
FairTorrent: Bringing Fairness to Peer-to-Peer Systems

Alex Sherman
Dept. of Computer Science

Columbia University
1214 Amsterdam Ave MC0401

New York, NY 10027
asherman@cs.columbia.edu

Jason Nieh
Dept. of Computer Science

Columbia University
1214 Amsterdam Ave MC0401

New York, NY 10027
nieh@cs.columbia.edu

Clifford Stein
Dept. of IEOR

Columbia University
500 West 120th St. MC4704

New York, NY 10027
cliff@ieor.columbia.edu

ABSTRACT
Peer-to-Peer file-sharing applications suffer from a funda-
mental problem of unfairness. Free-riders cause slower down-
load times for others by contributing little or no upload
bandwidth while consuming much download bandwidth. Pre-
vious attempts to address this fair bandwidth allocation
problem suffer from slow peer discovery, inaccurate pre-
dictions of neighboring peers’ bandwidth allocations, un-
derutilization of bandwidth, and complex parameter tuning.
We present FairTorrent, a new deficit-based distributed al-
gorithm that accurately rewards peers in accordance with
their contribution. A FairTorrent peer simply uploads the
next data block to a peer to whom it owes the most data as
measured by a deficit counter. FairTorrent is resilient to ex-
ploitation by free-riders and strategic peers, is simple to im-
plement, requires no bandwidth over-allocation, no predic-
tion of peers’ rates, no centralized control, and no parameter
tuning. We implemented FairTorrent in a BitTorrent client
without modifications to the BitTorrent protocol, and eval-
uated its performance against other widely-used BitTorrent
clients. Our results show that FairTorrent provides up to two
orders of magnitude better fairness, up to five times better
download times for contributing peers, and 60% to 100%
better performance on average in live BitTorrent swarms.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols-Applications; C.2.4 [Computer-Communication
Networks]: Distributed Systems-Distributed Applications

General Terms
Algorithms, Design, Experimentation, Measurement, Per-
formance

Keywords
Peer-to-Peer, Fairness, BitTorrent, File-sharing, Free-riding

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’09, December 1–4, 2009, Rome, Italy.
Copyright 2009 ACM 978-1-60558-636-6/09/12 ...$10.00.

1. INTRODUCTION
Peer-to-Peer (P2P) file-sharing is a popular, cheap and ef-

fective way to distribute content. However, P2P file-sharing
applications suffer from a fundamental problem of unfair-
ness. Many users free-ride by contributing little or no upload
bandwidth while consuming much download bandwidth. By
taking an unfair share of resources, free-riders cause slower
download times for contributing peers. If a P2P system
could guarantee fair bandwidth allocation, where by fair-
ness we mean that a peer receives bandwidth equal to what
it contributes, the system would be able to guarantee a cer-
tain level of performance for contributing peers.

Fair bandwidth allocation in P2P systems can be difficult
to achieve for several reasons. First, no central entity con-
trols and arbitrates access to all resources, unlike scheduling
fair allocation of bandwidth for a router [7, 3, 26]. Second,
the amount of bandwidth resources available is not known in
advance and peers cannot be relied upon to specify their own
resources honestly. Finally, strategic peers and free-riders
may try to take advantage of the system by contributing
little or no bandwidth, while consuming others’ resources.

Many approaches have attempted to address the problem
of fair bandwidth exchange. The most common approach
is the tit-for-tat (TFT) heuristic employed by the popular
file-sharing system BitTorrent [6]. TFT splits a peer’s up-
load bandwidth equally among a subset of neighboring peers
for a time duration called a round, then adjusts this subset
each round based on estimates of their bandwidth rates from
the previous round. Block-based TFT [5, 29, 11], used by
BitTyrant [21] peers among one another, attempts to im-
prove on TFT by augmenting TFT with hard limits on the
amount of data one peer can owe another. PropShare [14]
also attempts to improve on TFT by using the Proportional
Response algorithm [32] to split the peer’s upload bandwidth
in proportion to the contribution received from its neighbors
in the previous round. All of these approaches are rate-based
and suffer from a fundamental flaw. First, they require long
round durations to estimate bandwidth contribution of the
neighboring peers, and waste much bandwidth each round
before discovering other contributing peers. Second, they
assume that a peer’s allocation measured in a given round
is an accurate estimate of the future contribution from that
peer. In practice, this assumption is problematic as each
peer can change its allocation or even stop uploading to a
given peer. This results in significant problems with existing
approaches, including unfairness, exploitation by strategic
clients [18, 21, 27], bandwidth underutilization [5, 11], ad-
hoc parameter tuning requirements, and poor performance.

We present FairTorrent, a new deficit-based distributed
P2P algorithm that solves the problem of fair bandwidth
exchange in the presence of free-riders and strategic peers.
FairTorrent accurately rewards peers in accordance with their
contribution. It runs locally at each peer and maintains a
deficit counter for each neighbor which represents the differ-
ence between bytes sent and bytes received from that neigh-
bor. When it is ready to upload a data block, it sends the
block to the peer with the lowest deficit. Unlike other ap-
proaches, FairTorrent uses a completely different mechanism
that does not require an estimate of neighboring peers’ rate
allocation. Therefore, it does not require rounds for dis-
covering favorable peer sets, and does not waste bandwidth
by over-allocating its bandwidth in a round. Intuitively, by
selecting the destination of the next block to go to the neigh-
bor with the smallest deficit, FairTorrent always rewards the
peer to whom it “owes” the most data, or a peer who recip-
rocates at the highest rate. FairTorrent results in very fast
rate convergence, a high degree of fairness, and thus better
performance for high-contributing peers. Our analysis for
various scenarios shows that FairTorrent peers in a n-node
network contribute at most O(logn) more data blocks than
what they receive from other peers.

FairTorrent provides several key advantages over other ap-
proaches: (1) It provides fair bandwidth allocation, operat-
ing only at individual peers, in a distributed manner that
does not require any centralized control of peers or other
P2P resources. (2) It is provably resilient to free riders and
other strategic clients. (3) It allows a peer to maximize its
upload capacity utilization. (4) It avoids long peer discovery
and reaches a fast rate convergence; i.e. it quickly obtains
a bandwidth reciprocation rate from its neighbors equal to
its own contribution. (5) It does not need to estimate and
predict peers’ allocations, allocate precise upload or down-
load rates for any peers, or rely on advanced knowledge of
available bandwidth of other peers. (6) It has no magic pa-
rameters, requires no tuning, and is simple to implement.
A FairTorrent client requires no changes to the BitTorrent
protocol, making it compatible and easy to use with existing
BitTorrent clients.

We implemented FairTorrent inside a BitTorrent client
and compared its fairness and performance against four other
widely used open-source BitTorrent implementations: the
original BitTorrent Python client by Bram Cohen [6], the
popular Azureus Java BitTorrent client [2], the PropShare [14]
client, and the strategic BitTyrant [21] client. Our results
show that FairTorrent outperforms all other clients across a
wide range of different client bandwidth distributions, static
and dynamic scenarios, as well as in live swarms. For peers
with widely different bandwidths across a uniform distribu-
tion, FairTorrent provides more than an order of magnitude
better fairness and up to 50% faster download performance.
For a high bandwidth uploader in the presence of many low
contributors, FairTorrent can provide two orders of magni-
tude better fairness and up to five times faster download
performance. For a distribution based on live BitTorrent
networks, FairTorrent can provide two orders of magnitude
better fairness and more than two times faster download
performance. In a network dominated by Azureus clients,
the most popular client today, FairTorrent can improve con-
tributing peers’ download times 50% more than BitTyrant
or PropShare. In live swarms, FairTorrent outperforms all
other clients by 60% to 100% on average. We further demon-

strate that performance in live swarms is highly dependent
on the limit on the number of connections for a peer. Pre-
vious work on BitTyrant [21] and PropShare [14] do not
account for this properly by using an order of magnitude
higher connection limit when comparing against Azureus,
resulting in overstated performance improvements.

2. BACKGROUND AND RELATED WORK
BitTorrent [6] employs a rate-based tit-for-tat (TFT) heuris-

tic to incentivize peers to upload and attempt to provide fair
exchange of bandwidth between peers. Peers participating
in the download of the same target file form a swarm. The
target file is conceptually broken up into pieces, typically
256 KB. Peers tell one another which pieces of the target
file they already have and request missing pieces from one
another. Requests are typically made for 16 KB sub-pieces.
Peers that already have the entire file are seeds. Peers that
are still downloading pieces of the file are leechers. TFT is
used in a swarm to enable fair bandwidth exchange during
the current download of a file. It operates by having each
BitTorrent client upload to N other peers in a round-robin
fashion, where N − k of the peers have provided the best
download rate during the most recent 10 to 20 second time
period, and k peers are randomly selected to help discover
other peers with similar upload rates. N is typically be-
tween 4 and 10, and k is typically 1 or 2. Thus, the active
set of peers that a client uploads to is updated each round
based on the measurements of their download rates. Bit-
Torrent refers to the selection and deselection of a peer for
uploading as unchoking and choking, respectively.

