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Abstract

In this paper, we present a framework for cell ma-
nipulation tasks with visual servoing micromanip-
ulation strategies. A wvision based micropositioner
is designed in order to address the requirement of
high precision needed to perform manipulation of ob-
jects under 100 um in size. The system calibration
(microscope-camera-micropositioner) and the model
of the observed scene are not known. Experimental
results for micropositoning tasks with respect to pro-
tein cells are presented and demonstrate the validity
of the proposed approach.

1 Introduction

Crystallized proteins are an important source for re-
search in the biological sciences. They can be used
in light-scattering experiments, growth-rate mea-
surements, calorimetry, and the evaluation of new
crystallisation techniques and reagents, all of which
contribute to a deeper understanding of molecular
structure. This will impact a number of fields, in-
cluding the emerging structural genomics field [12],
structure-directed drug design [14], and the newly
developed screening by X-ray crystallography [11], as
well as small molecule applications. Protein crystals
are utilized for downstream processing and purifica-
tion in the industrial production of enzymes, they are
involved in pharmaceutical formulation, and they are
often useful in various other areas of biophysical ex-
perimentation. The development of strategies and
devices for automated and fast manipulation of pro-
tein crystals can greatly improve the throughput in
molecular research by reducing from hours to sec-
onds the time for manipulation of crystals.

This work is aimed at using computer vision to pro-
vide the compliance and the robustness which pre-
cise protein manipulation requires without the need
for extensive analysis of the physics of grasping or a
detailed knowledge of the environment. One of the
major advances in robotics over the last 20 years is
the visual control of robotic manipulators [7]. The
advent of fast and inexpensive digital imaging tech-

nology has allowed camera systems to be integrated
as part of a closed loop feedback control system [1].
Visual servoing strategies had been successfully im-
plemented at the microscale level for manipulation of
known micro-electromechanical systems [10, 3] with
calibrated devices (however in these papers the CAD
models of the proteins crystals and the system cal-
ibration are not known). Vision can provide rich
knowledge about the spatial arrangement of objects
to be manipulate as well as knowledge about the
means of manipulation, which in our case are the in-
struments needed to perform protein manipulation.
Our goal is to visually monitor and control these in-
struments as they isolate and acquires proteins. For
tasks such as cell or protein manipulation, this idea
of visual feedback control becomes extremely impor-
tant. Classical strategies of manipulation will not
work at these scales (objects under 100 pm in size)
due to the required precision (beyond the calibra-
tion range of conventional industrial precision de-
vices) and additional problems relating to microscale
phenomena. Currently, the mechanics of microma-
nipulation is poorly understood, and thus results of
sensorless micromanipulation strategies are unpre-
dictable. In this paper, we propose an integrated
control system, consisting of a high resolution opti-
cal microscope, digital imaging system, image based
servo-controllers and micromanipulator that will be
able to precisely position a grasping loop with re-
spect to a protein.

The remainder of this paper is organized as follows:
In Section 1, we briefly describe our set-up and the
optics model. The task to be achieved is presented
in section 2. Section 3 presents methods to track the
mobile loop observed by a static camera. Section
4 presents the visual servoing framework for posi-
tioning the loop with respect to protein crystals. In
section 5, we present the experimental results.

2 Set-up and Optics model

In this section, after a short description of our work-
station, we describe the optics model used to design
our control scheme.
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Figure 1: (a) Workstation for protein crystals manipulation, (b) Grasping loop for protein crystals, (c)

protein crystals

2.1 Set-up

Our workstation (see Figure 1(a)) is centered around
a Sutter MP-285 micropositioner platform with inde-
pendent X, Y and Z motions. This positioner allows
submicron resolution down to 40 nanometers. A loop
(see Figure 1(b)) is mounted directly on the robot Z-
axis. The loop is especially designed to grasp protein
crystals (see Figure 1(c)). The loop and the protein
crystals are observed through an Olympus SZX12
optical microscope. The microscope provides a to-
tal magnification from 8.4x to 108x. The unit has
a CCD camera module adapter onto which a Sony
XC-77 CCD camera is mounted.

