications of edge lines are possible but
extremely rare and normally do not affect the accuracy of the algorithm.

The benefit of splitting the segments into two groups is to eliminate samples
that are certain to be incorrect matches such as ones that associate a horizontal
line on the model with a vertical one in the image. The sampling step is modified
to always produce samples having one pair mostly horizontal lines and one pair

mostly vertical lines. The third pair could be from either class. If there are equal

104

number of horizontal lines and vertical lines this strategy can reduce the expected
number of iterations by up to a factor of 8, resulting in less than 11, 000 iterations.

This already is a practical number. For comparison, all visual localization
tests in this thesis used a maximum of 8000 iterations, which typically took between

25 and 45 seconds on a 2GHz Pentium IV processor equipped with 1GB of RAM.

5.4 Summary

This chapter described a visual localization method for mobile robots using a single
CCD camera mounted on a pan-tilt unit. The method is based on classical com-
puter vision pose estimation techniques and the RANSAC paradigm. It uses linear
features which are abundant in urban environments to establish correspondence
between an image of a nearby building and a model of it and to compute the pose.
A simple and compact model is used; no environmental changes are required.

The method is used only when the main localization method for the robot
becomes uncertain. The robot stops and autonomously determines which of the
nearby buildings to use for localization. It is able to evaluate the quality of its pose

estimates and to reject them if necessary.

105

Chapter 6

Experiments

To demonstrate the functionality of the mobile robot, the software architecture
and the software components I wrote as well as to study the performance of the
localization algorithms, I performed a series of tests with a real robot in an actual
outdoor environment. The tests took place on the Columbia University Morningside
Campus. Three kinds of tests were performed — one that aimed to evaluate the
performance of the combination of odometry, attitude sensor and GPS; another

that focused only on the vision component; and a final test that used all sensors.

6.1 Localization in Open Space

The purpose of these tests were to investigate the accuracy of the open space
localization method described in chapter 4.

Arbitrary trajectories were generated by the Path Planner or by the user
with the help of the graphical interface, and were executed. The trajectories were

piece-wise linear, with the robot turning to its next target in place as soon as it

106

* I I i T T T
Map
I:I Planned Trajectory —=—
Actual Trajectory --------
20 | |
a a o . \
15 |
10 +
Big
Planter
5 I] -
0r : |
a o o
End T
5+ |
: Small

wor i Planter y i
=l L\ rrrrrrrrrrrrrrrr _
20 I : ! L 1 1
0 20 10 0 10 20 30 40

Figure 6.1: The first test run in open space

reached the current one. The maximum translational and rotational velocities were
0.5 m/s and 0.4 rad/s respectively. In all cases, the robot performed as expected
with no visible deviation.

To further confirm these results, two more comprehensive test runs were set
up to obtain ground truth data. A piece of chalk was attached at the center of
odometry on the bottom of the vehicle so that when the robot moved it plotted its
actual trajectory on the ground. After it completed the task, sample points from the
actual trajectory were marked at intervals of approximately 1 m and measurements
of each sample point were obtained.

First, a complex desired trajectory of 14 targets and total length of 210 m
was used. (Figure 6.1 shows the planned and actual trajectories, overlaid on the

map of this area of the campus. The average deviation of the robot from the

107

20 T T T T T T T
Map
e, S y Planned Trajectory —=—
: =] =] : Actual Trajectory --------
15 + . : E
10 f]
Big :
Planter
5L _
Start &
0 End | 7
] a K
5+ 4
I Small §
10 b i Planter : E
A5 e : 7
_20 1 1 1 1 1 1 1
-5 0 5 10 15 20 25 30 35

Figure 6.2: A second test run returning to the starting point

planned trajectory in this run was 0.46 m.

The second trajectory consisted of nine targets arranged in the shape of the
digit eight around the two planters in the center of Figure 6.1. The trajectory
was 132 m long and asked the robot to return to the same place where it started
(Figure 6.2). The average error for this run was 0.251 m.

The next experiment also involved the trajectory in Figure 6.2, but this time
of interest was the displacement between the starting and arrival locations. Ideally,
the robot had to arrive at its starting location since this was a closed-loop trajectory.
Three such runs were performed. The resulting errors were 0.08 m, 0.334 m, and
0.279m.

It should be noted that the performance of the open-space localization sys-

tem strongly depends on the accuracy of the GPS data. During the experiment

108

above, the number of satellites used were six or seven most of the time, occasion-
ally dropping to five or increasing to eight. The GPS receiver was working in RTK
float mode in which its accuracy is worse compared to when it works in RTK fixed
mode. The latter mode provides accuracy to within a few centimeters, however,
it is typically available when seven or more satellites provide good signal-to-noise
ratio over a long period of time.

These experiments demonstrate that this localization method is sufficient for
navigation in open areas with typical GPS performance and no additional sensors
are needed in such cases. The location estimate errors in all of the above test runs

were well within the acceptable range for urban environments.

6.2 Localization with Vision

To examine the accuracy of the visual localization method, I performed two kinds
of tests: one that compares the result for each test location with ground truth data,
and another, that compares the two results the algorithm produced on two different
images taken from the same location.

In both kinds of tests, I wanted to measure the quality of the location esti-
mation alone and minimize the interference from inaccuracies in the model. Thus, I
took care to create accurate models of the buildings used by scanning their promi-
nent features with a high-quality electronic theodolite with nominal accuracy of
2 mm . The features I modeled were windows, ledges and decorations — all com-
monly found and abundant in urban structures and easy to find using 2-D image
operators (Fig. 6.3).

In the first test, the robot was driven along a long trajectory around the Uris

109

Figure 6.3: 3-D models used for localization shown on a 2-D map of the test area.

building on the campus. At 16 relatively regularly spaced locations the robot was
instructed to stop and perform the visual localization routine. It used the accu-
mulated error from odometry as an initial guess to determine the nearby buildings
and choose a model of one for localization. A sketch of the test area with the test
locations and directions in which the images were taken is shown in Figure 6.4.

Figures 6.5-6.20 show the results of the 16 runs. The left image in each
pair shows the model used projected onto the image using the initial inaccurate
estimate of the camera pose. The image to the right shows the model projected on
the image after the correct camera pose was computed. In all cases the alignment
of the model and the image is very accurate.

Since it is extremely difficult to determine the location of the robot with a

110

o .S 156”7
; N -
A 14

Figure 6.4: A map of the area where the experiments were conducted showing
approximate camera locations and orientations.

111

Figure 6.5: Visual localization test: Location 1

i
s

L
i

72

Figure 6.6: Visual localization test: Location 2

112

Figure 6.7: Visual localization test: Location 3

Figure 6.8: Visual localization test: Location 4

113

Figure 6.9: Visual localization test: Location 5

Figure 6.10: Visual localization test: Location 6

114

Figure 6.11: Visual localization test: Location 7

WL L] Ll
T

LA i =

_ wn‘fw//;ﬂﬁg.—ﬁ-‘q -

¥ S\

Figure 6.12: Visual localization test: Location 8

115

. M-

Figure 6.13: Visual localization test: Location 9

Figure 6.14: Visual localization test: Location 10

116

Figure 6.15: Visual localization test: Location 11

Figure 6.16: Visual localization test: Location 12

117

Figure 6.17: Visual localization test: Location 13

R\
il
/AR

Figure 6.18: Visual localization test: Location 14

118

Figure 6.19: Visual localization test: Location 15

MR TS

L

TR

u wmmE I

L L
| .—-.___ _.._.,2-_m

= # -—nn._ m \M.