Because of its popularity, much work has been done in
studying BitTorrent’s behavior. BitTorrent peers tend to ex-
change data with other peers with similar upload rates over
a large file download [13]. Under some bandwidth distribu-
tions, the system has been shown to eventually converge to
a Nash equilibrium [24]. However, there is no evidence that
this behavior extends to shorter file downloads, dynamic en-
vironments, skewed distributions of users, or modified but
compatible BitTorrent clients. In fact, several modified Bit-
Torrent clients [18, 27, 21] have been developed which ex-
ploit different strategies to achieve better performance at
the expense of users running unmodified BitTorrent. For
example, BitTyrant [21] exploits the fact that BitTorrent
will reciprocate at a higher rate even when receiving much
smaller bandwidth from BitTyrant in return.

The previous studies demonstrate that BitTorrent’s TFT
heuristic does not result in fair bandwidth exchange. Be-
cause TFT only identifies and exchanges data with a small
number of peers at a time, a BitTorrent client may waste
much time and bandwidth while discovering peers with simi-
lar upload rates in a large network [21]. Further waste occurs
because relationships with discovered peers may be unstable,
as the other peers are also always searching for better peers.
Even after discovering peers with good upload rates, BitTor-
rent continues to blindly donate a portion of bandwidth by
randomly uploading to other peers in hopes of reciprocation.

Block-based TFT [5] (BB-TFT) attempts to improve on
BitTorrent by changing TFT to allow a client to upload to a
larger set of neighbors at the same time, but stopping the up-
load to a peer once its deficit, the difference between what it
uploaded to the peer and what it downloads from that peer,
exceeds a certain threshold. While FairTorrent and BB-TFT
appear similar in that both use peerwise deficits, their us-

age of deficits is fundamentally different. FairTorrent uses
deficits to decide deterministically where to send the next
data block. By sending the next block to a peer to whom
FairTorrent “owes” the most data, it always acts to minimize
unfairness and thereby converges quickly to fair bandwidth
exchange with its peers. BB-TFT uses deficits only to im-
pose a threshold, but still uses TFT for scheduling. Merely
stopping one peer from uploading to another when a thresh-
old is reached does not by itself help peers reach fair rate
reciprocation. The hard threshold causes underutilization of
the peers’ upload capacities [5], as high-uploading peers may
stop uploading to other peers once they reach the limit. To
compensate, a tracker could attempt to match peers with
similar bandwidth by trusting peers to report their capaci-
ties honestly [5]. This is problematic in practice as peers
could game the system by lying about their bandwidth.
While a limited simuluation study shows that BB-TFT can
improve the fairness of BitTorrent [5], another study shows
that BB-TFT has poor performance and bandwidth utiliza-
tion compared to BitTorrent [11]. Our experiments with
BitTyrant [21] peers, which use BB-TFT when exchanging
data with each other, also show that BitTyrant clients do
not receive a fair exchange rate and suffer from underuti-
lization. SWIFT [29] augments BB-TFT with a heuristic to
have peers donate a small fraction of their bandwidth, but it
is not clear how to tune their highly-parametrized algorithm
in a realistic deployment scenario.

PropShare [14] attempts to achieve fair bandwidth allo-
cation by implementing the Proportional Response algo-
rithm [32] on top of the Azureus client. Using the algo-
rithm, a peer splits its upload rate to its neighbors for a
given round in proportion to the contributions received from
them in the previous round. Under simplistic assumptions,
the theoretical work in [32] shows that the algorithm con-
verges to a market equilibrium, and a peer receives fair re-
ciprocation after O(logn) rounds, in a n-node network. The
algorithm assumes that each peer can accurately estimate
all of its neighbors’ upload rate allocations towards it in
each round; peers require these estimates to readjust their
own allocations correctly in the next round. This assump-
tion is problematic in practice. Very long rounds would be
required to allow each peer to exchange enough data with
all of its neighbors to obtain estimates. However, estimates
over long rounds would be of limited usefulness for deter-
mining allocations under dynamic conditions that occur in
practice. Propshare attempts to address this problem by
estimating allocations over four exponentially-weighted 10-
second rounds. Because peers’ allocations change and Prop-
Share uploads to and estimates rates of only a small subset
of neighbors in each round, PropShare fails to create an ac-
curate view of the current rate allocations of a larger neigh-
borhood. Moreover, the peerwise convergence process is of-
ten interrupted and reset because PropShare clients divert
20% of their bandwidth in each round to explore new peers,
much like BitTorrent. Our experimental results show that
PropShare demonstrates poor rate convergence and does not
reward contributing peers fairly. In contrast, FairTorrent’s
new deficit-based approach does not need to explicitly set
upload rates and avoids the pitfalls associated with having
to estimate peers’ changing rate allocations, dealing with
insufficient and ad-hoc round durations, and needing to ex-
plore a peer’s entire neighborhood. It may be possible to
tune PropShare to use very small blocks in order to help

it explore a larger neighborhood faster, as required by [32].
However, using small blocks would significantly increase the
overhead associated with BitTorrent and IP protocols.

Some work has explored tradeoffs between performance
and fairness in BitTorrent. Based on the assumption that
leechers leave the system upon completion of download, one
model proposes to optimize average performance by lower-
ing the download rate for high uploaders to keep them in
the system longer [9]. However, in practice, many leechers
already remain in BitTorrent systems as seeds [22]. Fur-
thermore, other work suggests that fairness does not need
to come at the expense of performance [30].

Other approaches have explored different aspects of im-
proving fairness in non-BitTorrent P2P systems. Reputation-
based systems [12, 17, 4] maintain reputation metrics for
each peer to make it easier for reputable peers to find one
another. Such systems suffer from problems with bootstrap-
ping and collusion [25], where malicious peers can hype one
another’s reputation. Even if a perfect reputation metric can
be established, such systems do not provide a mechanism for
translating reputation into a highly-fair bandwidth-sharing
service. BAR [1], BAR Gossip [16], and FlightPath [15] pro-
pose to stem out selfish users by relying on signed proof-of-
misbehavior messages. BAR relies on agreement by a quo-
rum of nodes to punish a misbehaving peer, and thus suffers
from collusion attacks. BAR Gossip and FlightPath are only
applicable when the data broadcaster has the authority to
evict a node, typically not the case in P2P networks.

Credit-based systems [31, 19, 10, 28] use virtual credit
to incentivize fair exchange of services among peers in P2P
systems. They typically require significant overhead as well
as trusted third party agents to maintain credit values and
verify the services provided. Unile FairTorrent, credit-based
systems, including eMule [8], which maintains peerwise cred-
its, are not designed to provide finer granularity fairness
during the current download of a file. Credit is typically
maintained over many file downloads over many days. Per-
formance for the current download of a file depends more on
prior credit accumulation by all of the participants, and not
the current willingness of a peer to contribute bandwidth.

The problem of fair bandwidth allocation has perhaps
been most extensively studied in the context of schedul-
ing packets through a router [7, 20, 3, 26]. Given a set
of flows with associated service weights, the problem is how
to schedule packets to allocate bandwidth in proportion to
the respective weights. While there are some similarities be-
tween the packet scheduling problem and the problem that
FairTorrent addresses, the key difference is that in the lat-
ter case, peers have no explicit or assigned weights. Weights
in packet scheduling correspond roughly to upload rates in
P2P systems, but these rates are not assigned or known in
advance. The resulting challenge in P2P systems is how to
provide fair bandwidth exchange given that the upload rates
are not known, change dynamically, and can be difficult to
estimate. While deficits have been used for packet schedul-
ing [26], FairTorrent uses a completely different algorithm
to solve a fundamentally different distributed problem.

3. FAIRTORRENT ALGORITHM
FairTorrent implements a fully distributed algorithm that

provides fair data exchange, without any global allocation
or management service beyond what is already provided by
BitTorrent. A FairTorrent client uploads a data block to the

peer it “owes” the most data and automatically converges
to the individual reciprocation rates of its peers, without
measuring or predicting these rates. For compatibility with
BitTorrent, FairTorrent uses the same BitTorrent protocol,
torrent files, and tracker service. We also borrow the termi-
nology from BitTorrent, including seeds and leechers.

3.1 Leecher Behavior
We first describe the basic algorithm run by the leechers.

Let Sentij be the total number of bytes that a leecher Li has
sent to a leecher Lj , and Recvij be the total number of bytes
that Li has received from Lj . Each Li maintains a deficit
variable DFij for each Lj , where DFij = Sentij − Recvij .
Thus, a positive (negative) deficit implies that Li uploaded
more (fewer) bytes to Lj than it downloaded from Lj . Ini-
tially, each DFij = 0. The values DFij are maintained in
sorted order by Li in a list called SortedPeerList. When
Li is ready to send the next data block, it chooses to send
that block to the peer with the smallest DFij .

