
Aequitas: A Trusted P2P System for Paid Content Delivery
Alex Sherman, Japinder Chawla, Jason Nieh, Cliff Stein, and Justin Sarma

Department of Computer Science
Columbia University

{asherman, jsc2127, nieh, cliff, jns2111}@cs.columbia.edu

Abstract

P2P file-sharing has been recognized as a powerful and effi-
cient distribution model due to its ability to leverage users’
upload bandwidth. However, companies that sell digital con-
tent on-line are hesitant to rely on P2P models for paid con-
tent distribution due to the free file-sharing inherent in P2P
models.

In this paper we present Aequitas, a P2P system in which
users share paid content anonymously via a layer of interme-
diate nodes. We argue that with the extra anonymity in Ae-
quitas, vendors could leverage P2P bandwidth while effec-
tively maintaining the same level of trust towards their cus-
tomers as in traditional models of paid content distribution.
As a result, a content provider could reduce its infrastructure
costs and subsequently lower the costs for the end-users.

The intermediate nodes are incentivized to contribute their
bandwidth via electronic micropayments. We also introduce
techniques that prevent the intermediate nodes from learning
the content of the files they help transmit.

In this paper we present the design of our system, an analy-
sis of its properties and an implementation and experimental
evaluation. We quantify the value of the intermediate nodes,
both in terms of efficiency and their effect on anonoymity.
We argue in support of the economic and technological mer-
its of the system.

1 Introduction

P2P file-sharing has been recognized as powerful and effi-
cient distribution model due to its ability to leverage users’
upload bandwidth. (Popular examples include BitTorrent [5],
Napster [24] and Kazaa [21]). However, companies that sell
digital content on-line such as Apple Itunes [3], Sony, and
Time Warner among others typically rely on “direct down-
load” methods where the users download content either from
the vendor’s website directly or via a contracted CDN (con-
tent delivery network) such as Akamai [2]. Content providers
are hesitant to rely on P2P systems for paid content distribu-
tion as “free-of-charge” file sharing is inherent in current P2P
models.

This concern on behalf of the content providers is well-
justified as P2P users easily form free file-sharing commu-
nities such as Xbox-sky [35] and Red Skunk Tracker [33].
Some systems such as Prodigem [27] require payment be-
fore a user can enter the P2P system. However, once the
user is in the system, she directly shares the purchased con-
tent with other users via BitTorrent. Once these users learn
of one another and know they have similar interests they can

easily form a private P2P community for free future sharing
of similar content.

In this paper we present Aequitas, a P2P system in which
users pay for a file and then share parts of the file without
ever learning of one another’s identities. Instead, the users
share the file via an additional set of intermediate P2P nodes
that themselves are oblivious to the data that they help trans-
mit. Since the users download data from these oblivious
nodes, rather then their file-sharing peers, the system cre-
ates significant barriers against collusion for future free file-
sharing. Thus, with Aequitas the vendors could leverage P2P
bandwidth while effectively maintaining the same level of
trust towards their customers as in a “direct download” sys-
tem. The content providers could reduce the costs of their
bandwidth and download infrastructure. Lower infrastruc-
ture costs translate into lower content costs for the end-users.

We envision a system with thousands of P2P nodes. For
each file-sharing instance intermediate nodes are selected
from this pool to transmit data between the file-sharing users.
To incentivize these intermediate nodes (that we also call In-
odes) to contribute their bandwidth we use electronic micro-
payments. These economic incentives come in terms of ac-
tual cash as opposed to credit for future resource usage as in
many P2P systems. The cash payments are well-grounded in
the profit excess recognized by the media vendors.

Finally, each Inode is restricted (via certificate check-
ing) to downloading/uploading only a random fraction of the
given file. While this restriction still allows these nodes to
transmit parts of the file between file-sharing users, it pre-
vents Inodes from obtaining the actual file without payment.

1.1 Properties and Side-Effects

We now state the main properties and side-effects of our sys-
tem. The properties are proven in detail in section 4.

• Anonymity. Becuase we use intermediate nodes, Users
in a given file-sharing instance are highly unlikely to
learn of one another’s identities and collaborate in a way
that may hurt the content provider’s interests. For in-
stance, they are unlikely to leverage the system to form
a private P2P sharing forum in the future or expose the
IPs of the current file-sharing users and allow unautho-
rized users to free-load.