\sa=| 1: 0 | Ll
! Em_la

Figure 6.20: Visual localization test: Location 16

119

near centimeter-level accuracy, ground truth for the visual localization experiments
at each location was obtained in the following manner: An electronic theodolite
was placed near the robot and the building facade it was looking at. While the
robot was stationary, a scan of the camera lens was taken with the theodolite.
Then, a few key points of the building facade were also surveyed so that location
of the camera lens could be determined with respect to the building. Finally, the
expected location of the camera with respect to the building was computed based
on the robot estimate of its pose and it was compared with the one obtained by
the theodolite.

Because of the size of the camera lens, the error introduced by scanning
its surface, rather than the focal center, was less than 2cm, which is negligible in
comparison with the errors of the algorithm. The resulting errors in translation for
these runs are given in Table 6.2. These errors are small and clearly demonstrate
that the method generates accurate estimates that can be used for robot navigation
in urban environments.

The alignment of model and image in the resulting poses suggests that the
orientation is also estimated accurately. While this is obvious from Figures 6.5
6.20, I wanted to obtain a quantitative confirmation. I did this by running Tsai’s
method for external camera parameters estimation [Tsai, 1987] and comparing its
orientation estimates with the ones from my localization algorithm. The comparison
is shown in Table 6.2, where the rotation angles about each axis are given that
would align the camera coordinate frame with the reference frame of the model.
The last three columns show the differences in each of these angles between the two

estimates. The results demonstrate that the two algorithms consistently agree to

Location Estimated True Error

Number X Y Z X Y Z
1 9.758 | -0.456 | -16.529 9.964 | -0.531 | -16.495 || 0.222
2 -7.585 | -0.441 | -10.219 -7.517 | -0.392 | -10.241 || 0.087
3 14.339 | -0.117 | -18.336 14.127 | 0.226 | -18.459 || 0.422
4 13.338 | 0.181 | -14.502 || 13.354 | 0.214 | -14.630 || 0.133
5 -12.854 | 19.328 | -17.954 || -12.784 | 19.353 | -18.057 || 0.128
6 30.446 | 19.192 | -12.308 || 30.413 | 19.251 | -12.353 || 0.081
7 17.394 | 0.464 | -12.407 || 17.512 | 0.260 | -12.172 | 0.333
8 29.417 | -0.099 | -17.533 || 29.295 | 0.045 | -17.507 || 0.190
9 16.626 | 0.336 | -29.673 || 16.870 | 0.253 | -29.416 || 0.364
10 38.544 | 0.241 | -30.307 || 38.789 | 0.334 | -30.177 || 0.292
11 -10.131 2.067 | -33.958 -9.828 | 2.268 | -34.208 || 0.442
12 9.205 | 6.265 | -35.902 9.181 | 6.432 | -35.591 || 0.354
13 25.375 | 15.582 | -22.703 || 25.256 | 15.798 | -22.557 || 0.287
14 15.060 | 0.768 | -18.029 15.241 0.622 | -18.082 || 0.238
15 -13.372 | 5.406 | -14.906 || -13.486 | 5.264 | -15.227 || 0.362
16 26.040 | -0.708 | -21.323 || 25.805 | -0.673 | -21.575 || 0.346

120

Table 6.1: Computed and actual robot position for each of the locations where
the visual localization test was performed. The last column shows the total error.
Measurements are in meters.

within a fraction of a degree.

The purpose of the second test was to confirm that the algorithm does not

generate contradictory results when used on different facades from the same loca-

tion. I took a pair of images of two faces of the same building at locations 4 and

5 by simply panning and tilting the camera. Both pairs of images were processed

with their corresponding models (Figures 6.21-6.22) and were intentionally given

initial pose estimates with large errors. The resulting errors in translation were

0.064 m and 0.290 m.

Location Localization Tgal Difference

Number || R, R, R, R, R, R, R, R, R,
1 7.637 | -18.077 | -1.302 | 7.429 | -18.455 | -1.243 | -0.207 | -0.378 | 0.058
2 3.689 | 51.895 | -3.308 || 2.958 | 51.672 | -3.862 | -0.732 | -0.223 | -0.554
3 7.181 | -19.792 | -2.500 | 7.754 | -19.654 | -2.907 | 0.573 | 0.137 | -0.407
4 10.050 | -35.144 | -0.918 | 9.814 | -35.881 | -0.843 || -0.237 | -0.737 | 0.074
5 17.254 | 52.109 | -3.059 || 16.636 | 51.901 | -3.538 || -0.618 | -0.208 | -0.478
6 22.304 | -50.205 | -4.383 | 22.445 | -50.092 | -4.594 | 0.141 | 0.113 | -0.211
7 12.629 | -42.970 | 1.941 || 12.074 | -43.429 | 1.995 || -0.555 | -0.460 | 0.055
8 23.918 | -45.988 | -3.723 || 23.912 | -45.858 | -3.706 || -0.007 | 0.130 | 0.017

9 17.626 | -11.995 | -2.810 || 17.358 | -12.802 | -3.028 || -0.268 | -0.807 | -0.218
10 16.108 0.625 | -0.761 || 15.960 0.184 | -0.878 || -0.148 | -0.441 | -0.117
11 10.243 | 30.218 | -3.850 || 10.594 | 29.306 | -3.501 || 0.350 | -0.913 | 0.349
12 20.236 | -0.309 | -2.375 | 20.538 0.095 | -2.300 || 0.303 | 0.404 | 0.075
13 22.978 | -33.251 | -3.219 || 23.621 | -33.492 | -3.420 | 0.643 | -0.241 | -0.201
14 13.431 | -34.960 | -4.101 || 13.392 | -35.549 | -4.238 || -0.039 | -0.589 | -0.138
15 18.610 | 56.541 | -4.950 || 17.754 | 56.307 | -5.089 || -0.856 | -0.234 | -0.139
16 8.151 | -42.190 | -2.943 | 8.458 | -41.745 | -2.975 || 0.307 | 0.446 | -0.032

Table 6.2: Robot orientation as computelly the localization method (first three,columns), .and b ai’s method
(middle three columns). The last threepcolur}r’lns show the discrepanmes(etween the 1cwo egtlma(lltesy ﬁseasurements

are in degrees.

1¢1

122

Figure 6.21: Initial and final alignments in the pose estimation tests with a pair of
images taken from the same location.

123

’

’

-) -

— - |
e [
e Em)

-

e

V7
=2

K-I- ‘,_,.
....h-'-,_,

- @ AVE
- o =

-w...,.\ Y |

4 l.rrl" g

Figure 6.22: Initial and final alignments in the pose estimation tests with a pair of

images taken from the same location.

124

6.3 Localization Using All Sensors

Finally, a test was performed to confirm that the entire localization system works
well together, that is, it uses the visual localization as needed and that it actu-
ally improves the performance. A more than 330 m long trajectory was composed
around the Uris building on the campus (Figure 6.23). The robot was directed to
follow that trajectory using all sensors, including vision as needed.