Procedure 1 shows the FairTorrent operation RecvBlock
executed by Li when it receives a block from some peer Lj .
RecvBlock checks that peer Lj is a leecher. Subroutine
ValidBlock is used to check the MD5 hash of the block.
Just like BitTorrent, FairTorrent obtains the list of the MD5
hashes of all the blocks from the torrent metafile that it
downloads prior to the download of the actual content file. If
peer Lj is a leecher, and the block is valid, FairTorrent incre-
ments Recvij and decrements DFij by the number of bytes
received from Lj , and re-inserts Lj into the SortedPeerList
sorted from lowest to highest deficit values DFij .

Procedure 1 RecvBlock(peer j, data block p)

if IsLeecher(j) and V alidBlock(p) then
Recvij ← Recvij + size(p)
DFij ← DFij − size(p)
SortedPeerList.ReInsert(j)

end if

Procedure 2 shows the FairTorrent operation SendBlock
executed by Li when it is ready to send some data to its
peers. Just like BitTorrent, up to B bytes are sent, where B
is based on the peer’s upload capacity µi bytes/s. µi is typ-
ically set by the user to limit consumption of bandwidth ca-
pacity. SendBlock tries to pick a leecher with the the low-
est possible value of DFij and send a block, or finish send-
ing a block, to that leecher. It examines the SortedPeerList
starting at the lowest index, which contains the peer Lj with
the lowest DFij . If currently Li has no pending request from
Lj , (i.e. it has no useful data to send to Lj), or the connec-
tion is not writable, (i.e. there is no room in the TCP socket
buffer), then the procedure examines the next peer on the
list, with the next lowest deficit. SendBlock assumes the
existence of several subroutines. HPRF(j), or HavePend-
ingRequestFrom(j), returns true if there is a pending re-
quest from peer Lj . CWT(j), or CanWriteTo(j), returns
true if there is room in Lj ’s buffer to send a block. Bytes-
RemainsToSend(j) returns the number of bytes remaining
to send Lj from the current block being sent to Lj .

Once it selects a peer Lj to whom it can send data, Fair-
Torrent tries to send a block, or finish sending remaining
bytes of a block to Lj . The procedure can send a maximum
of B bytes and the actual number of bytes remaining of the
current block. FairTorrent uses blocks of size block size =

16 KB for simplicity, given the default 16 KB request size
used by almost all BitTorrent-compatible clients. The sub-
routine SEND is used to write the actual bytes. SEND re-
turns the number of actual bytes written, and decrements
B, the bytes still available for further writes. If a block
is fully sent to Lj , i.e. BytesRemainsToSend(j)== 0,
then FairTorrent increments DFij with the size of the block
sent, block size, and re-inserts Lj into the SortedPeerList.
SortedPeerListmaintains peers in the order of non-decreasing
deficit values, and breaks ties based on the peer’s local ran-
dom ordering of neighbors.

Procedure 2 SendBlock(allowed bytes B)

n← 0; sz ← Size(SortedPeerList)
while (B > 0) and (n < sz) do
j ← SortedPeerList[n]
while !(HPRF(j) and CWT(j)) do
n← n+ 1; j ← SortedPeerList[n]

end while
if (n < sz) then
use bytes = max(B, BytesRemainsToSend(j))
bytes written←Send(j, use bytes)
B ← B − bytes written
if BytesRemainsToSend(j) == 0 then
Sentij ← Sentij + block size;
DFij ← DFij + block size;
SortedPeerList.ReInsert(j)

end if
n← n+ 1;

end if
end while

As SendBlock is the most important procedure in Fair-
Torrent, we illustrate its behavior with an example of three
leechers in Figure 1. For simplicity, the example assumes
leechers always have data to send to one another, expresses
values in blocks rather than bytes, uses equal-size blocks,
and breaks deficit ties by having each peer order its neigh-
bors from lowest to highest peer ID. Leechers L1, L2 and
L3 have upload capacities of µ1 = 3, µ2 = 2 and µ3 = 2
blocks/s, respectively. Thus, L1 sends a block every 1/3 of
a second, L2 and L3 send blocks every 1/2 of a second. All
peers send their first block at time 0.000. Figure 1 shows
all the clock times at which at least one of the peers sends
a block. Each peer keeps track of its deficit variables, DFij ,
shown underneath each peer at each clock time. Arrows
show the source and the destination of each block. At time
0.000, all the DFij = 0. Thus, L1 sends to L2. L2 and L3

each send a block to L1. When L1 sends a block to L2, it
sets DF12 = 1. Before time 0.333, it will have received a
block from L2 and will have decremented DF12 back to 0.
Thus, at time 0.333 DF12 = 0. Since it receives a block from
L3 before time 0.333, it will set DF13 = −1. At time 0.333,
L1 will send its next block. Using procedure SendBlock,
L1 will pick L3 as the peer to send the block to, because it
has lower deficit: DF13 < DF12. L1 sends a block to L3

and increments DF13 to 0. Figure 1 shows the process until
time 2.000. In these 2 seconds, each peer sent the maximum
number of blocks limited by its capacity and received the
same number of blocks from its neighbors. At time 2.000,
the system reverts to the same state as at time 0.000. Over
a long time period, the same behavior will repeat every 2
seconds and all deficit values will remain between −1 and 1.

Time: L1 (u1=3)

DF12= 0 DF13= 0 DF21= 0 DF23= 0 DF31= 0 DF32= 00.000

DF12= 0 DF13= -1 DF21= 0 DF23= 0 DF31= 1 DF32= 00.333

DF12= 0 DF13= 0 DF21= 0 DF23= 0 DF31= 0 DF32= 00.500

DF12= -1 DF13= -1 DF21= 1 DF23= 0 DF31= 1 DF32= 00.667

DF12= 0 DF13= -1 DF21= 0 DF23= 0 DF31= 1 DF32= 01.000

DF12= -1 DF13= 0 DF21= 1 DF23= -1 DF31= 0 DF32= 11.333

DF12= 0 DF13= 0 DF21= 0 DF23= -1 DF31= 0 DF32= 11.500

DF12= 0 DF13= -1 DF21= 0 DF23= 0 DF31= 1 DF32= 0
1.667

2.000
DF12= 0 DF13= 0 DF21= 0 DF23= 0 DF31= 0 DF32= 0

L2 (u2=2) L3 (u3=2)

Figure 1: FairTorrent algorithm for leechers L1, L2

and L3 with upload capacities of 3, 2 and 2.

L
1

L
3

L
2

1.5

1.5 1.5

1.5

0.5

0.5

L
1

L
2

1.5

1 1

1.5

1

1

L
3

Figure 2: Peers L1, L2 and L3 with upload capacities
3, 2, and 2. Bandwidth allocated under FairTorrent
(left) vs Equal-Split (right).

In a distributed fashion without knowing the neighbors’
capacities, FairTorrent achieved a convergence between each
pair of nodes, and convergence between the total upload ver-
sus download rate for each peer. Counting the arrows be-
tween each pair of peers that indicate the number of blocks
sent in the two second cycle, we see that L3 and L2 ex-
changed 3 blocks each with L1 (or 1.5 blocks/s) and they
exchanged 1 block with each other (or 0.5 blocks/s). Figure
2 (Left) shows the resulting bandwidth allocation provided
by FairTorrent for this example.

Consider the same example using the equal-split rate of
the original BitTorrent. The equal-split heuristic results in
each peer splitting its capacity evenly among its neighbors,
as in Figure 2 (Right). Unlike FairTorrent which quickly
reaches convergence, the rates diverge when using the equal-
split heuristic. L1 pushes 1.5 blocks/s to each neighbor,
but receives only 1 block/s in return from each, resulting in
unfair service as the deficits with each peer will grow.

Consider the same example using PropShare. Each peer
begins in round one by sending at equal-split rate, then ad-
justs its rate proportionally to the exponentially weighted
rate received in the recent four rounds. L2 and L3 send to
L1 at a rate of 1, 1.2, 1.28, and 1.314, in each of the first four
ten-second rounds, respectively. While FairTorrent reaches
convergence and 0 deficit in 2 seconds, after 40 seconds using
PropShare, L1 will have accumulated a deficit of at least 12
blocks and will still not have converged even in this minia-
ture example. In a larger network, as the active sets, the
neighbors each peer uploads to, are changing, PropShare
may take longer to converge or even diverge.

3.2 Seed Behavior
Since seeds in a swarm do not download from peers in

that swarm, using deficits to allocate bandwidth from a seed
among leechers is of limited utility. FairTorrent allocates
seed bandwidth to be split evenly among leechers by simply
sending blocks in a round-robin fashion.