• Authorized Download. Since the Inodes only transmit
randomly selected parts or (chunks) of the file we show
with high probability that no small set of nodes can col-
lude to obtain the copy of the file without payment.

• Small Load on Content Provider. We show that al-
though the content provider is used in the system to fill
out some missing chunks of the file for each user, the to-
tal load on the content provider imposed by the system
is small (less than 1%).

• Fair Compensation. We guarantee that each node is
paid at least the agreed amount for its bandwidth. This
property simply stems from the feature of the system
where each node first cashes the electronic coins for its
services before uploading the piece of data.

In addition to the main properties Aequitas carries a num-
ber of beneficial side-effects that set it apart from many other
P2P systems: privacy, fairness and node-longevity.

• Privacy In most P2P systems, such as BitTorrent, a spy-
ing node can simply request a particular file and easily
learn the IPs of a number of machines that are also shar-
ing this file. In our system, such node would only talk
directly to Inodes and thus would fail to learn of other
users.

• Longevity and Fairness. In most P2P system users pre-
fer to close their clients as soon as they finish down-
loading what they need. In Aequitas, where all nodes
are fairly compensated for the use of their bandwidth
the users have an incentive to leave their software run-
ning longer. The longer nodes continue to run the more
aggregate bandwidth is available to others for file down-
loads, making the downloads more efficient.

1.2 The Economic Model
Aequitas provides a way for the vendors to cut their costs
by leveraging P2P bandwidth. However, P2P nodes must
be incentivized and compensated for the use of their band-
width with micropayments. We argue that the model that we
present is a reasonable economic model for both the vendors
and the participating P2P nodes.

Market research [1] suggests that digital media vendors
spend 20% of their revenue on infrastructure costs for serving
content. In theory, as long as the micropayments paid to the
P2P nodes in total are less than the 20% than the vendors
spend, the system should be a win for the vendors. Also,
as long as the micropayments are greater than 0 it should be
a win for the participants who otherwise waste their unused
bandwidth.

Consider a vendor similar to Apple Itunes that sells videos
thar range between 20 and 200 MBytes for $1.99. Assume
that the average file size is 100MB, and that the payments
to the P2P nodes are between the above thresholds of 0 and
20%, say 15%, or 30 cents per video. That is some collection
of P2P nodes in total is compensates 30 cents when one user
downloads a file.

If Aequitas uses two Inodes to transmit content between
each pair of sharing users then to download each chunk re-
quires upload bandwidth of three nodes. So if an average file

size is 100MB, to download the entire file we actually use
300MB (100MBx3) of P2P bandwidth. The payment is 30
cents total to all the nodes that aid in one file download. Thus
a single node would get 1 cent per 10MB of its upload band-
width. If we further assume that a typical broadband par-
ticipant has 300Kbits/sec of upload bandwidth to contribute,
then when fully utilized this participant will be making 10.8
cents/hour or $78 /month! Even at a fraction of full utiliza-
tion it is beneficial for a user to join Aequitas rather then
loose their unused upload bandwidth. (Note, that to more
fully utilize their bandwidth we allow a node to serve as an
Inode in multiple file-sharing instances at once).

In the rest of the paper we describe the design and eval-
uation of our system. We show how the system adheres to
the properties stated above. In evaluation we show that with
extra layers the system does not add performance overhead
to the traditional “direct download” model.

We present the related work in section 2. We describe the
architecture and the mechanisms in section 3. We analyze the
properties of the system in section 4. In section 5 we briefly
describe some implementation features and detail evaluation
results. We conclude in section 6.

2 Related Work

2.1 P2P File-Sharing

The earliest P2P file-sharing systems include CAN [28],
Chord [32], Pastry [13] and Tapestry [37]. These systems
use a variant of Distributed Hash Tables (DHT) to route mes-
sages and lookup objects and nodes. Unlike these systems,
Aequitas is not a pure P2P system and uses externally man-
aged services for routing and electronic banking. Aequitas
does use Consistent Hashing [20] (often used in DHTs) but
only to ensure the consistency of intermediate node assign-
ments and not for consistent object location.