During the test run, the robot passed through both areas of good GPS
visibility and poor GPS visibility. It was setup to seek visual localization whenever
the standard deviation of the uncertainty of the current position exceeded 1m. The
robot was consistently able to detect the areas of poor GPS performance (marked
on Figure 6.23) and supplement it with vision. Notice, that no GPS data was
available at all at location 3, as the robot was directly beneath an extension of the
nearby building.

It stopped at each marked location, correctly determined a nearby building
to use and performed the visual localization procedure described in Chapter 5.
While at rest, I scanned its camera with an electronic theodolite to obtain ground
truth.

Table 6.3 below shows the estimated position [X,, Y., Z,]" of the robot at
each location based on the combination of GPS, attitude sensor and odometry prior
to triggering the visual procedure, followed by the actual error of that estimate. The
following columns show the computed robot position [X.,Y,, Z,]" by the vision
algorithm along with its error. The table clearly demonstrates the improvement
the visual algorithm makes to the overall system performance. The corresponding

images overlaid with the model are shown in Figures 6.24 through 6.27.

125

............... :

start® Frmsh T \
4

¢

Figure 6.23: A map of the area showing the robot trajectory (dotted line) and
the locations where the robot used visual localization. Notice location 3 which is
directly underneath a building extension.

126

Figure 6.24: Integration test: Location 1

e B
.

Figure 6.25: Integration test: Location 2

127

Figure 6.26: Integration test: Location 3

Figure 6.27: Integration test: Location 4

128

No X, Y. Ze Error X, Y. Z. Error
1 17.547 | -58.079 | -0.683 || 1.297 || 16.470 | -58.565 | 0.110 || 0.348
2 || 108.521 | -61.634 | 0.279 || 1.031 || 108.26 | -62.001 | 1.127 || 0.345
3 90.66 | -30.729 | 1.418 || 0.937 || 91.344 | -31.404 | 0.867 || 0.179
4 95.095 2577 | 1.713 || 1.212 | 95.363 2.881 | 0.85 0.274

Table 6.3: Robot position and error estimated by GPS, attitude sensor and odom-
etry along with the corresponding improved position estimate and error after per-
forming visual localization. Measurements are in meters.

6.4 Summary

This chapter presented the experiments I have done to demonstrate the functional-
ity of the robot and the practicality of the localization methods I described earlier.

The first set of experiments focused on localization in open space. Two
long runs were performed for which the actual robot trajectory was sampled and
compared to the planned one. Another experiment in a closed-loop trajectory
measured if the robot would reliably return to its starting location. In all tests, the
robot demonstrated consistent behavior and small enough errors to allow for safe
navigation in typical urban environments.

The second set of experiments focused on the vision-based method. An
accurate and diverse data base of models of buildings throughout the Columbia
University Morningside Campus was created. The accuracy of the method was
verified by a comprehensive set of test runs on various buildings. An additional
experiment was done to verify the consistency of the method when run on different
models from the same location. The results clearly demonstrate that the method
is both very accurate and consistent.

Finally, a complete autonomous run was done on the campus in which the

129

robot was allowed to use all sensors. The trajectory passed through both open and
narrow areas. The robot was able to automatically determine when to stop and
utilize vision. It chose correct building models and successfully improved its pose
estimate using the vision-based method. This run demonstrated the functionality

of the entire system.

130

Chapter 7

Conclusion and Future Work

This thesis presented a systematic and practical approach to mobile robot localiza-
tion in urban environments. It reflects my work on both system and algorithmic
components. The work was done as part of the AVENUE project for urban site
modeling, however, the methods and ideas presented here are independent of the
project and are generally applicable to mobile robots operating in urban environ-

ments.

e On the hardware level, T have designed and implemented a functioning au-
tonomous mobile robot platform for urban site modeling which is being used
as the prototype platform for the AVENUE project. The design extended an
existing robotic vehicle with a carefully chosen sensor suite: a digital com-
pass with an integrated inclinometer, a global positioning unit, and a camera
mounted on a pan-tilt head. A large support frame was built to accommodate
the size of the range finder. Necessary wireless networking hardware was also

installed on the robot.

131

e | have designed a distributed modular software architecture for mobile robot
localization and navigation. This architecture has been demonstrated to be
computer platform and operating system independent. Proper attention has
been paid to important issues such as the distribution of computation and

wireless network coverage.
e [have implemented the essential part of the software architecture including:

— software components to interface with the installed hardware, convert
hardware-specific data to an easily used format and make it available to

the rest of the system
— a robot motion control component to drive the robot

— a software component that serves as an interface to the robot from ex-

ternal machines

— a graphical user interface to control and monitor the robot remotely

(joint work with Ethan Gold)

e I have developed a complete calibration procedure for the odometry of the
ATRV-2 robot. The method extends the existing UMBmark method devel-
oped by Borenstein and Feng with a procedure to determine the necessary

kinematic parameters of the robot.

e [have developed a mobile robot localization method for open-space outdoor
environments. The method uses odometry, an attitude sensor and GPS. It
is computationally light and performed in real-time. The method estimates

both the robot pose and the uncertainty associated with it. It is used in

132

open space areas where the quality of the GPS data is good and prevents the
uncertainty from growing beyond an accepted tolerance. The method is able
to detect when its estimates are likely to be of lower quality so that additional

sensors can be utilized.

e To complement the open-space localization method, I have developed a second
method based on visual pose estimation. It is heavier computationally but
is only used when it is needed. The pose estimation is done by matching an
image of a nearby building with a simple and compact model of it. A data
base of the models is stored on the on-board computer. No environmental

modifications are required.

e Finally, I have demonstrated the functionality of the robot and the localization
methods with numerous experiments in Chapter 6. FExperiments in open
areas demonstrated the applicability of the main localization method. I have
created an accurate and diverse data base of models of buildings throughout
the northern part of Columbia Morningside Campus. Using this data base, I
have shown that the visual localization method produces very accurate and
consistent results. A completely autonomous run demonstrated the integrity

and functionality of the entire system.

7.1 Limitations

Due to the scope of the system, the difficult nature of the problems and the limited
time, there are still a number of open technical and theoretical issues that need to

be addressed:

133

e View Planning

When visual localization is about to be attempted, a decision is made on
which facade model of a nearby building to use. This decision is based on a
number of criteria, such as distance to the building facade and viewing angle.
Obviously, there might be more than one candidate. It is also possible that
some facades are occluded by others. My current implementation will choose
the first model it finds to satisfy the viewing constraints. Ideally, one would
want to pick the best available choice which is not known to be occluded. An
interesting theoretical question then is what is the best choice and how to find

it. My idea on how to approach this issue is presented in the next section.

e Feature Matching

Inevitably, the visual localization occasionally fails to produce a pose esti-
mate even if the image captured is of the correct building facade. The most
common reasons for the failure are mismatches due to too few or too many
edges detected on the image, which is somewhat sensitive to the current illu-
mination conditions. Ideas on how the matching process could be improved

are discussed in the Future Work section.

e Partial Visual Localization

What happens when the visual localization procedure can not produce a re-
liable estimate of the current pose? My algorithm tries to act conservatively
and rejects every pose for which there is insufficient evidence. However, there
might be a way to extract some useful information from the image and im-

prove the current pose estimate, even if the exact six-degrees-of-freedom pose

134

cannot be determined. This is further discussed in the next section.