2.2 Optics modeling

In our experiments, we are using a long working
distance microscope SZX12 by Olympus with an
infinity-focused objective. A simplified ray diagram
for a such typical optical microscope is shown in Fig-
ure 2. The rays emanating from a given point are
parallel between the objective and the tube lens. The
parallel rays are focused onto the image plane by the
tube lens. The total linear magnification « is given
by : 5
t
=7 @
where fy is the focal length of the tube lens and f, the
focal length of the objective. With our microscope,
the focal length of the tube lens is adjustable so that
the magnification varies from 8.4 to 108. A point
M with coordinates M = [X Y Z]7 in the objective
focal plane is projected in the image focal plane onto
a point m of coordinates m = [z y]T with :

M =am (2)
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Figure 2: Simplified ray diagram for an infinitly
focused optical microscope

tasks require high magnification of the observed ob-
jects. High magnification optical systems have a very
small depth of field. This limited depth of field can
be exploited to measure depth from the camera using
techniques of depth-from-focus/defocus. For high
numerical aperture systems the depth of field D is
given by [8] :

An n
b= 242 " TaA
where n is refractive index of the optics, A is the
numerical aperture of the optics, A the wavelength
of incident light and « the total magnification given
by (1). This equation means that a point with Z
coordinate such that f, + fo +1 - D < Z < fi +
fo + 1+ D appears as a blurred point in the image
plane (I denoting the distance between the objective
plane and the image plane). Since D is very small
compared to f = f; + f, + [, an object in perfect
focus is situated at a distance f of the image plane.
When the observed object is moved out of focus such
that the Z position of the object is Z = f + dZ
then a point belonging to the object is projected in
the image plane into a disk of diameter db (blurred



image) with [8, 4] :
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If the blur is measured using a global focus measure
in the image as the Tenengrad measure T}, we as-
sume that :

dT,. = ~vdb (4)

where v is a scaling factor and dT, is the variation
of the focus measure when the Z position of the ob-
ject is moved from f to f + dZ. This assumption
means that the blur measure varies as the diameter
of the disk resulting from the projection in the image
plane of the defocused points. This property will be
exploited to control the Z axis of our manipulator.

3 Task description

In our system, the camera mounted on the micro-
scope objective observes the protein crystals and the
mobile loop mounted on the three degrees of freedom
micropositioner (eye-to-hand configuration). Let F.
and F, be respectively a frame attached to the fixed
camera and a frame attached to the robot (see Fig-
ure 3). The Z-axis of the camera frame and of the
robot control frame are parallel. Our goal is to align
the center of gravity of the loop (more precisely of
the loop hole) M with coordinates M, = [X. Y, Z.]T
in F. and the center of an isolated protein M* with
coordinates X} = [X? Y Z*]T in F.. The protein is
assumed motionless and in-focus. Three degrees of
freedom must be controlled, we need thus to extract
at least three independent measures from the image.
Since the protein is assumed in focus, Z, = Z} when
the loop is also in-focus. As, we will see in the se-
quel, the Z-axis can thus be controlled using a focus
measure 7;. in the image.

Let x = [zy]T (resp. x* = [z*y*]T) be the coordi-
nates in the image plane of the center of gravity of the
loop (resp. of the protein). The robot motion along
the X and Y axis will be controlled by minimizing
the distance in the image space between x and x*.
The positioning task can thus be achieved by first
minimizing a focus measure and then by minimizing
an error in the image space. To control the X and
Y axis of the micropositioner we have to track the
center of gravity of the loop in a complex scene. In
the next section, we describe our tracking strategy.

4 Tracking the grasping loop

To track the center of gravity of the grasping loop,
a motion detection is first realized. Since only the
loop is in motion this step eliminates the complex
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Figure 3: Workstation frames

background. Let I; (resp. I;_g:) be the luminance
function at time ¢ (resp. t—dt), and define the func-
tion :

Foy) = O

(u,v)EV (2,y)

|It—dt(uvv) - It(ua U)| (5)

where V(z,y) is a N x N neighbor of the point (z,y).
The binary image of temporal variations at time ¢ is
defined by :