A number of public file-sharing systems like Kazaa [21],
Napster [24] and Gnutella [18] have attracted much atten-
tion in recent years as these systems were often use to share
copyrighted material illegally. BitTorrent [5], another public
P2P system splits a large file into multiple chunks, thereby
allowing a user to downloads different chunks from multiple
peers simultaneously. This novel approach has been shown
to exhibit higher fault-tolerance and to have more overall net-
work efficiency, as each user explores multiple paths. At its
core Aequitas is closest to BitTorrent as it also splits the files
into a number of chunks. The main techinical distinctions are
that Aequitas introduces anonymous sharing via intermediate
nodes, and users pay each other with cash for chunk down-
loads. Aequitas and BitTorrent also differ in their intended
uses: Aequitas create a system for content providers to dis-
tribute paid content rather while BitTorrent facilitates illegal
sharing.

2

2.2 Anonymity

There has been much work in anonymity for network com-
munications. MixNets [6] were introduced in 1981 primar-
ily for anonymous email communication. To hide communi-
cating nodes MixNets used sets of mixed paths, encryption,
variable delays and message re-ordering. More recently this
research has been followed by works like MixMaster [22],
Mixminion [17], and MorphMix [30] that use similar tech-
niques to maximize the anonymity in today’s Internet.

Another system, GAP [4], does not focus on hiding com-
municating end-points. Rather it enforces anonymity by
making it hard for an adversary to distinguish between an
initiator of a message and an intermediary handling the mes-
sage. Crowds [29] uses a large “crowd” of nodes to provide
anonymity for the sender of a message.

Many of the anonymous systems were motivated by the
Internet censorship and malicious traffic tracing. One sim-
ple system called Anonymizer implements a web proxy that
strips the users information to allow anonymous browsing.
Onion Routing [9] and its second generation Tor [11] allowed
nodes to construct more complex routing circuits where each
node in the path only has the knowledge of its successor
and predecessor. There have also been P2P approaches to
anonymity such as Tarzan [16]. In these systems the inter-
mediate nodes are selected at random from a large set of P2P
nodes. Tarzan allows a sender to construct a random path to
a destination node encapsulating each message in a public-
key encryption layer for each intermediate node in the path.
Tarzan was specifically intended as a low-level anonymity
layer for various network applications including browsing
and file-sharing. I2P [19] is another mechanism that is de-
signed to provide an anonymous layer for P2P applications.

Aequitas also selects intermediate nodes from a large P2P
network. However, in contrast to the prior work the intent of
anonymity in Aequitas is to anonymize the file-sharing Peers
from one another, and make their direct communication dif-
ficult and unlikely.

Among systems that use both anonymity and P2P file dis-
tribution are Freenet [7] and GhostShare [23]. Both of these
systems anonymize the requestor of the data. GhostShare
also anonymizes the publisher, while Freenet anonymize the
storage nodes. However these schemes, unlike Aequitas, do
not attempt to hide the data from unauthorized users. In addi-
tion, GhostShare and Freenet do not guaranteed to store data
for any length of time.

2.3 Economic Incentives

Many people have looked at the problem of encouraging effi-
cient resource-sharing and discouraging free-ridership in P2P
systems.

Some systems such as Samsara [8] recommend token ex-
change to encourage fair resource sharing. BitTorrent [5] it-
self is a token-based system. It implements a tit-for-tat pro-
tocol that encourages fair data exchange between users.

Some anonymity P2P systems encourage participation
through reputation-building [10, 12, 12].

Systems like Karma [34] put a value on resources shared
that allows participants to build credit and used resources
against that credit.

Finally, systems like [15, 14] suggest electronic micropay-
ments [31, 36, 26] for service of anonymous commnunica-
tion. Aequitas also uses electronic micropayments, but is
different in that nodes pay for bandwidth, while anonymity
is guarateed via controlled mapping. Systems that use cash
provide much clearer incentives for participants then token
or credit-building. The reason micropayments work so well
with Aequitas is that the payments are grounded in the profits
realized by the content providers. It is the content provider
that distributes cash for users to pay one another, rather then
individual users paying out of their pockets.

3 System Architecture

3.1 Overview
In Aequitas users (or Peers) share parts of the file via a
swarming technique similar to BitTorrent’s. The file is split
into chunks that can be downloaded independently and in par-
allel from different Peers. The difference between Aequitas
and BitTorrent is that the Peers in Aequitas are not aware of
one another. They discover chunks and download them from
one another exclusively via Inodes.