Visual Pose Integration

The main localization system is based on an Extended Kalman Filter which
is good at representing estimates with a Gaussian distribution of the uncer-
tainty. This works well for odometry, the attitude sensor and GPS, how-
ever, the uncertainty in the vision-based estimates is multi-modal and non-
isotropic. This raises an interesting theoretical question on how to best fuse
the vision data with the rest of the system. My ideas on how to approach

this are presented in the Future Work section.

Path Planning

When visual localization is to be performed, the method works with whatever
views are available from the current robot location. However, some positions
provide better views of the nearby buildings than others. Thus, when gener-
ating trajectories for the robot, the path planner could be made to favor ones

that allow for better visual localization.

Further, the uncertainty in the robot position is decided to be too high based
on a predefined threshold — the available free space around the robot is not
taken into account. This information is, however, available from the path
planner and can be used. By providing means of making it accessible by
the Localizer, a more intelligent use of the visual localization method can be
made. It would become possible to resort to the time consuming effort only

when the robot is approaching an obstacle and correction is really necessary.

135

7.2 Discussion and Future Work

In this section, I would like discuss my vision on how the current limitations of my

method could be approached.

7.2.1 View Planning

The problem of finding which model to use for visual pose estimation is very inter-
esting and challenging. My approach to addressing it would be as follows:

Consider a Gaussian sphere around the center of projection of the camera.
Discretize that sphere in a two-dimensional spherical grid of a certain resolution.
Determine the set of relevant facade models that have some portion closer than a
maximum usable range. Project each model onto that sphere, keeping track in each
cell of the line numbers, face number, average viewing angle and average distance
of the portion of the model that projects onto that cell. Replace the data in the
cell with the current one only if the current distance is smaller than the existing
data in the cell (known as Z-buffering). Repeat this for all relevant models.

For simplicity, assume that the camera field of view is a cone with its vertex
at the center of projection. More accurate representations can be investigated as
necessary.

Now, the view finding problem is to determine an orientation for the cone
for which its intersection with the Gaussian sphere contains the most favorable
configuration of projected model lines. Note that, there is no constraint that the
lines come from the same facade model. The difficult part here is to define what
“most favorable” means and this is a very challenging theoretical problem.

A practical solution could be this: Intuitively, the most favorable view is the

136

one that maximizes both the probability of a correct match between the models and
the image and the accuracy of the pose estimate for the correct match. Factors that
contribute to this are: the viewing angle of the facade, the distance to it and the
number of model lines in view. Thus, a linear combination of these, multiplied by
weights reflecting the importance of each factor, could be a good practical metric.
The weights would need to be determined through experiments or simulations.

It is likely that this computation be slower than acceptable for each visual
localization run because of the exhaustive two-dimensional search over the Gaus-
sian sphere. This could be addressed by doing the computation upfront: The
working area could be discretized into a grid of cells, each of which would hold a
precomputed value of the best viewing direction for that cell. These values will be
computed once for the entire site and then used instantaneously during any mission.
Alternatively, if the site is too large for this to be practical, the viewing directions
can be precomputed at discrete points of the planned trajectory before the mission

starts.

7.2.2 Feature Matching

The feature matching procedure could be improved in two orthogonal ways. First,
additional clues, such as color, could be used in the matching process. A color
segmentation step can be performed on the image to roughly determine sections
with identical color. If similar information is available in the model, this can serve
as a means to coarsely register the image with the model. To avoid problems with
portions of the building that have a strongly reflective surface, such as windows,

these could be represented in the model by a special color that matches every other

137

color. After the coarse registration, the lines can be used for fine tuning by only
searching for matches in the neighborhood of the projected model lines.

The second approach, which can be used in conjunction with the first one,
is topological. Matching could be performed where higher-level features, such as
window frames or decorative stones, could be sought and their relative positions
taken into account. This can be very beneficial on buildings since they are typically
designed to exhibit a very clear topological structure on their facades.

Using topology, some small but unique features could help disambiguate
repetitive patterns. Further, by focusing on the unique or rare features first, a
tremendous speedup could be achieved in finding the correct match as it may ob-
viate the need for performing a lot of iterations in hope of exhausting all or most

of the possible data association variations.

7.2.3 Partial Visual Localization

The idea behind partial visual localization is that some information from the image
can be used even if the pose estimation method was unable to produce a reliable
pose. This is typical for situations where the camera was way off target due to large
orientation error from the a-priori pose estimate. In many such cases, however, due
to the nature of the environment, the camera will still be looking at a building or
other man-made structure.

A common property of the urban landscape is the dominance of the hori-
zontal and vertical directions. Most of the building facades are vertical and mostly
planar. An image of such a facade would exhibit a set of two strongly supported

vanishing points, corresponding to the vertical and horizontal direction. The next

138

best vanishing point will be very weakly supported in comparison. This can be
used to both detect such situations and recover the orientation of the robot.

The extension of the algorithm would be as follows: After the pose estimation
algorithm finished without a reliable correct match, the extracted lines are used to
determine the top three vanishing points. This is generally done by having each
pair of edge lines vote for a vanishing point at their intersection and processing the
resulting clusters of votes after that. The support for each of the vanishing points
is noted. If there is a clear indication of strong support for the top two vanishing
points and weak support for the last one, then this is an indication that the largest
portion of the image is of a planar man-made structure. A further confirmation
would be if the lines connecting the camera center with the two vanishing points
form an approximately right angle.

In such a case, it would be easy to tell which is the horizontal and which
is the vertical vanishing point. The local vertical direction for the robot can be
approximately determined by the roll and pitch angles reported by the attitude
sensor. Whichever vanishing point is very close to that direction is the vertical one.
The other vanishing point should closely match the direction of the horizontal lines
of the model used as the image was presumably of the same facade that was chosen
by the view planner.

At this point, sufficient information is available to compute the pose of the
camera and the robot. There is a correspondence between two of the main axes
of the model and the camera coordinate systems. The third axes are the cross
products of the first two. While this correspondence would not reveal the position

of the robot, it fully recovers the orientation.

139

Figure 7.1: A building facade exhibiting repetitive feature patterns

Finally, if huge error in orientation was the reason for failure of the pose
estimation method, now that a better orientation estimate is available, it can be

repeated with higher chances of success.

7.2.4 Visual Pose Integration

The problem of the integration of the vision-based pose estimates with the rest
of the sensors is the very different nature of the uncertainty associated with those
estimates. While using odometry, the attitude sensor and GPS, the localization
problem is to mainly track the motion of the robot as there is only one most likely
hypothesis about its current pose.

This is not the case with the vision-based pose estimation. Very often multi-
ple likely hypotheses can result from running that algorithm. This is especially true
if the facade of the building being used has a large number of the same repetitive

features, such as equally spaced identical windows (Figure 7.1).

140

In cases like this, it would be desirable to consider all of the available hy-
potheses until sufficient evidence is obtained of which one is actually true. Such
evidence could either be a number of runs of the visual localization algorithm from
different points of view or a pose update from the other sensors the exclude all but
the one true hypothesis.