In other clients, such as Azureus a seed typically uploads
only to a few peers in each round, resulting in very skewed
allocation of seed bandwidth. In addition to splitting the
seed bandwidth more evenly, the round-robin approach al-
lows FairTorrent seeds to disseminate blocks to more leech-
ers, and thus increase the likelihood that a leecher has blocks
to trade with its neighbors.

3.3 Exchanging Data
Unchoking Peers. By default, FairTorrent establishes

TCP connections with 50 neighbors. We chose this default
to be the same as Azureus for a more fair comparison with
the most popular client. According to the BitTorrent proto-
col, Li must unchoke Lj to upload to Lj . An unchoke mes-
sage lets Lj know that it can send requests for data blocks
until a choke message is received. Azureus and BitTorrent
unchoke only a few peers at a time. The reason for this
is that it forces higher uploading peers to push at a higher
rate to each unchoked peer. This method allows higher up-
loading peers to measure each other’s rates and discover one
another in a swarm over time. Unfortunately, even if this
discovery eventually succeeds, low uploading peers can also
detect high uploading peers and leech off their bandwidth.

In contrast, a FairTorrent leecher unchokes each neighbor
interested in its data. FairTorrent does not rely on Bit-
Torrent’s discovery method via selective unchoking to find
“like-uploading” peers. Instead, a FairTorrent leecher Li is
able to exchange data at diverse rates with different peers.
Therefore, Li only needs to explore a small subset of peers
as long as their combined reciprocation to Li equals µi.

Reaching Rate Convergence. Li begins by moving
along its randomly ordered list of peers and sends a block to
each Lj that requests data, and increments DFij . If some
Lj reciprocates, DFij is reset, and Li will send the next
block to Lj before moving further down its list. As soon as
it receives reciprocations at a rate of µi, Li does not need
to send blocks further down the list as it has reached rate
convergence, or, in other words, it obtained a download rate
from other leechers that equals its own upload rate. Our
evaluation and analytical results show that FairTorrent is
able to obtain a very fast rate convergence, since it only
needs to explore a small subset of its neighbors.

PropShare is also able to split its upload rate unevenly to
reward its neighbors according to their contributions. How-
ever, there are two main distinguishing characteristics that
allow FairTorrent to reach a much faster rate convergence
than PropShare. First, FairTorrent does not rely on esti-
mating its peers’ rate allocations towards it, as it does not
need to explicitly set upload rates. By sending a block to
the peer with the smallest deficit, or to whom it owes the
most data, FairTorrent implicitly sends blocks faster to a
peer from which it observes a faster rate. Because rate allo-
cations change dynamically, and PropShare can only accu-
rately estimate rates of several peers in each round, it fails
to create an up to date view of its neighbors’ rates, and
ends up splitting its own rate incorrectly as a result. Sec-
ond, the Proportional Response algorithm that PropShare

tries to emulate requires that a peer estimate the rates of
all of its neighbors in each round. This requires PropShare
to explore a large neighborhood of peers. FairTorrent, on
the other hand, only needs to explore a small subset of its
neighbors. As long as it is sending blocks to a set of neigh-
bors whose reciprocation rate to Li equals µi, it does not
need to explore peers beyond this subset.

Thus, FairTorrent avoids the pitfalls associated with hav-
ing to estimate peers’ changing rate allocations, dealing with
insufficient round durations, and having to explore a large
neighborhood. We show in our evaluation that FairTorrent
peers reach rate convergence much faster and more precisely
than other clients.

Data Availability. FairTorrent leverages BitTorrent’s
rarest-first policy when requesting a block from a leecher or
a seed. It always asks for a least commonly available block
among its neighbors. This policy makes it highly likely that
a peer always obtains a block missing among some of its
neighbors, and thus, it is able to trade [24]. The intuition,
is that once a peer obtains a rare block it can send it to many
neighbors in exchange for distinct blocks. Also, procedure
SendBlock does not require a peer to always have a block
to send to each neighbor. If Li temporarily has nothing to
send to a peer with the smallest deficit, it can skip that peer
and send to the next peer on the list.

Bootstrapping. When a new peer joins the system it
needs to obtain a block to start trading. The fact that Fair-
Torrent seeds send blocks in a round-robin to their 50 leech-
ers, rather than sending to only several leechers over a 10
second round as does BitTorrent, allows a new peer to ob-
tain a block faster. It may be useful to extend FairTorrent
to allow a seed to maintain even more than 50 connections.
It may also be useful to allow a leecher to send a block to
a new peer with a very small probability. These changes
would increase the probability that a new peer obtains a
block quickly. In our experiments under various scenarios,
we did not find these extensions necessary.

4. FAIRTORRENT PROPERTIES
FairTorrent guarantees a high degree of fairness, fast con-

vergence between a leecher’s upload rate and its download
rate from other leechers, and resilience to strategic peers.
The theoretical analysis of these properties is beyond the
scope of this paper, but we give a brief theoretical intu-
ition behind these properties. In addition, FairTorrent in-
curs low overhead. The most expensive step in a FairTor-
rent implementation is the re-insertion of a peer inside the
SortedPeerList, a step that runs in O(logn).

4.1 Fairness and Service Error
To measure fairness, we borrow the terminology of service

error from the scheduling literature [3, 26, 7]. Service error
measures the difference between the optimal fair share and
the actual service received by a schedulable entity. In the
context of P2P, we use service error to measure the max-
imum difference between the number of bytes a peer has
contributed and received from other leechers at any time
during a download session. The smaller the absolute max-
imum service error experienced by any leecher, the higher
the fairness of the algorithm. We separate out the maximum
positive service error: E+

max = maxi

P
j DFij , and the max-

imum negative service error: E−max = maxi

P
j −DFij . For

regular users, whose objective is to download as fast as pos-
sible, it is more interesting to consider the bound on E+

max,
which bounds the bytes unreciprocated by other peers. The
bound on E−max is also interesting as it bounds the maximum
number of bytes that a free-rider can obtain.

For n-node network, for a wide range of upload rate distri-
butions, and under a simplifying assumption that users al-
ways have data to exchange, we can prove that a peer in Fair-
Torrent never incurs E+

max or E−max of more than O(logn)
data blocks with high probability. In this paper, we focus
on empirical results and give only a brief proof sketch of one
theorem which bounds the service error.

Theorem 1. In an n-node FairTorrent network, where
upload rates are selected uniformly at random from the range
[0, r], and for an experiment lasting up to O(nk1) rounds, for
some positive constants k1, k2, c,

Pr[E+
max, E

−
max > c logn] < nk1e−k2n,

where a round constitutes a time interval long enough for
at least one peer to send a packet.

Proof Sketch: We first show that in just O(1) rounds the sys-
tem reaches a convergent state, where half the total upload
capacity is used to reciprocate “owed” blocks, and thus, the
total number of “owed” blocks, L, does not grow. Moreover,
we show that L = O(n) with probability at least 1− e−k2n.
In such a a state, on expectation, a single node owes just
O(1) blocks. Applying Chernoff Bounds, we show that no
peer owes or is owed more than O(logn) blocks with high
probability. Applying a simple union bound we show that
the state persists over O(nk1) rounds with probability at
least 1− nk1e−k2n

4.2 Fast Convergence and High Utilization
Fast convergence follows directly from the bounds on the

service error. Since a leecher Li never contributes more than
O(logn) blocks than what it receives, as soon as the peer
sends a block to O(logn) peers, it will start to obtain full
reciprocation. Thus, the maximum time to reach full recip-
rocation is the time it takes a peer to send O(logn) blocks.

FairTorrent, by definition, has high utilization because the
algorithm deterministically tells the peer to send a block as
long as it has a peer to send the block to. Because of the
bounds on E+

max, a peer that wants to download faster has
an incentive to upload up to capacity and be assured that
its downloaded data will lag by at most O(logn) blocks.

4.3 Resilience to Strategic Peers
Resilience to strategic peers can also be deduced from the

bounds on the service error. Regardless of the strategy, even
a peer that uploads nothing will receive at most O(logn) free
blocks without contribution.

Generic Strategy. There is an additional intuition for
the resilience to a generic strategy that comes from the def-
inition of FairTorrent. In FairTorrent each strategic peer Li

competes with every peer Lj for the bandwidth of a peer
Lk. More formally, as long as DFkj < DFki, Lk will always
prefer to send a block to Lj before it sends a block to Li.
Thus, regardless of any generic upload behavior chosen by
Li, as long as it has reciprocated less to Lk than Lj has, it
will always lose the contest for L′ks bandwidth to Lj .