Before any Peers can request a file, the Content Provider or
CP initializes one or more seeds with the entire file. (“Seed”
is a term borrowed from Bit-Torrent and denotes a Peer that
contains all chunks of the given file). A Peer joins a file-
sharing instance by “buying” the file from the Bank and get-
ting a purchase certificate. In addition, the Peer receives
electronic cash that it will use to pay for the download ser-
vice from the Inodes. As discussed in section 1.2 the value
of this electronic cash is only a fraction of the cost of the file
(e.g. 15%).

Next the Peer contacts the DTS (distributed tracking ser-
vice) that checks the purchase certificate of the Peer and gives
it a set of Inodes to talk to. The Peer uses these Inodes to dis-
cover and download the chunks. Typically a Peer will contact
DTS only once and use the same set of Inodes for the entire
download. The only reason to come back to DTS would be if
many of its Inodes die or disappear. The Inodes assigned to
the Peer will also need to contact DTS to obtain their respec-
tive sets of Inodes or Peers to forward requests to.

Towards the end of the download it is likely that the Peer
will not be able to get a small fraction (less than 1%) of the
chunks The Peer completes the download of missing chunks
directly from the Content Provider.

It is interesting to mention that unlike pure P2P systems
such as Chord, Aequitas manages services such as DTS and
Bank separately from the P2P nodes. The reasons for these
are simple - allowing P2P nodes to perform their own Peer
discovery instead of the DTS would defeat the purpose of
anonymity. The Bank is also responsible for P2P billing and

3

therefore cannot be implemented by the nodes themselves.
Furthermore, it is the bandwidth that is constraining resource
in the content delivery system, and it is precisely this re-
source for which we rely on the content-sharing Peers.

In the following sections we discuss individual compo-
nents and heuristics used in the system.

3.2 The Bank
The Bank is the entity that maintains the credit for each user
and provides the electronic cash service. The bank is owned
and operated by the Content Provider (or CP). Once a month
the CP sends a bill or check to the users based on their bal-
ance with the Bank. The users interact with the Bank in two
important ways. First they pay the Bank when they wish
to purchase a content file. Second they can cash electronic
coins at the Bank. The electronic coins signed by the Bank
are used by the users to pay for download services to one
another. Nodes that provide services can cash the coins that
they receive at the Bank and have their accounts credited.

Figure 2 demonstrates these two types of interactions with
the Bank. At first Peer A contacts the Bank to purchase the
content and obtain electronic coins that it will use to pay for
all future downloads of the individual chunks. At some later
point Peer A transmits some coins to a Node B and asks it
for a chunk. Node B then attempts to cash the coins with the
Bank. The Bank verifies its own signature on the coins and if
valid adds credit to B’s account. A coin Id included with the
certificate prevent multiple cashing of the same coin. Upon
successful cash operation node B sends the data to Peer A.

3.2.1 Micropayments

In Aequitas it costs one electronic coin to download a fixed
size chunk of data from another node. As described above a
node A that wishes to download data from node B first sends
the required number of coins to node B.

In figure 1, for instance, node A can download chunks
from node D via a path of length 3. A needs 3 coins to pay
all of the nodes on the path. To download a chunk node A
begins by transmitting 3 coins to node B. Node B cashes one
of them and transmits 2 coins to node C. Node C cashes one
and sends the remaining coin to node D. Node D cashes the
last of 3 coins and sends the chunk to node C. The chunk is
then transmitted down the path to node A.

In order for the Peer to have enough coins to pay for the
download of all the chunks we need to account for the length
of the download path (i.e. the number of edges that a chunk
travels between Peers). For example, if the paths are of
lengths 3 as in figure 1 and the number of chunks is 1000,
the Bank gives a Peer 3000 coins upon content purchase.

3.2.2 Block Requests

Since cashing requires interaction with the Bank it creates
a protocol overhead. To minimize this overhead, nodes re-
quest chunks in blocks and submit a corresponding number

..

.
..
.

A

B

C

D

F
ile

−
S

ha
rin

g
P

ee
rs

F
ile

−
S

ha
rin

g
P

ee
rs

Intermediate Nodes

Figure 1: In this setup nodes communicate with nodes in ad-
jacent columns. Nodes in columns 1 and 4 are file-sharing
peers that share pieces of a file via intermediate nodes in col-
umn 2 and 3.

of coins at a time. The bigger the request, the smaller the
overhead.