Unfortunately, the Extended Kalman Filter framework does not allow for
easy integration of a multi-modal probability distribution. This implies that a
more general probabilistic framework is used.

When vision-based pose estimation is performed, the method could be mod-
ified as follows: The standard RANSAC loop described in chapter 5 is performed,
however, the resulting pose of each iteration is used as a sample of the conditional
probability distribution of the robot pose given the current image. At the end of
the loop, this probability can be fused in a Bayesian fashion with the Gaussian
distribution from the EKF. The outstanding peaks in the resulting distribution
could be used to form hypotheses which will be tracked by their own EKF until
invalidated by further evidence, such as large innovation series or negative values

in the variance-covariance matrix.

7.2.5 Obtaining the Model

The idea on how to obtain the environmental model used in the visual localization
method is tightly coupled to the intended use of the localization method. Recall
from Chapter 3 that the work in this thesis is part of the AVENUE project whose
goal is the creation of a detailed geometric and photometric 3-D model of urban

site. 1 will refer to this detailed model as the detailed model, as opposed to the

141

(a)

Figure 7.2: Model acquisition and simplification: (a) an image of a building; (b)
the 3D model created from the image and a range scan; (c) a reduced version of
the same model consisting only of line features.

localization model used for the visual localization.

The detailed 3-D models that obtained from the range scans and images of
the buildings are too large and complex since they capture a lot of detail (Fig-
ure 7.2b). The modeling process is incremental. At each stage there is a partial
model of the site available. By partial, I mean that the detailed model consists
of usable models of certain building facades plus various artifacts of the model-
ing process that correspond to yet unmodeled portions of the site. These artifacts
are easily recognized as such since they are tagged as “unknown” by the modeling
system.

During the scan/image registration process and their integration with the
existing partial detailed model, a data simplification step is done which creates
a reduced complexity model. Its generated for the purpose of the registration of
the range scanner’s and the camera’s coordinate systems. This simplified model

(Figure 7.2¢) consists of 3-D line segments obtained by segmenting the range scans

142

into planar regions and intersecting planes to obtain lines (for details, see [Stamos
and Allen, 2000]). The result of this operation is a set of lines segments — the kind
that is needed for visual localization.

Thus, to create a localization model, only a little post-processing is needed
of the available 3-D line features. First, the features are classified into near-planar
regions. That is, for each vertical face of the scanned building a representative
plane is established which defines its own coordinate system. All line features,
which typically correspond to window frames, ledges or decorations, are referenced
with respect to their representative plane. Then, for each plane (modeled facade),
the number of features used are reduced by keeping only the longest few of them.
Finally, each resulting set of line segments is stored in the localization model data
base.

Note that there is no controversy here about which model comes first (the
bootstrapping problem). The robot will start from a certain location, scan the
buildings in view, create their partial detailed models and register them with its
original pose. As a result, localization models of some of the scanned facades will be
also available which will allow the robot to go further, possibly using the available
so far localization models. As it obtains new scans and images and updates the
detailed model, new localization models will become also available which can be

used to localize the robot as it goes farther along its modeling path.

143

Appendix A

Implementation Details of the

System Architecture

A.1 Overview

The implementation of the software architecture (Figure 3.4) is based on the Com-
mon Object Request Broker Architecture (CORBA) and Mobility — a robot in-
tegration software framework developed by the robot manufacturer, Real World
Interface, Inc.

The Mobility Robot Object Model is an object-oriented approach to model-
ing a robot as “a collection of dynamically connected objects”. It defines interfaces
and provides implementations of interfaces and objects needed to build robot soft-
ware as a set of distributed components.

A component is the main software building block which represents an ab-
straction of a hardware piece, such as a sensor or an actuator, a behavior, or a

perceptual schema. It is defined by an interface written in CORBA’s Interface Def-

144

Robot
1
Per cepti on Har dwar e Behavi or
2-D _> Odo
’ Mapper
Col I'i sion
—® Drive Avoi der
> 3-D
Model er > GPS

Figure A.1: An example for software component hierarchy

inition Language (IDL) and typically implemented as a class if an object-oriented
language is used.

Some components, called containers, have the extra ability to contain other
components. This allows for the components to be arranged in a hierarchical way.
A robot is represented as a tree of components as shown in Figure A.1.

Components refer to one another by name but to actually execute a remote
call CORBA needs to know the object IOR (Interoperable Object Reference). The
name-to-IOR translation for each component is done by its parent container. The
top-level containers are registered with a name server which is part of the standard
CORBA package. The IOR of the name server is published at a configurable web
URL.

To find a specified object by name, first the IOR of the name server is

obtained through an http request. Then the name server is queried for the IOR

145

of the top-level container of the component. Finally, the container is queried for
the object. To facilitate programming, this procedure is implemented in the core
Mobility package.

Data stream sources are implemented by using state components. A state
component stores a list (implemented as a queue) of the data records that have
been passed along. Each data record is tagged with the time of its creation and the
list is sorted in a chronological order. To limit the use of memory, only the last few
data records are kept, however, that number is configurable.

The state components also maintain a list of the IORs of registered observers
— components that are interested in receiving a notification when new data be-
comes available. The interface of the state component allows for an observer to add
or remove its IOR from the list. When a new data record becomes available, the
state component iterates through this list and notifies each observer via a CORBA
IPC call (a server push approach).

In addition to using streams, a component may also expose an additional
command interface to provide access to a set of specific commands. This is done by
implementing a standard hook method which accepts as an argument a single string.
When this method is invoked, the component parses the string and executes the
command. This is how the emergency commands stop and pause of the Navigator
have been implemented, for example.

The sections that follow describe the interfaces of the system components
in the architecture. The hardware servers are discussed in the next section after

which the higher-level navigation components are presented.

146

A.2 Description of the Hardware Servers

A.2.1 ATRV2Server

The ATRV2Server is the interface to the robot hardware and comes with the stan-
dard Mobility distribution. It consists of several components that represent its
sensors and actuators or provide general robot-specific information, such as shape
and dimensions. Two components of main interest are Odo, which provides position
and velocity, and Drive, which drives the robot.

The interface to the Drive module consist of a pair of floating point numbers
specifying the velocities of the two axes — translation and rotation. The first
number designates the translational velocity of the robot in meters per second.
The second number is the target angular velocity.

The Odo component is the source of a data stream consisting of triplets of
floating point numbers. The triplet corresponds to current location coordinates
x and y and orientation #. This module has been modified to incorporate the

systematic error corrections discussed in section 4.1.1.

A.2.2 PTUServer

The PTUServer controls the orientation of the camera by turning the pan-tilt unit.
It provides a command sink to which three types of commands can be supplied.
The command types are to pan, tilt or both pan and tilt. Each command supports
two variants — one for which the target is specified in absolute angles, and another,
for which the target is specified relative to the current location.

This server also provides a status object that allows components to monitor

147

its state. The state consists of a flag that specifies whether the PTU head is

currently in motion and two numbers which are the current pan and tilt positions.

A.2.3 AttitudeServer

The AttitudeServer parses the data coming out of the digital compass module and
provides the current orientation in both east-north-up and local x-y-z coordinates.
This is done by two state components — one for each reference frame. Each of these
state components have three fields which contain the coordinates with respect to
the corresponding reference frame. Additional fields contain the strength of the
magnetic field, and the alarm status.