Whitewashing. A whitewasher is a peer that free-rides,
then leaves and reenters the system with a new identity and

zero deficit to try to clear its debt. Whitewashing is a dif-
ficult problem for any P2P system. FairTorrent does offer
some protection against whitewashing, as each time a free-
riding peer enters the system, it will be limited in the number
of free blocks that it can get from other leechers, O(1) on
expectation and O(logn) in the worst-case for many capac-
ity distributions. One way to discourage multiple reentries
in FairTorrent would be for the seeds to allocate less band-
width to new peers, making it uneconomical for the leechers
to leave and reenter.

5. EXPERIMENTAL RESULTS
We implemented FairTorrent (FT) in both the original

BitTorrent Python client, which implements the documented
version of the BitTorrent protocol, and in the popular Azureus
Java client. Each implementation was only a couple hun-
dred lines of code, demonstrating that FairTorrent is sim-
ple to implement. We ran experiments on PlanetLab [23]
to compare FairTorrent in a realistic wide-area network en-
vironment against four other BitTorrent implementations:
(1) original BitTorrent 3.9.1 (BT), the code base used for
our FairTorrent Python implementation, (2) Azureus 3.0.4.2
(AZ), the code base used for our FairTorrent Java imple-
mentation, (3) PropShare 1.1.1 (PS), the latest PropShare
version available, and (4) BitTyrant 1.1.1 (TY) which acts
strategically towards non-BitTyrant clients and uses block-
based TFT with other BitTyrant peers. To measure fairness
and performance, each client logged its instantaneous max-
imum positive and negative service error (E+

max , E−max),
bytes uploaded and download from each peer, and its down-
load completion time.

We present results for four sets of experiments: (1) clients
with upload capacities across a uniform distribution which
begin downloading simultaneously and remain as seeds in
the system upon download completions, (2) a high con-
tributing peer participating in a swarm with low contrib-
utors and free-riders, all of which begin downloading simul-
taneously and remain as seeds in the system upon down-
load completions, (3) clients with upload capacities based
on a distribution from live BitTorrent networks which join
the system asynchronously and leave upon download com-
pletion, and (4) live BitTorrent swarms. A 32 MB target
file was used for all experiments except for the live BitTor-
rent swarms. The file size corresponds roughly to a short
movie/music video, but was also small enough to allow us
to run a large number of experiments on a consistent set
of PlanetLab nodes despite PlanetLab instabilities. Unless
otherwise indicated, all clients were configured with their
respective default number of simultaneous connections, 50
for Azureus and FairTorrent, up to 80 for BitTorrent, and
500 for PropShare and BitTyrant. Except for the live Bit-
Torrent swarms, FairTorrent Java client and Python client
results were similar, so only the Python client results are
shown due to space constraints.

5.1 Uniform Distribution
The uniform distribution represents a wide range of peers

with diverse upload capacities participating in a swarm. We
used a network of 50 leechers and 10 seeds. A small seed
to leecher ratio, 1:5, was used to show that the results do
not depend on high data availability; the average ratio in
live BitTorrent swarms is 1:1 [22]. All nodes were config-
ured with download bandwidth capacities of 100 KB/s and

upload bandwidth capacities of no more than 50 KB/s, re-
flecting a typical scenario where most ISPs allow users a
download rate at least twice their allowed upload rate. Each
leecher received an upload capacity randomly selected be-
tween 1 and 50 KB/s. Seeds were configured with upload
bandwidth capacities of 25 KB/s each, chosen to match the
average upload bandwidth capacity of a leecher.

We ran five experiments with five different sets of upload
capacities generated randomly from the respective distribu-
tion, resulting in 250 leecher measurements. To first show
the fairness and performance of each client in isolation, we
ran the same set of experiments for a homogeneous network
of each client. Since PropShare turns off“seeding”capability
by default, we changed this default to allow its clients to seed
to enable PropShare to work in a homogeneous network.

Figures 3 to 12 captioned with a prefix U show the uniform
distribution results. Figures 3 to 7 show the average upload
rate versus the average download rate from other leechers
experienced by each leecher during its download. A refer-
ence line y = x is also shown. for the ideal case, in which
the download rate should equal the upload rate. Figure 3
shows that FairTorrent closely matches each peer’s upload
rate with the average download rate from other leechers.
Figures 4 to 7 show that BitTorrent, Azureus, PropShare,
and BitTyrant are unable to match each peer’s upload rate
with the average download rate from other leechers. Higher
contributing peers in Azureus deviate more than lower con-
tributing peers from their ideal fair allocation. Even worse,
higher contributing peers in BitTorrent, and even more so in
PropShare and BitTyrant, are likely to receive a download
rate far below their contribution, while lower contributing
peers receive a higher level of service than their contribution.
Unlike FairTorrent, these systems are limited by their round-
based rate allocation, where it may take many rounds for a
high-contributing peer to find a more favorable set of peers
to exchange data with. Previous claims that block-based
TFT improves fairness versus BitTorrent were based on an
unrealistic simulation-only study limited to 3 classes of up-
load capacities, where even high-uploaders can quickly dis-
cover like-uploading peers [5]. Using real peers in a real net-
work, Figure 7 instead shows that block-based TFT as used
in BitTyrant results in the worst overall fairness and worst
performance for higher contributing peers, which suffer from
underutilization due to hard limits on peerwise deficits. In
contrast, Figure 3 shows that all higher contributing peers
in FairTorrent are resilient to low contributing peers and are
able to obtain a matching leecher download rate.

Figures 8 to 9 show how quickly peers obtain rate con-
vergence. They plot a CDF for each system which demon-
strates how quickly a fraction of peers converges to a down-
load rate of at least 90% of their upload capacity, e.g., how
quickly does a 50 KB/s peer begins to get at least 45 KB/s
rate from other leechers. Figure 8 shows rate convergence
for high-uploading peers, those with capacities of 40 to 50
KB/s. 100% of high-uploading peers in FairTorrent reach
this convergence, as compared to 59%, 78%, 16% , and 62%
for BitTorrent, Azureus, PropShare, and BitTyrant, respec-
tively. Moreover, all the high-uploading peers in FairTorrent
reach convergence within 15 seconds from the start of the
experiments, demonstrating FairTorrent’s fast convergence
property. In other systems, it takes at least 800 seconds for
the highest fraction of peers to reach convergence. Prop-
Share has the worst rate convergence of all systems because

it fails to estimate neighbors’ rate allocations accurately as
it exchanges data only with a subset of peers in each round.
In addition, as each peer in Azureus updates its active set of
peers to which it uploads, the convergence process between
peers is often interrupted and reset.

Figure 9 shows rate convergence for all peers. Including
free-riders and low contributors, 85%, 73%, 76%, 72%, and
71% of peers reach rate convergence in FairTorrent, BitTor-
rent, Azureus, PropShare, and BitTyrant, respectively. For
some low-contributing peers, the BitTorrent protocol over-
head represents more than 10%, reducing the effective data
upload rate to be below 90% of capacity, and thus they do
not reach the 90% convergence even in FairTorrent. How-
ever, Figure 3 shows that even low contributing peers in
FairTorrent obtain a matching effective download rate. Fair-
Torrent not only has the highest fraction of peers that reach
convergence, but also has an order of magnitude faster con-
vergence than other systems, which take over 900 seconds
for the highest fraction of leechers to converge.

Figure 10 shows the maximum positive service error E+
max

and maximum negative service error E−max for each of the
four networks. For example, FT+ and FT− denote E+

max

and E−max for FairTorrent. A range of percentiles is shown for
each network, starting with the 50th percentile, the median
maximum service error across all leechers for a network, and
up to the 100th percentile, the worst maximum service er-
ror. FairTorrent has one to two orders of magnitude smaller
error than all other systems. The median FairTorrent E+

max

was just 79 KB. The maximum FairTorrent E+
max was 436

KB, meaning that during the entire download of the file, no
FT leecher gives more than 436 KB of service than what it
receives from other leechers. This is 18 to 73 times smaller
than the maximum E+

max of other networks. The maximum
E+

max for Azureus and BT was over 8 MB, more than 25% of
the entire 32 MB file. E+

max for PropShare reached 19 MB,
or 60% of the file. E+

max for TY reached 31 MB, or almost
100% of the file. PropShare, which tries to provide propor-
tional allocation using rate estimates, has the worst fairness
of all systems other than BitTyrant. In contrast, FairTorrent
provides significantly better fairness than all other clients,
which results in fast rate convergence and performance more
correlated with a peer’s contribution.

Figure 11 shows the average and maximum download times
for the peers in each network. For each network, the left bar,
labeled with letter “H”, shows download times for the high-
uploading leechers, those with 40 to 50 KB/s capacities, and
the right bar shows download times for all leechers. For the
high-uploading leechers, the average download times were
690, 733, 745, 1027 and 963 seconds for FairTorrent, BitTor-
rent, Azureus, PropShare, and BitTyrant, respectively. The
worst download times for the high-uploaders were 756, 876,
980, 1200, and 1298 seconds for FairTorrent, BitTorrent,
Azureus, PropShare, and BitTyrant, respectively. Because
of faster rate convergence and tighter maximum deficit, the
FairTorrent high-uploading peers receive a more fair recip-
rocation for their contribution.