However, making requests too big exposes one’s risk to
coin loss. A mis-behaving node (whether it’s malicious or
malfunctioning) may cash the coins and not return the data.
This creates a trade-off for picking the block size.

The loss of a fraction of coins is not catastrophic. The
CP simply forgives the debt to the Peer and allows them to
complete the download of any missing chunks in the end.
However, to reduce the risk of malicious nodes stealing lots
of coins we use a reputation heuristic discussed in section
3.5.

3.3 DTS
DTS tracks the set of available P2P nodes by listening to live-
ness pings from them. It also keeps track of all the Peers and
Inodes that belong to a given file-sharing instance. Finally,
the DTS hands out node-maps and chunk-maps to the nodes.
These maps guide the nodes during the download process.

Both Peers and Inodes receive node-maps, a set of nodes
that they go through to request file chunks. By handing out
node-maps DTS implicitly builds a download graph similar
to figure 1. In addition, Inodes receive chunk-maps that list
the set of randomly selected chunks that a given Inode is al-
lowed to serve. This restricted set of chunks guarantees that
an Inode or even a large set of Inodes will not be able to ob-

4

CLIENT
 A

BANK NODE
 B

Purchaserequest

reply,

data chunk

chunk request,
and coins to use

cash coins

request

reply

electronic coins

Figure 2: Bank Operation. First Peer A purchases the content
and obtains coins. Second Node B receives coins from Peer
A, and cashes them at the bank.

tain a full copy of the shared file. The nodes request the maps
before their first download request for chunks of a given file.
The maps are certificates signed by the DTS. These certifi-
cates must be presented together with the future download
requests.

Figure 3 demonstrates the use of DTS during the down-
load process. When Peer A enters the system, and before
it makes a first download request it contacts the DTS. It re-
ceives a node-map consisting of nodes B, C and D. When it
first requests content through node B, node B contacts DTS
and receives its map-set consisting of E, F and G. Node B
also receives a chunk-map. When Node E receives a first re-
quest for the given file (from node B) it contacts the DTS and
is mapped to some Peer H.

3.3.1 Node-Maps

By handing out node-maps the DTS implicitly constructs a
download graph similar to figure 1 for each file-sharing in-
stance. In figure 1 Peers in the left-most column download
chunks from the Peers in the right-most column via two in-
termediate Inodes. We call the Inodes in the two middle
columns I1s and I2s. We now go through the logic of how
such a graph is constructed.

First in order to both send and receive data all Peers are
replicated in both the left-most and the right-most column,
meaning each Peer is mapped to both I1s and I2s. Second
we note that to best protect anonymity of the Peers we try
to minimize the number of Peers that each Inode has con-
tact with. Thus we try to construct the mapping such that
each I1 and I2 is in direct contact with very few Peers. (In a
large P2P system where we select Inodes from a very large
set we can guarantee with high probability that following our

SEED
 S1

SEED
 S2

B

C

D

E

F

G

 I

 H

Request for
 chunks

DTS

map−set: B
, C

, D
map request

map request

chunk−mapmap−set: E,F,G,

map requestmap−set: I,H,S1,chunk−map

 A
PEER

PEER

PEER

Figure 3: Interaction of Peers and Inodes with DTS.

construction each Inode will be in contact with exactly one
Peer.)

We construct the node-maps in the following way. We set
a parameter D which is the out-degree of the Peers in the
left-most column. When a new Peer joins the file-sharing in-
stance we pick exactly D I1 and D I2 Inodes from the pool
of available P2P nodes using consistent hashing. The node-
map of the Peer contains the D I1s that it is hashed to. The
node-map given to the I2 nodes is just the reverse of the con-
sistent hash of the Peer (i.e. the Peer itself). Each I1 Inode
is mapped to D of the existing I2 nodes also via consistent
hashing.

The reason we use consistent hashing to map Peers is be-
cause it has a nice property that the result of the hash re-
mains roughly unchanged despite nodes joining and leaving
the system. This property helps keep the total number of In-
odes talking to each Peer to a minimum. Thus if k I1 nodes
initially given to a Peer die or become unavailable, and a Peer
asks DTS for a new mapping, it will get D−k original nodes
plus k new nodes.