The server also implements a calibrate command that is used to specify the

orientation of the local reference frame.

A.2.4 GPSServer

The GPSServer parses the data from the GPS receiver and makes it available to
other components.

Position fixes are provided in various formats. Two of them are absolute:
longitude-latitude-altitude and X-Y-Z with respect to the WGS-84 coordinate refer-
ence frame [Hofman-Wellenhof et al., 2001]. The other two are local: east-north-up
and x-y-z with respect to a user-defined coordinate system (see section 4.3.2). Each
of these formats is provided by a separate state component so interested observers
can subscribe only to the one that they find most useful.

In addition to the three position coordinates, various other data is provided.

It includes the standard deviation of the position fixes, the number of satellites

148

used, current RTK mode (float or fixed), current GPS time, horizontal and vertical
dilution of precision.

The server also has a calibrate command which is used to establish the
local reference frame by specifying it explicitly or referring to a file containing this

information.

A.2.5 VideoServer

The images taken by the camera are grabbed and distributed by the VideoServer.
They are used for both localization and modeling.

This server can operate in two modes: single grab and continuous. In the
single grab mode, it waits for a grab command to be send, in order to capture an
image. In continuous mode, it captures images continuously at a specified frame
rate.

The images are distributed by two state components: The first one provides
raw image data which is used for image processing. The second component scales
the image down by sampling every second pixel and compresses the result before
supplying it to the observers. This is useful for video streaming to the user interface

over a slow wireless network to obtain visual feedback of the progress of the mission.

A.2.6 ScanServer

The ScanServer is designed to control the scanner and make the range scans and
images available to the other components. Unfortunately, it is not yet implemented,

because of unavailable information regarding its proprietary interface.

149

A.3 Description of NavServer

The NavServer is a program that consists of three components: Localizer, the

Controller and the Navigator.

A.3.1 Localizer

The Localizer registers as an observer to the Odo, Attitude, GPS and Image com-
ponents. Each time a new measurement is made, it gets notified about it, obtains
it from the corresponding state component and integrates it into the current pose
estimate according to the methods described in chapters 4 and 5.

The Localizer contains two state components that provide information about
the current pose estimate. The first component supplies the current pose as a six-
dimensional vector consisting of the three coordinates and the three Euler angles.
The second component provides the coefficients of the variance-covariance matrix
for observers interested in the uncertainty.

The coordinates provided by the Localizer are with respect to the established
coordinate system for the site. A calibrate command is used to establish or change

that reference coordinate system.

A.3.2 Controller

The Controller provides a command interface to both the Localizer and the Nav-
tgator. Its commands set consists of variations of goto and turnto as well as
the PT'UServer commands. The variations of the goto and turnto commands are

based on two parameters. The first one, that determines whether the target is spec-

150

ified in absolute or relative coordinates. The second parameter, determines whether
the robot should be moving forward or backward. The second case is irrelevant to
the navigation process but may be useful to a remote user looking at the video
stream from the camera.

The Controller obtains feedback by registering as an observer with the Lo-
calizer. New pose updates are used to update the commands sent to the actuators
according to the method described in section 3.4.

The Controller provides feedback by a state component that has a number of
fields: a flag that specifies whether the Controller is busy or idle; another flag spec-
ifying whether the Controller has reached its target, is moving, has been stopped
or has been paused; the current command being executed; the target parameters
for the command (e.g. the target robot pose it is pursuing); and the amount of

work remaining (e.g. distance to the target).

A.3.3 Navigator

The Navigator handles most of the communication of the robot with remote compo-
nents. Its functions are different depending on the direction of the data/command
traffic.

Commands sent to the robot are represented by a sequence of numbers, the
first of which is the code for the command and the rest of them are the arguments.
A mission is a list of such commands. The Nawvigator provides a state component
which is used to store the current mission. New commands sent to the Navigator
are appended to the end of the list.

Another state component is used to allow remote components to monitor the

151

progress of the mission. This state component consists of three fields: A flag that
determines if the robot is busy or not; a flag that determines if the mission has been
completed, paused, aborted, or is in progress; and the index in the mission list of the
command currently being executed. Thus, when a new component connects to the
Nauwigator, by looking at its state and the mission command list, it can determine
what the robot was doing recently and what it is about to do.

The Navigator also registers as an observer and mirrors the data coming from
the the Localizer, the state component of the Controller and, optionally, any other
on-board data source. It forwards this data to remote components at a reduced
data rate using a separate independent thread. It insulates this way the important
core components from interactions with remote peers that may be time consuming

and problematic because of networking issues.

152

Bibliography

[Adam et al., 1999] Amit Adam, Ehud Rivlin, and Hector Rotstein. Fusion of fix-
ation and odometry for vehicle navigation. In Proceedings of IEEE International

Conference on Robotics and Automation in Detroit, Michigan, pages 16381643,

1999.

[Allen et al., 2001] Peter Allen, Ioannis Stamos, Atanas Gueorguiev, Ethan Gold,
and Paul Blaer. AVENUE: Automated site modeling in urban environments. In

Proceedings of 3rd Conference on Digital Imaging and Modeling in Quebec City,

Canada, pages 357-364, May 2001.

[Antone and Teller, 2000a] Matthew Antone and Seth Teller. Automatic recovery
of camera positions in urban scenes. Technical Report MIT LCS TR-814, Labo-

ratory for Computer Science, MIT, December 2000.

[Antone and Teller, 2000b] Matthew Antone and Seth Teller. Automatic recovery
of relative camera rotations for urban scenes. In IFEE Computer Society Con-

ference on Computer Vision and Pattern Recognition, pages 1:282-289, 2000.

[Aono et al., 1998] Toshihiro Aono, Kenjiro Fujii, Shintaro Hatsumoto, and

Takayuki Kamiya. Positioning of vehicle on undulating ground using GPS and

153

dead reckoning. In Proceedings of IEEE International Conference on Robotics

and Automation in Leuven, Belgium, pages 3443-3448, 1998.

[Arkin, 1987] Ronald Arkin. Motor schema based navigation for a mobile robot:
An approach to programming by behavior. In Proceedings of IEEE International
Conference on Robotics and Automation in Raleigh, North Carolina, volume 2,

pages 264271, 1987.

[Bar-Shalom, 1987] Yaakov Bar-Shalom. Tracking and Data Association. Academic

Press, 1987.

[Basri et al., 1999] Ronen Basri, Ehud Rivlin, and Ilan Shimshoni. Image-based
robot navigation under the perspective model. In Proceedings of IEEE Inter-

national Conference on Robotics and Automation in Detroit, Michigan, pages

2578-2583, 1999.

[Borenstein and Feng, 1995] Johann Borenstein and Ligiang Feng. Correction of
systematic odometry errors in mobile robots. In IR0OS°95, Pittsburgh, Pennsyl-

vania, pages 569-574, August 1995.

[Borenstein and Feng, 1996a] Johann Borenstein and Ligiang Feng. Gyrodometry:
A new method for combining data from gyros and odometry in mobile robots.
In Proceedings of IEEE International Conference on Robotics and Automation

i Minneapolis, Minnesota, pages 423-428, 1996.