One might think that the better performance for high-
contributing FairTorrent peers comes at the expense of the
low-contributing ones. This is not the case. Figure 11 shows
the worst download times were 1347, 1892, 1849, 1758, and
2266 seconds for FairTorrent, BitTorrent, Azureus, Prop-
Share, and BitTyrant, respectively, with FairTorrent 31%
to 68% faster. There are several reasons that FairTorrent

performance for lower contributors does not suffer. First,
FairTorrent guarantees a certain level of performance to each
leecher. Each leecher receives a matching leecher download
rate plus a constant fraction of the seed bandwidth. Thus,
a leecher does not get stuck because of unlucky initial peer
selection, slow download times, or poor seed allocation. Sec-
ond, FairTorrent has higher bandwidth utilization.

The aggregate bandwidth utilization was 95.3%, 93.7%,
89.8%, 88.7% and 82.8% for FairTorrent, BitTorrent, Azureus,
PropShare and BitTyrant, respectively. Part of the under-
utilization was the BitTorrent protocol overhead which ac-
counts for roughly 3% for each system. FairTorrent obtains
better utilization for two reasons: (1) FairTorrent does not
set an arbitrary constraints such as BitTyrant’s block-based
TFT. (2) As long as there is a request from any neighbor
FairTorrent will upload a block, making it less likely that a
leecher runs out of blocks to send to its active set of peers.

Figure 12 shows the standard deviation in download rate
observed by each leecher, as measured over consecutive 15
second intervals. Data points representing FairTorrent are
captured by the lowest layer on the graph, clearly separated
from the rest. The average standard deviations in leecher
download rates were 1.8 KB/s, 6.0 KB/s, 8.0 KB/s, 6.7
KB/s and 12.3 KB/s for FairTorrent, BitTorrent, Azureus,
PropShare, and BitTyrant, respectively, with FairTorrent’s
standard deviation more than 3 times smaller than the next
closest system. Because of its fast and more precise rate
converegence, FairTorrent is able to maintain a download
rate close to its upload contribution throughout the down-
load. The low standard deviation makes FairTorrent more
amenable for use in P2P live streaming systems, where achiev-
ing and maintaing a steady download rate of stream updates
is critical for good performance.

5.2 Skewed Distribution
To show what happens when a peer is surrounded by oth-

ers that do not contribute much, we ran a single high up-
loader in a swarm of many low-contributing peers. We ran
the same experiments with the same network of leechers and
seeds as in Section 5.1, but with a skewed distribution of up-
load capacities. The high uploader received an upload ca-
pacity of 50 KB/s, and the 49 low contributors received ran-
domly selected upload capacities between 1 and 5 KB/s. In
addition to running experiments for homogeneous networks,
we ran the same experiments for non-FairTorrent networks
in which the high uploader was replaced by a FairTorrent
client to show how FairTorrent performs in the presence of
low contributors that are not FairTorrent clients. These re-
sults are denoted by FT/BT, FT/AZ, FT/PS, and FT/TY
for the respective BitTorrent, Azureus, PropShare, and Bit-
Tyrant networks.

Figures 13 to 14 captioned with a prefix S show the skewed
distribution results. Figure 13 shows the maximum and the
average download times for each network, with the left bar,
labeled with letter “H”, for the high-uploader, and the right
bar for the entire set of peers. The high uploader in Fair-
Torrent completed its download in 644 seconds on average,
3 to 5 times faster than the high uploader in BitTorrent,
Azureus, PropShare or BitTyrant. This is because the Fair-
Torrent high uploader achieved an averaged download rate
of 47.9 KB/s that closely matched its average upload rate
of 48.3 KB/s. When FairTorrent replaced the high uploader
in other systems, it significantly improves download times.

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

D
ow

nl
oa

d
R

at
e

(K
B

/s
)

Upload Rate (KB/s)
Figure 3: U: FairTorrent fairness

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

D
ow

nl
oa

d
R

at
e

(K
B

/s
)

Upload Rate (KB/s)
Figure 4: U: BitTorrent fairness

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

D
ow

nl
oa

d
R

at
e

(K
B

/s
)

Upload Rate (KB/s)
Figure 5: U: Azureus fairness

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

D
ow

nl
oa

d
R

at
e

(K
B

/s
)

Upload Rate (KB/s)
Figure 6: U: PropShare fairness

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

D
ow

nl
oa

d
R

at
e

(K
B

/s
)

Upload Rate (KB/s)
Figure 7: U: BitTyrant fairness

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

C
um

ul
at

iv
e

Fr
ac

tio
n

Time(s)

 FT
 BT
 AZ
 PS
 TY

Figure 8: U: High uploader rate con-

vergence

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

C
um

ul
at

iv
e

Fr
ac

tio
n

Time(s)

 FT
 BT
 AZ
 PS
 TY

Figure 9: U: Rate convergence

 10

 100

 1000

 10000

 100000

FT
+

FT
-

B
T+ B
T-

A
Z+ A
Z-

P
S

+

P
S

-

TY
+

TY
-

M
ax

 S
er

vi
ce

 E
rr

or
 (K

B
)

System

 100%
 95%
 85%
 50%

Figure 10: U: E+
max and E−max

 0

 500

 1000

 1500

 2000

F
T

B
T

A
Z

P
S

T
Y

D
ow

nl
oa

d
T

im
e

(s
)

System

H
H

H

H
H

 Max
 Avg

Figure 11: U: Download time

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

S
ta

nd
ar

d
D

ev
ia

tio
n

Download Rate (KB/s)

 TY
 AZ
 BT
 PS
 FT

Figure 12: U: Standard deviation of

the download rate

 0

 1000

 2000

 3000

 4000

 5000

 6000

FT BT FT/BT AZ FT/AZ PS FT/PS TY FT/TY

D
ow

nl
oa

d
Ti

m
e

(s
)

System

H

H

H

H

H

H

H

H

H

 Max
 Avg

Figure 13: S: Download time

 10

 100

 1000

 10000

 100000

 1e+06

FT
+

FT
-

B
T+ B
T-

FT
/B

T+
FT

/B
T-

A
Z+ A
Z-

FT
/A

Z+
FT

/A
Z-

P
S

+
P

S
-

FT
/P

S
+

FT
/P

S
-

TY
+

TY
-

FT
/T

Y
+

FT
/T

Y
-

M
ax

 S
er

vi
ce

 E
rr

or
 (K

B
)

System

 100%
 95%
 85%
 50%

Figure 14: S: High uploader E+
max and

E−max

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

F
T

B
T

F
T

/B
T

P
S

F
T

/P
S

T
Y

F
T

/T
Y

A
Z

F
T

/A
Z

P
S

/A
Z

T
Y

/A
Z

D
ow

nl
oa

d
T

im
e

(s
)

System

Figure 15: D: High uploader download

time

 10

 100

 1000

 10000

 100000

 1e+06

FT
+

B
T+

FT
/B

T+

P
S

+

FT
/P

S
+

TY
+

FT
/T

Y
+

A
Z+

FT
/A

Z+

P
S

/A
Z+

TY
/A

Z+

M
ax

 S
er

vi
ce

 E
rr

or
 (K

B
)

System

 100%
 95%
 85%
 50%

Figure 16: D: High uploader E+
max

 0

 50

 100

 150

 200

 250

 300

FT BT FTA AZ PS TY

D
ow

nl
oa

d
R

at
e

(K
B

/s
)

System

 Avg C=500
 Avg C=50

Figure 17: Live download rate

FairTorrent reduces download times from 1804 to 703 sec-
onds comparing BitTorrent to FT/BT, from 1859 to 1138
seconds comparing Azureus to FT/AZ, from 1633 to 402
seconds comparing PropShare to FT/PS, and from 3305 to
615 seconds comparing BitTyrant to FT/TY. The improve-
ment is possible because FairTorrent adapts to the upload
rates of the surrounding low uploaders and is therefore able
to get a high leecher download rate, even though the low up-
loaders do not run FairTorrent. These results motivate the
adoption of FairTorrent, especially for high-uploading users.

Figure 14 shows the E+
max and E−max of the high uploader

in each system. E+
max always dominates E−max as the high

uploader typically serves more data than it receives in the
skewed distribution. However, E+

max for FairTorrent is 60 to
200 times, roughly two orders of magnitude, smaller than
other systems. E+

max of the high uploader was measured to
be 555 KB for FairTorrent, as compared to 51 MB, 31 MB,
49 MB, and 113 MB for BitTorrent, Azureus, PropShare
and BitTyrant, respectively. When FairTorrent replaced the
high uploader in other systems, it still reduces E+

max. Fair-
Torrent reduces E+

max by a factor of 15 comparing BitTorrent
to FT/BT, by 10% comparing Azureus to FT/AZ, by a fac-
tor of 10 comparing PropShare to FT/PS, and by a factor
of 50 comparing BitTyrant to FT/TY.