1 if Fz,y) > A

I}(z,y) = (6)
0 else

where A is a chosen scalar defining the sensibility
of the motion detector. We obtain thus a binary
image I} containing the loop at time ¢t —dt and t (see
Figure 4(d)). In order to obtain a binary image with
only the loop at time ¢, the binary image of temporal
variations I? (see Figure 4(c)) between a reference
image (for example the image at the initial time)
and the image at time ¢ is computed and the logical
operator AND is applied between I} and I'. The
resulting image I%, contains only the loop at time ¢
(see Figure 4(e)). To eliminate potential small gaps
in the binary image I?, due to poor motion detection,
we apply a closing morphological filter (see Figure
4(f)). Once again, since only the loop is moving, this
step eliminates the background. The image is thus
simplified in such a way that the center of gravity of
the loop can easily be tracked by simply tracking the
white points x; of the hole loop with x = % >/ =1 x;,
where n is the number of white points.

5 Eye-to-hand Visual servoing with a
microscope

Visual servoing is classified into two main approaches
[15, 6, 7]. The first one [16, 9], based on the com-
putation of a 3-D Cartesian error, requires a perfect
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Figure 4: (a) Reference image, (b) image in which
the grasping loop has to be detected, (c) image I?,
(d) image I?, (e) image I?,, (f) final image

CAD-model of the object and a calibrated camera
to obtain unbiased pose estimation. In the second
approach, the pose estimation is omitted and the
control loop is directly closed in the image space.
That ensures local convergence and stability in pres-
ence of modeling errors and noise perturbations [2].
In our case, the models of the observed targets are
unknown and the system is not calibrated, we thus
use the image-based approach. Central to this ap-
proach is the image jacobian L (also called interac-
tion matrix). It relates the differential motion ds
of some image features s to the differential motion
in the camera coordinates dP: ds = LdP. In our
application, the camera observes the robot to be con-
trolled; such configuration is known as eye-to-hand
systems [5] by opposition to the more classical eye-
in-hand configuration where the camera is mounted
on the robot effector and observes the object to be
manipulated. In the eye-to-hand case, the image ja-
cobian has to take into account the mapping from
the camera frame F, onto the robot control frame
Fr. If we note [R,t] this mapping (R being the
rotational matrix and t the translation vector), the
eye-to-hand jacobian L; is related to the eye-in-hand
one L by (for the general case of a 6-DOF motion):

R -R[-RTt],

where [-RTt], is the skew symmetric matrix asso-
ciated with vector —RTt.

The first step of our control strategy is to bring the
loop in focus. To realize the control along the Z-
axis, the small depth of field of the microscope can
be used. Since the target (i.e the proteins crystals)
is assumed in focus, the positioning of the microma-
nipulator along Z can be done by moving along the
Z axis until a measure of focus in the image is max-
imized. We chose as focus measure the Tenengrad
measure T;.. Tenengrad is a measure of thresholded
gradient magnitude [13]:
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It can be proved that the best focused image is ob-
tained at the global maximum of the focus mea-
sure T, if the threshold is zero [13]. We thus use
the Tenengrad measure with e = 0. Combining the
Equations (3) and (4), and differentiating the result-
ing equation lead to :

°V, =TT,

where ' = 27%, and °V, is the Z control expressed
in the camera frame. Noting that the Z axis of the
camera frame F, and of the robot control frame F,
have been defined parallel and in the same direction,
we have also :

"V, =TT, (9)

where "V, is the Z control expressed in the robot
control frame. We want to maximize 7, by moving
the robot in the Z direction. One simple way to
realize the maximisation of T} is to control the Z
motion using (9). The norm of I' can be fixed as
a gain of a proportional control law and the sign of
I" ensuring the maximisation of 7, can be obtained
off-line by observing the effect of the robot Z motion
on T,. After that the loop is focused, the X and
Y motions have to be controlled in order to align
the center of gravity of the loop and the center of a
protein crystal.