[Borenstein and Feng, 1996b] Johann Borenstein and Liqiang Feng. Nawigating

Mobile Robots: Systems and Techniques. A. K. Peters, 1996.

154

[Bozorg et al., 1998] Mohammad Bozorg, Eduardo Nebot, and Hugh Durrant-
Whyte. A decentralised navigation architecture. In Proceedings of IEEE In-

ternational Conference on Robotics and Automation in Leuven, Belgium, pages

3413-3418, 1998.

[Brooks, 1986] Rodney Brooks. A robust layered control system for a mobile robot.

Journal of Robotics and Automation, 2(1):14-23, March 1986.

[Brown and Hwang, 1997] Robert Brown and Patrick Hwang. Introduction to ran-

dom signals and applied Kalman filtering. John Wiley & Sons, 3rd edition, 1997.

[Castellanos and Tardos, 1999] Jose Castellanos and Juan Tardos. Mobile Robot
Localization and Map Building: A Multisensor Fusion Approach. Kluwer Aca-
demic Publishers, 1999.

[Castellanos et al., 1998] J. A. Castellanos, J. M. Martinez, J. Neira, and J. D.
Tardos. Simultaneous map building and localization for mobile robots: A mul-
tisensor fusion approach. In Proceedings of IEEE International Conference on

Robotics and Automation in Leuven, Belgium, pages 1244-1249, 1998.

[Chen and Shibasaki, 1999] Tienen Chen and R. Shibasaki. High precision nav-
igation for 3-D mobile GIS in urban area by integrating GPS, gyro and im-

age sequence analysis. In Proceedings of the International Workshop on Urban

3D /Multi-media Mapping, Tokyo, Japan, pages 147-156, 1999.

[Cooper and Durrant-Whyte, 1994] S. Cooper and H. F. Durrant-Whyte. A

Kalman filter model for GPS navigation of land vehicles. In Proceedings of IEEE

155

International Conference on Robotics and Automation in San Diego, California,

pages 157-163, 1994.

[Cox, 1988] I. J. Cox. Blanche: An autonomous robot vehicle for structured en-
vironments. In Proceedings of IEEE International Conference on Robotics and

Automation in Philadelphia, Pennsylvania, pages 978-982, 1988.

[Crowley, 1985] James L. Crowley. Navigation for an intelligent mobile robot. In

Journal of Robotics and Automation, pages 31-41, 1985.

[Dellaert et al., 1999] Frank Dellaert, Dieter Fox, Wolfram Burgard, and Sebastian
Thrun. Monte Carlo localization for mobile robots. In Proceedings of IEEE In-

ternational Conference on Robotics and Automation in Detroit, Michigan, pages

1322-1328, 1999.

[Dissanayake et al., 1999] Gamini Dissanayake, Salah Sukkarieh, Eduardo Nebot,
and Hugh Durrant-Whyte. A new algorithm for the alignment of inertial mea-
surement unit without external observation for land vehicle applications. In

Proceedings of IEEE International Conference on Robotics and Automation in

Detroit, Michigan, pages 2274-2279, 1999.
[D’Souza, 1988] A. Frank D’Souza. Design of Control Systems. Prentice-Hall, 1988.

[Durrant-Whyte et al., 1999] Hugh Durrant-Whyte, Gamini Dissanayake, and Pe-
ter Gibbens. Toward deployment of large scale simultaneous localization and
map building (SLAM) systems. In Proceedings of International Simposium on

Robotics Research in Salt Lake City, Utah, pages 121-127, 19909.

[Dyson, 2002] Dyson. http://www.dyson.co.uk, 2002.

156

[Eureka, 2001] The Eureka Company.

http://www.eureka.com/whatsnew/robotvacupdate.htm, 2001.

[Everett, 1995] H. R. Everett. Sensors for Mobile Robots: Theory and Application.

A. K. Peters, Wellesley, Massachusetts, 1995.

[Fischler and Bolles, 1980] M.A. Fischler and R.C. Bolles. Random sample con-
sensus: A paradigm for model fitting with applications to image analysis and

automated cartography. In DARPA, pages 71-88, 1980.

[Fuke and Krotkov, 1996] Yasutaka Fuke and Eric Krotkov. Dead reckoning for a
lunar rover on uneven terrain. In Proceedings of IEEFE International Conference

on Robotics and Automation in Minneapolis, Minnesota, pages 411-416, 1996.

[Gold, 2001] Ethan Gold. AvenueUI: A comprehensive visualization /teleoperation
application and development framework for multiple mobile robots. Master’s

thesis, Columbia University, Department of Computer Science, 2001.

[Gueorguiev et al., 2000] Atanas Gueorguiev, Peter K. Allen, Ethan Gold, and
Paul Blaer. Design, control and architecture of a mobile site-modeling robot.

In Proceedings of IEEE International Conference on Robotics and Automation

in San Francisco, California, pages 3266-3271, 2000.

[Hofman-Wellenhof et al., 2001] Bernhard Hofman-Wellenhof, Herbert Lichteneg-
ger, and James Collins. Global Positioning System, Theory and Practice.

Springer-Verlag, Wien, 5th edition, 2001.

[Horn, 1986] Berthold Klaus Paul Horn. Robot Vision. The MIT Press, Cambridge,

Massachusetts, 1986.

157

[Horn, 1990] Berthold Klaus Paul Horn. Relative orientation. International Journal

of Computer Vision, 4(1):59-78, 1990.

[Kortenkamp et al., 1998] David Kortenkamp, R. Peter Bonasso, and Robin Mur-
phy, editors. Artificial Intelligence and Mobile Robots: Case Studies of Successful

Robot Systems. AAAI Press / The MIT Press, 1998.

[Kosaka and Kak, 1992] A. Kosaka and A. C. Kak. Fast vision-guided mobile
robot navigation using model-based reasoning and prediction of uncertainties.
Computer Vision, Graphics, and Image Processing — Image Understanding,

56(3):271-329, 1992.

[Kotani et al., 1998] S. Kotani, K. Kaneko, T. Shinoda, and H. Mori. Mobile robot
navigation based on vision and DGPS information. In Proceedings of IEEE
International Conference on Robotics and Automation in Leuven, Belgium, pages

2524-2529, 1998.

[Krose and Bunschoten, 1999] B. J. A. Krose and R. Bunschoten. Probabilistic
localization by appearance models and active vision. In Proceedings of IEEFE In-

ternational Conference on Robotics and Automation in Detroit, Michigan, pages

2255-2260, 1999.

[Kumar and Hanson, 1994] Rakesh Kumar and Allen R. Hanson. Robust methods
for estimating pose and a sensitivity analysis. Computer Vision Graphics and

Image Processing, 60(3):313-342, November 1994.

[Leonard and Feder, 1999] John Leonard and Hans Jacob S. Feder. A computa-

tionally efficient method for large-scale concurrent mapping and localization. In

158

Proceedings of International Stmposium on Robotics Research in Salt Lake City,

Utah, pages 128-135, 1999.

[Levitt et al., 1987] Tod Levitt, Daryl Lawton, David Chelberg, and Philip Nel-
son. Qualitative navigation. In Proceedings of DARPA Image Understanding

Workshop, pages 447-465, 1987.