The smaller fairness improvement for the high uploader in
FT/AZ only tells part of the story, as FairTorrent improves
the high-uploader capacity utilization from 55% to 97%, and
its leecher download rate from 9.8 to 23 KB/s. The poor
behavior of the high-uploading Azureus client is due to a
slightly different unchoking behavior of Azureus, which is
less aggressive than BitTorrent, and often sticks with other
low-contributors rather than switching to the high-uploader.
When FairTorrent replaces the high-uploader, it is able to
improve the overall utilization by unchoking and interacting
with more peers at a time.

5.3 Dynamic Live Distribution
The dynamic live distribution represents peers with up-

load capacities taken from live torrents, which asynchronously
join and leave, which do not seed upon completion if they
are leechers, and participate in a larger, non-mesh network.
We used a larger network of 100 leechers and 20 seeds, and
configured the upload capacities of the leechers based on a
distribution of the upload capacities in live BitTorrent net-
works [21]. Capacities were also scaled down by a factor of
10 to allow PlanetLab to handle the capacity of the highest
uploaders [21]. The distribution resulted in upload rates in
the range of 4 to 197 KB/s with a mean of 17 KB/s; live ca-
pacities represent a very skewed distribution. Each of the 20
seeds maintained a 25 KB/s upload rate as in earlier experi-
ments. We increase the leechers download bandwidth to 220
KB/s to accommodate peers with higher upload rates. To
create dynamic conditions, leechers entered the swarm with
randomly picked time offsets such that one leecher would
enter every 5 seconds. Upon completion of the download,
the leecher would leave the system and re-enter immediately
with a clean cache and a new client ID. Each experiment ran
for 2000 seconds, allowing clients on some machines to re-
enter and complete the download multiple times. We began
taking measurements 500 seconds into the experiment, once
the last of the 100 leechers joined the swarm.

In this live distribution, peers with the top 10% of the
capacities accounted for 50% of the leecher bandwidth. We

focus on the fairness and performance of these top 10% of
contributing peers in our measurements to show why they
have a strong incentive to run FairTorrent. As in Section 5.2,
we ran experiments for homogeneous networks and non-
FairTorrent networks in which the contributing peers used
FairTorrent to show how they perform in the presence of low
contributors that are not FairTorrent clients. As a counter-
point to previous work [21, 14], we also ran experiments with
the contributing peers using PropShare or BitTyrant inside
Azureus, denoted by PS/AZ and TY/AZ, respectively.

Figures 15 to 16 captioned with a prefix D show the dy-
namic live distribution results. Figure 15 shows the av-
erage download times for high contributors for the homo-
geneous FairTorrent, BitTorrent, Azureus, PropShare, and
BitTyrant networks were 372, 593, 733, 624, and 842 sec-
onds, respectively. Because of more optimal fairness and
fast rate convergence, FairTorrent outperformed BitTorrent,
Azureus, PropShare, and BitTyrant by 37%, 49%, 40%, and
56%, respectively. BitTorrent performed somewhat better
than Azureus because its higher number of connections made
it more likely to find other higher uploading peers among its
neighbors. However, even though BitTyrant and PropShare
use 500 connections creating a mesh, they were not able to
outperform other clients due to poor rate convergence.

When FairTorrent replaces the top 10 leechers in each
network, it significantly reduce the download times to 376,
434, 330, and 368 seconds for FT/BT, FT/AZ, FT/PS, and
FT/TY, respectively. It successfully reduces download times
by 37% to 56% because FairTorrent leechers are able to
quickly adjust to the reciprocation rates of both FairTor-
rent and non-FairTorrent leechers. For FT/TY, FairTorrent
achieves download times similar to those in a homogeneous
FairTorrent network despite being surrounded by 90% of
strategic BitTyrant clients. FairTorrent is resilient against
strategic peers because it only rewards its peers fairly for
their contributions. Furthermore, FairTorrent avoids the
long discovery times of BitTorrent and slow and imperfect
convergence of PropShare. This provides great incentive
for high contributors in live networks to adopt FairTorrent.
Since Azureus is the most common P2P client, we compared
the effect of FairTorrent (FT/AZ), PropShare (PS/AZ), and
BitTyrant (TY/AZ) clients that replace high contributors
inside Azureus. While FairTorrent reduces download times
by 40%, Figure 15 shows that PropShare and BitTyrant re-
duce the download times by only 5% and 9%, respectively,
leaving users with much stronger incentive to adopt Fair-
Torrent. Comparing PS/AZ with the all-PropShare network
shows that increasing the number of PropShare peers does
not improve performance. Even worse comparing TY/AZ
with the all-BitTyrant network shows that increasing the
number of BitTyrant peers degrades performance. In con-
trast, comparing results for FT/AZ with the all-FairTorrent
network shows that increasing the number of FairTorrent
peers only further improves performance.

Figure 16 shows that FairTorrent achieves much better
fairness which explains its better performance for high con-
tributors. Only E+

max is shown as E−max is significantly smaller
for the high uploaders in all cases. FairTorrent maintains its
maximum service error under 1 MB. In contrast, the maxi-
mum service error for BitTorrent, Azureus, PropShare, and
BitTyrant was 53 MB, 102 MB, 64 MB, and 72 MB, re-
spectively. The reason that E+

max for these clients increases
dramatically in the dynamic scenario is due to joins and

leaves that affect the rate convergence. FairTorrent clients
that replace high contributors in other systems also reduce
Emax by an order of magnitude due to fast convergence.

5.4 Live Swarms
Live swarms consisted of forty popular live BitTorrent

swarms that distributed large files of 1 to 10 GB to thou-
sands of users. For each swarm, we had all clients join it at
the same time, but configured our clients not to talk to one
another. We capped the upload and download rates of each
client at 300 KB/s and 600 KB/s respectively. To avoid
overusing bandwidth and memory resources on PlanetLab
and avoid potential copyright infringement issues with live
swarms, we did not download entire files but instead joined
each swarm for 1500 seconds and measured the download
rate obtained by the clients. For live swarms, we observed
that for each type of client, performance was highly cor-
related with the number of configured connections. As a
result, we ran two sets of tests, first configuring each client
with a 500 connection limit, the default for PropShare and
BitTyrant, and then, configuring each client with 50 connec-
tions, the default for Azureus.

Figure 17 shows the average download rate obtained by
each client when configured with 500 and 50 connections.
FTA denotes our FairTorrent Java client implementation in
Azureus. With the 500 connection limit, the average down-
load rates were 288 KB/s, 240 KB/s, 150 KB/s, 72 KB/s,
95 KB/s, and 94 KB/s for FairTorrent, BitTorrent, FTA,
Azureus, PropShare, and BitTyrant, respectively. FairTor-
rent outperforms all other clients by 20% to 300%. With
the 50 connection limit, the average download rates were 91
KB/s, 70 KB/s, 75 KB/s, 43 KB/s, 42 KB/s, and 46 KB/s
for FairTorrent, BitTorrent, FTA, Azureus, PropShare, and
BitTyrant, respectively. FairTorrent outperforms all other
other clients by 21% to 116%. FairTorrent and BitTorrent
significantly outperformed other clients. The main reason
for this was that the BitTorrent Python code implemented
better timeout behavior with peers with which it could not
complete a handshake, thus obtaining more active connec-
tions over time. This behavior was not a factor in the non-
live tests where all connections were completed.

To avoid comparing connection management behavior, we
compare clients based only on the Azureus implementation.
FairTorrent as denoted by FTA still outperforms Azureus,
PropShare and BitTyrant by 58% to 108% with the 500 con-
nection limit, and by 63% to 79% with the 50 connection
limit. In live networks, FairTorrent again quickly adopts
to its neighbors and is more successful at retaining both
low and high uploaders as data suppliers. Furthermore, the
plain Azureus client had very similar performance to both
PropShare and BitTyrant when all clients had the same 50
connection limit, suggesting that PropShare and BitTyrant
may not provide improvement in smaller swarms. When all
clients use 500 connections, Azureus is only 30% worse than
PropShare and BitTyrant. It appears that previously re-
ported results [14] comparing PropShare and BitTyrant to
Azureus did not normalize for the number of connections,
but instead used a 500 connection limit default for Prop-
Share and BitTyrant while comparing against Azureus with
its default 50 connection limit.