Picking the value of D involves a trade-off. On the one
hand we want D to be small so that the number of Inodes in
direct contact with a Peer is small. On the other hand larger
D offers more parallelism and link fault-tolerance during the
download. Also, since each Inode is restricted to download-
ing only a fraction of chunks, the more nodes a Peer talks
to the higher is the total fraction of chunks that it can get
through all of its Inodes. We discuss in section 4 the typical
scenario for D = 20.

Of course we envision a system where the number of par-
ticipants is large and we could add 2D Inodes for each new
Peer. However, in our evaluation where we were limited in
the number of total nodes we use a smaller D. Because of the
smaller then ideal size of the network it is also possible in our
evaluation that the Inodes are in contact with more than one
Peer, although we keep that number small.

5

3.3.2 The number of Inodes

Throughout the paper we discuss the system where the down-
loads take place through a set of two Inodes. We justify the
use of two Inodes in the following way. If we were to use
only one Inode between Peers, then each Inode would be in
touch with at least two file-sharing Peers and it would be eas-
ier for malicious nodes to break the anonymity of the Peers.
When the number of Inodes is bigger than one each Inode
can be constrained to talk to only one Peer. A malicious In-
ode would then require other colluding nodes to break the
anonymity of some Peers. This requirement creates a much
higher threshold for malicious behavior.

Of course, using more than two Inodes only enhances the
anonymity of the system. However, the longer the path the
higher the cost of the payments for the use of the Inodes’
bandwidth.

3.3.3 Chunk-Maps

Chunk-maps handed out to Inodes contain a bitmap of the
chunks of a given file that the Inode is allowed to serve. The
chunk-map is determined with a deterministic hash function
that takes as input the system id of the node, the filename and
the fraction of the chunks to be assigned. The purpose of the
chunk-maps is to prevent an Inode or set of Inodes that help
transmit the file from obtaining the full file without paying
for it. Since the chunks are assigned by a random determin-
istic function by the Coupon Collector’s principal it is easy to
see that with N chunks it would take at least log(N) Inodes
to collect the entire file. In section 4 we show using Chernoff
Bounds that for appropriately chosen parameters a large set
of Inodes will not obtain the full file with high probability.

3.3.4 Map Certificates

Both the node-maps and chunk-maps are presented as certifi-
cates signed by the DTS. When node A establishes a TCP
connection with node B it presents these certificates. Node
B verifies these certificates once for each TCP connection. It
checks that for the given file node A is allowed to make re-
quests to B and is allowed to ask for the requested chunks.
Violations of the protocol are reported to the DTS, and the
reputation heuristic discussed in section 3.5 removes the vi-
olating nodes from the system.

The overhead of certificate checking is quite small as it’s
done only once per TCP connection. A TCP connection is
used to download all the future chunks of a given file that
node A will request from node B.

3.3.5 Multiple Content Versions

It is possible that an Inode selected to help transmit a file
will later want to purchase that file. The problem with that is
that this Inode is already in direct communication with other
Peers of that content. If we change it from being an Inode to
being a Peer in the same file-sharing instance we break the
anonymity constraint between sharing Peers.

To deal with this problem the content provider always cre-
ates several qualitatively similar versions of each content, but
with different watermarkings.

For each file we split all available P2P nodes into several
pools corresponding to the number of versions of that file.
Each node can be assigned as an Inode to help distribute all
but one of the versions of this file. If it purchases the file, that
is the version that it gets.

The filename that the nodes exchange during chunk re-
quests are one-way hashes of the actual content names. Thus
an “Inode turned Peer” will not be able to tell that it served as
an Inode for similar content either from the filename or from
the binary file representation.

3.3.6 Scalability

The DTS service consists of several machines for fault-
tolerance and scalability reasons. As the P2P network grows
we add more machines to scale with the number of incoming
mapping requests and monitoring functionality.

Available nodes send periodic UDP messages every 10
seconds to report on their status information to the DTS ma-
chines. When DTS does not hear from a node for 20 seconds
it no longer includes it in the pool of available nodes. These
messages are very light and are easily handled by the DTS.

When the network grows very large the participating nodes
are split into separate pools and each pool is assigned a DTS
set. The DTS machines from that set assign nodes only from
their pool. Each shared file is also assigned to a specific DTS
set. In this way, for a given content file a single DTS set can
keep track of all the Peers for that content and assign live
nodes from the same pool. That ensures consistency of the
node maps.