[Lin and Tummala, 1997] Cheng-Chih Lin and R. Lal Tummala. Mobile robot nav-
igation using artificial landmarks. Journal of Robotics Systems, 14(2):93-106,
1997.

[Maeyama et al., 1996] Shoichi Maeyama, Nobuyuki Ishikawa, and Shinichi Yuta.
Rule-based filtering and fusion of odometry and gyroscope for a fail-safe dead
reckoning system of a mobile robot. In IEEE/SICE/RSJ International Confer-
ence on Multisensor Fusion and Integration for Intelligent Systems, pages 541—

548, 1996.

[Maybeck, 1982a] Peter Maybeck. Stochastic Models, Estimation and Control, vol-
ume 141-2 of Mathematics in Science and Engineering. Academic Press, New

York, 1982.

[Maybeck, 1982b] Peter Maybeck. Stochastic Models, Estimation and Control, vol-
ume 141-3 of Mathematics in Science and Engineering. Academic Press, New

York, 1982.

[Mobility, 1999] Real World Interface. Mobility 1.1: Robot Integration Software,
User’s Guide, 1999.

159

[Moravec, 1983] Hans Moravec. The Stanford cart and the CMU rover. Proceedings

of IEEE, 71:872-884, July 1983.

[Nayak, 2000] Rakesh Nayak. Reliable and continuous urban navigation using mul-
tiple GPS antennas and a low cost IMU. Master’s thesis, Department of Geo-

matics Engineering, University of Calgary, Canada, 2000.

[Nayar et al., 1994] Shree K. Nayar, Hiroshi Murase, and Sameer Nene. Learning,
positioning, and tracking visual appearance. In Proceedings of IEEE Interna-
tional Conference on Robotics and Automation in San Diego, California, pages

3237-3246, 1994.

[Neira et al., 1999] Jose Neira, Juan Tardos, Joachim Horn, and Gunther Schmidt.
Fusing range and intensity images for mobile robot localization. IEEE Transac-

tions on Robotics and Automation, 15(1):76-84, February 1999.

[Nilsson, 1984] Nils Nilsson. Shakey the robot. Technical Report 323, SRI Al

Center, April 1984.

[Park and Kender, 1995] Il-Pyung Park and John Kender. Topological direction-
giving and visual navigation in large environments. Artificial Intelligence, 78:355—

399, 1995.

[Press et al., 1992] William H. Press, Saul A. Teukolsky, William T. Vetterling,
and Brian P. Flannery. Numerical Recipes in C. Cambridge University Press,

2nd edition, 1992.

[Robomower, 2000] Friendly Robotics. http://www.friendlyrobotics.com, 2000.

160

[Roumeliotis et al., 1999] Stergios I. Roumeliotis, Gaurav S. Sukhatme, and
George A. Bakey. Circumventing dynamic modeling: Evaluation of the error-
state Kalman Filter applied to mobile robot localization. In Proceedings of
IEEFE International Conference on Robotics and Automation in Detroit, Michi-

gan, pages 1656-1663, 1999.

[Roy and Thrun, 1999] Nicholas Roy and Sebastian Thrun. Online self-calibration
for mobile robots. In Proceedings of IEEFE International Conference on Robotics

and Automation in Detroit, Michigan, pages 2292-2297, 1999.

[Schilling, 1990] Robert Schilling. Fundamentals of Robotics: Analysis and Control.

Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

[Schleppe, 1996] John Schleppe. Development of a real-time attitude system using
a quaternion parametrization and non-dedicated GPS receivers. Master’s thesis,

Department of Geomatics Engineering, University of Calgary, Canada, 1996.

[Sim and Dudek, 1998] Robert Sim and Gregory Dudek. Mobile robot localization
from learned landmarks. In Proceedings of IEEE/RSJ International Conference

on Intelligent Robots and Systems in Victoria, BC, Canada, October 1998.

[Simmons, 1994] Reid Simmons. Structured control for autonomous robots. IEEE

Transactions on Robotics and Automation, 10(1):34-43, February 1994.

[Stamos and Allen, 2000] Ioannis Stamos and Peter K. Allen. Integration of range
and image sensing for photorealistic 3D modeling. In Proceedings of IEEE Inter-
national Conference on Robotics and Automation in San Francisco, California,

pages 11:1435-1440, 2000.

161

[Stamos, 2001] Ioannis Stamos. Geometry and Texture Recovery of Scenes of Large
Scale: Integration of Range and Intensity Sensing. PhD thesis, Columbia Uni-

versity, New York, 2001.

[Sukkarieh et al., 1998] S. Sukkarieh, E. Nebot, and H. F. Durrant-Whyte. Achiev-
ing integrity in an INS/GPS navigation loop for autonomous land vehicle ap-
plications. In Proceedings of IEEE International Conference on Robotics and

Automation in Leuven, Belgium, pages 34373442, 1998.

[Taylor and Kriegman, 1995] Camillo J. Taylor and David J. Kriegman. Structure
and motion from line segments in multiple images. IEEFE Transactions on Pattern

Analysis and Machine Intelligence, 17(11):1021-1033, November 1995.

[Taylor and Kriegman, 1998] Camillo J. Taylor and David J. Kriegman. Vision-
based motion planning and exploration algorithms for mobile robots. IEEFE

Transactions on Robotics and Automation, 14(3):417-427, June 1998.

[Taylor et al., 1996] Camillo J. Taylor, Paul E. Devebec, and Jitendra Malik. Re-
constructing polyhedral models of architectural scenes from photographs. In

Proceedings of the European Conference on Computer Vision, pages 659668,

May 1996.

[Thorpe, 1990] Charles E. Thorpe, editor. Vision and Navigation: The Carnegie
Mellon Navlab. Kluwer Academic Publishers, 1990.

[Thrun et al., 1998] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. A prob-
abilistic approach to concurrent mapping and localization for mobile robots. Au-

tonomous Robots, 5:253-271, 1998.

162

[Thrun et al., 1999] Sebastian Thrun, Maren Bennewitz, Wolfram Burgard, Armin
Cremers, Frank Dellaert, and Dieter Fox. MINERVA: A second-generation mu-
seum tour-guide robot. In Proceedings of IEEE International Conference on

Robotics and Automation in Detroit, Michigan, pages 1999-2005, 1999.

[Thrun, 1998] Sebastian Thrun. Finding landmarks for mobile robot navigation.
In Proceedings of IEEE International Conference on Robotics and Automation

in Leuven, Belgium, pages 958-963, 1998.

[Tsai, 1987] Roger Y. Tsai. A versatile camera calibration technique for high-
accuracy 3-D machine vision metrology using off-the-shelf TV cameras and lenses.

Journal of Robotics and Automation, RA-3(4):323-344, 1987.

[von der Hardt et al., 1996] Hans-Joachim von der Hardt, Didier Wolf, and Rene
Husson. The dead reckoning localization system of the wheeled mobile robot
ROMANE. In IEEE/SICE/RSJ International Conference on Multisensor Fusion

and Integration for Intelligent Systems, pages 603-610, 1996.

[Zheng and Tsuji, 1992] Jiang Yu Zheng and Saburo Tsuji. Panoramic representa-
tion for route recognition by a mobile robot. International Journal of Computer

Vision, 9(1):55-76, 1992.