6. CONCLUSIONS AND FUTURE WORK
FairTorrent is a new fully distributed P2P algorithm that

accurately provides each peer with fair service commensu-
rate with its bandwidth contribution. FairTorrent’s deficit-
based algorithm avoids the pitfalls of previous approaches
that suffer from slow peer discovery, inaccurate bandwidth
estimates, bandwidth under-utilization and complex tuning
of parameters. FairTorrent does not require bandwidth esti-
mates, a centralized system, peer reputation, or third-party
credit-keeping services. We compared FairTorrent against
BitTorrent, Azureus, PropShare and BitTyrant. We have
shown that due to its high-degree of fairness, compared with
other P2P systems, FairTorrent is able to provide much bet-
ter performance for contributing peers in a number of sce-
narios: 31% to 68% better performance in the uniform dis-
tribution, a 3 to 5 times improvement for a high uploader
in a skewed distribution, 37% to 56% better performance
for high contributors in a dynamic scenario with live capac-
ities, and 60% to 100% better performance in live swarms.
FairTorrent is resilient to free-riders, low contributors and
strategic peers in both FairTorrent and non-FairTorrent net-
works. When replacing high contributors in the most popu-
lar Azureus network, FairTorrent improves the performance
of both high contributors as well as the entire system, sug-
gesting that FairTorrent is amenable to gradual adoption by
users. We believe that the high fairness and performance
guarantees of FairTorrent provide a strong foundation for
developing more reliable and robust P2P services.

One important and increasingly popular P2P service is
P2P streaming. For good performance, a streaming client
must achieve and maintain a steady download rate of stream
updates, a problem that is especially difficult in the presence
of free-riders. Previous approaches for P2P file-sharing in-
cur long peer discovery times and imprecise and slow rate
convergence, making them poor candidates for supporting
streaming. The fast rate convergence of FairTorrent enables
it to achieve and maintain fair bandwidth exchange even
over short time intervals, characteristics that would be very
beneficial for P2P streaming. Extending FairTorrent to sup-
port streaming is a promising direction for future work.

7. ACKNOWLEDGMENTS
Nikolaos Laoutaris provided helpful comments on earlier

drafts of this paper. PlanetLab [23] was used for all of
our experiments. This work was supported in part by NSF
grants CNS-0426623, CNS-0905246, CCF-0728733 and AFOSR
MURI grant FA9550-07-1-0527.

8. REFERENCES
[1] A. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J. Martin,

and C. Porth. BAR Fault Tolerance for Cooperative
Services. In Proceedings of the 20th ACM Symposium
on Operating Systems Principles (SOSP ’05), Oct.
2005.

[2] Azureus. http://www.azureus.com/.

[3] J. C. R. Bennett and H. Zhang. WF2Q: Worst-case
Fair Weighted Fair Queuing. In Proceedings of the
15th IEEE International Conference on Computer
Communications (INFOCOM ’96), Mar. 1996.

[4] K. Berer and Z. Despotovic. Managing Trust in a
Peer-to-Peer Information System. In Proceedings of
the 2001 ACM CIKM International Conference on
Information and Knowledge Management, Nov. 2001.

[5] A. Bharambe, C. Herley, and V. Padmanabhan.
Analyzing and Improving a BitTorrent Network’s
Performance Mechanisms. In Proceedings of the 25th
IEEE International Conference on Computer
Communications (INFOCOM ’06), Apr. 2006.

[6] B. Cohen. Incentives Build Robustness in BitTorrent.
In Proceedings of the 1st Workshop on the Economics
of Peer-to-Peer Systems, June 2003.

[7] A. Demers, S. Keshav, and S. Shenker. Analysis and
Simulation of a Fair Queueing Algorithm. In
Proceedings of the ACM Symposium on
Communications Architectures and Protocols
(SIGCOMM ’89), Sept. 1989.

[8] eMule. http://www.emule-project.net/.

[9] B. Fan, D. Chiu, and J.Lui. The Delicate Tradeoffs in
BitTorrent-like File Sharing Protocol Design. In
Proceedings of the 14th IEEE International Conference
on Network Protocols (ICNP ’06), Nov. 2006.

[10] M. Ham and G. Agha. ARA: A Robust Audit to
Prevent Free-Riding in P2P Networks. In Proceedings
of the 5th IEEE International Conference on
Peer-to-Peer Computing (P2P ’05), Aug. 2005.

[11] S. Jun and M. Ahamad. Incentives in BitTorrent
Induce Free-riding. In Proceedings of the 3nd
Workshop on the Economics of Peer-to-Peer Systems,
Aug. 2005.

[12] S. Kamvar, M. Schlosser, and H. Garcia-Molina. The
EigenTrust Algorithm for Reputation Management in
P2P Networks. In Proceedings of the 12th
International World Wide Web Conference (WWW
’03), May 2003.

[13] A. Legout, N. Liogkas, E. Kohler, and L. Zhnag.
Clustering and Sharing Incentives in BitTorrent
Systems. In Proceedings of the International
Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS ’07), June 2007.

[14] D. Levin, K. LaCurts, N. Spring, and
B. Bhattacharjee. BitTorrent is an Auction: Analyzing
and Improving BitTorrent’s Incentives. In Proceedings
of the ACM Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communications, (SIGCOMM ’08), Aug. 2008.

[15] H. Li, A. Clement, M. Marchetti, M. Kapritsos,
L. Robison, L. Alvisi, and M. Dahlin. FlightPath:
Obedience vs Choice in Cooperative Services. In
Proceedings of the 8th Symposium on Operating
Systems Design and Implementation (OSDI ’08), Dec.
2008.

[16] H. Li, A. Clement, E. Wong, J. Napper, I. Roy,
L. Alvisi, and M. Dahlin. BAR Gossip. In Proceedings
of the 7th Symposium on Operating Systems Design
and Implementation (OSDI ’06), Nov. 2006.

[17] Q. Lian, Y. Peng, M. Yang, Z. Zhang, Y. Dai, and
X. Li. Robust Incentives via Multi-level Tit-for-tat. In
Proceedings of the 5th International Workshop on
Peer-to-Peer Systems (IPTPS ’06), Feb. 2006.

[18] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer.
Free Riding in BitTorrent is Cheap. In Proceedings of
the 5th Workshop on Hot Topics in Networks
(HotNets ’06), Nov. 2006.

[19] T. Ngan, D. Wallach, and P. Druschel. Enforcing Fair
Sharing of Peer-to-Peer Resources. In Proceedings of

the 2nd International Workshop on Peer-to-Peer
Systems (IPTPS ’03), Feb. 2003.

[20] A. K. Parekh and R. G. Gallager. A Generalized
Processor Sharing Approach to Flow Control in
Integrated Services Networks: The Single-Node Case.
IEEE/ACM Transactions on Networking,
1(3):344–357, June 1993.

[21] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy,
and A. Venkataramani. Do Incentives Build
Robustness in BitTorrent. In Proceedings of the 4th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’07), Apr. 2007.

[22] M. Piatek, T. Isdal, A. Krishnamurthy, and
T. Anderson. One Hop Reputations for Peer to Peer
File Sharing Workloads. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’08), Apr. 2008.

[23] Planetlab. http://www.planetlab.org/.

[24] D. Qiu and R.Srikant. Modeling and Performance
Analysis of BitTorrent-Like Peet-to-Peer Networks. In
Proceedings of the ACM Conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communications, (SIGCOMM ’04), Sept.
2004.

[25] P. Resnick, K. Kuwabara, R. Zeckhauser, and
E. Friedman. Reputation Systems. Communications of
the ACM, 43(12):45–48, Dec. 2000.

[26] M. Shreedhar and G. Varghese. Efficient Fair
Queueing Using Deficit Round-Robin. In Proceedings
of the ACM Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communications, (SIGCOMM ’95), Aug. 1995.

[27] M. Sirivianos, J. H. Park, R. Chen, and X. Yang. Free
Riding in BitTorrent Networks with the Large View
Exploit. In Proceedings of the 6th International
Workshop on Peer-to-Peer Systems (IPTPS ’07), Feb.
2007.

[28] M. Sirivianos, X. Yang, and S. Jarecski. Dandelion:
Cooperative Content Distribution with Robust
Incentives. In Proceedings of the 2007 USENIX Annual
Technical Conference (USENIX ’07), June 2007.

[29] K. Tamilmani, V. Pai, and A. Mohr. SWIFT: A
System with Incentives for Trading. In Proceedings of
the 2nd Workshop on the Economics of Peer-to-Peer
Systems, June 2004.

[30] S. Tewari and L. Kleinrock. On Fairness, Optimal
Download Performance and Proportional Replication
in Peer-to-Peer Networks. In Proceedings of the 4th
International IFIP-TC6 Networking Conference
(NETWORKING ’05), May 2005.

[31] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer.
Karma: A Secure Economic Framework for
Peer-To-Peer Resource Sharing. In Proceedings of the
1st Workshop on the Economics of Peer-to-Peer
Systems, June 2003.

[32] F. Wu and L. Zhang. Proportional Response
Dynamics Leads to Market Equilibrium. In
Proceedings of the 39th Annual ACM Symposium on
Theory of Computing (STOC ’07), June 2007.