Since we are only interested in a 3-DOF motion, the
interaction matrix of a single point is a 2 x 3 matrix.
Differentiating equation (2), the eye-in-hand image
jacobian relationship for a single image feature point
is :

T V;
. T a 0 0 *
*= [ J ] - [ ] Vy = nyz vayz
] 0 a O Va
(10)

where L,,. denotes the eye in hand interaction ma-
trix and “Vy,, the control vector expressed in the



camera frame. The previous equation can obviously
be simplified as follow :

. a 0 Ve | _ ¢
[0 0% ] ~teve

where L, and ¢V, are respectively the reduced eye-
in-hand interaction matrix and the reduced control
vector expressed in the camera frame. Noticing once
again that the Z-axis of the camera frame and of the
control frame are parallel in the same direction, and
combining the equation (7) and (11), the eye-to-hand
jacobian relationship for a single feature point is :

T ‘/'m

X = LoyRay [ Vy

:| = Lta:y Tsz (12)
where L,y = aR,, is the eye to hand interaction
matrix and R, is a 2 x 2 rotation matrix that maps
the reduced control vector expressed in the camera
frame °V,,, and the reduced control vector expressed
in the robot control frame "Vy. A suitable control
law to make the error vector e = x — x* decrease
exponentially (i.e, € = —fe) to 0 is given by :

"V = —BLE (x — x*) (13)

tzy

Where x* is the desired position in the image space of
the center of gravity of the loop, Lty is the estimated
image jacobian and 3 is a proportional gain. In order
to chose a suitable estimation of the image jacobian,
we can study the stability domain of the control law
(13). Tt is well known that the control law (13) is
asymptotically stable if Lwyff{y is positive. We have
thus to study the positiveness of the eigenvalues of
LioyLi,, (= LigyLy,, in this case):

=~ a ~
LizyLe, = ERWRM} (14)

where & and f{zy are estimated values of g and Rey.
According to (14), the eigenvalues of Ly, L, are the
real part of the eigenvalues of %Rzyf{;yl which are
(%ew, %e_w) where 6§ is the angle of the rotation
Rwyﬁ;yl. This means that if & is chosen as a positive

scalar, the system is locally asymptotically stable, for
any rotation axis, if :

e ™

5 < 0 < >
Judging from this stability study, we can easily fix
L., = &R to a constant value while ensuring the con-
vergence of control. For our application, & is fixed to
the value given by the manufacturer. The estimated
rotation matrix R;, is fixed as the closest rotation
matrix to %f;gy where fgy is the interaction ma-
trix numerizally computed off-line by observing the
repercussion of the robot motion in the image space.

6 Experimental results

The proposed methods have been tested on our es-
perimental platform (see Figure 1). The specified
visual task consists in a positioning task of the grasp-
ing loop with respect to a crystal protein. First, the
focus of the grasping loop is performed. The initial
defocused image is given in Figure 5(a) and the in
focus image is illustrated by the Figure 5(b). The
tenengrad measure is given by the Figure 5(c). Af-
ter that the focusing task was achieved the grasping
loop is visually guided to its desired position. The
images corresponding to the desired and final config-
urations are given in Figures 6(a) and 6(b) respec-
tively (the initial and desired position of the center of
gravity of the grasping loop are represented by white
disks). The figure 6(c) gives the error on the coor-
dinates of the center of gravity of the grasping loop
between its current and its desired location in the
image. The convergence of the coordinates to their
desired value demonstrates the correct realization of
the task. The final errors on the coordinates is less
than 1 pixel that corresponds to an positionning ac-
curacy beyond 10~ !um The computed control law is
given in Figure 6(d).

Figure 5: Focusing the loop: (a) defocused im-
age, (b) focused image, (c) Tenengrad measure ver-
sus time
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Figure 6: (a) initial image, (b) final image, (c)
control vector (um/s), (d) error in the image space
(pizel versus time)

7 Conclusion

The development of visually guided strategies ap-
plied to high resolution optical systems show promise
in overcoming a technology barrier to the automated
micromanipulation of biological cell. In this paper,
we have investigated and experimentally validated
the use of uncalibrated visual servoing techniques to
position a loop mounted on a micromanipulator with
respect to a protein crystal observed by a camera
mounted on an optical microscope. The experimen-
tal results show that the visual feedback can provide
the required precision to achieve the fixed task. This
work is the first step on the design of an integrated
system that will be able to visually isolate individual
proteins in a culture, to move customs instruments
to contact the isolated proteins, to grasp the proteins
and transport them for further processing.
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