3.4 Downloading Chunks
Before downloading data a Peer A must discover which In-
ode will be able to get that data. Not every Inode that it talks
to will lead it to the data because 1)the Peers that the Inode
talks to may not have the chunk that the Peer A wants and
2)the Inodes are restricted from serving certain chunks. Be-
low we present the discovery and download heuristics used
by the nodes.

3.4.1 Discovery Heuristic

A Peer maintains TCP connections to all of the live nodes
in its node-map. A Peer marks each node in the map-set as
“busy” , meaning that it’s in process of downloading chunks
on behalf of the Peer or “free”. If one such node becomes
“free” the Peer attempts to discover and then download a sub-
set of chunks via that node.

For discovery the Peer simply picks a random subset of
the chunks that it’s still missing and sends a discovery query
to the selected Inode. (The query contains the content name
and the chunk numbers) The Inode then re-broadcasts that
request up the download graph. Any intermediate node or

6

...... I

A

B

C

Figure 4: Request queues. An intermediate node I queues
requests from upstream nodes A, B, and C, and services re-
quests via round-robin of the queues

the Peer that receives the query replies with the chunks from
the requested subset that it does have. The replies are then
propagated through the tree to the requesting Peer.

We add one important feature that helps starting Peers
share their chunks efficiently. If a Peer that receives a query
request does not have all of the requested chunks it adds ad-
ditional randomly selected chunks that it does have. This
feature then allows new Peers to share the little data that they
do have making the system more efficient.

Although we use broadcast for discovery requests, the
overhead is quite small as the Inode’s query is only broad-
cast to two extra levels. In case of a very large degree D
instead of broadcast the discovery proceeds via a randomly
selected branches and only if the chunks are not discovered
other branches are attempted.

3.4.2 Download Heuristic

Once the Peer receives a reply to its query from the selected
Inode it chooses a subset of the discovered chunks to be
downloaded via that Inode. It sends a download request for
the chunks together with the cash coins to pay for the down-
load service. This node is marked “busy” by the Peer until
it finishes downloading all the requested chunks or the Inode
replies saying that it cannot complete the download of some
of the requested chunks. Once the Inode becomes “free” the
process of discovery and download over that Inode repeats.

The Inodes themselves use the same heuristics to discover
and download chunks. Each Inode maintains a list of re-
quested chunks from each upstream node. For example, fig-
ure 4 shows Inode I with queues of download requests from
each of the nodes A, B and C. In order not to starve any
particular queue, the Inode round-robins through the three
queues and picks chunks from each for discovery and down-
load.

3.4.3 Downloading Missing Chunks

It is likely that a Peer will not be able to download a small
number of the required chunks via its inodes. This is partially
due to the chunk-map restrictions placed on the Inodes. In
addition, a Peer may loose some electronic coins that it needs
to pay for downloads due to some nodes going down before

they completed an upload of chunks already paid for by that
Peer.

Towards the end of the download process when the Peer
can no longer get chunks it connects to the content provider
to download the missing chunks. As will be shown in sec-
tion 4 the fraction of the file that the Peer is missing should
be very small (less than 1%) and it does not require much
resources from the content provider to handle this download.
However, such downloads are throttled to discourage misbe-
having nodes from using the content provider directly.

Also, before completing the download, the content
provider invalidates all of the uncashed coins associated with
the Peers’s purchase of the content. This prevents a Peer from
saving all of its coins for later use.

3.5 Reputation

Aequitas uses a reputation mechanism to deal with some
forms of maliciousness on behalf of the nodes. In particular,
this mechanism deals with a case of a node that makes a re-
quest that does not match its certificate or it cashes the coins
and fails to produce data. A node that detects such behav-
ior reports the node id of the mis-behaving node to the DTS.
After k reports from distinct nodes of such behavior over a
small period of time the mis-behaving node is punished by
being taken out of the system for days. The node cannot earn
cash during that period. Files purchased by this node cost ex-
tra cash and are downloaded via a throttled connection from
the content provider.

Nodes that makes illegal requests is clearly being mali-
cious. We set the value of k very small for that case (e.g.
k=3) just to make sure that it’s reported by at least a few
distinct nodes. When a node cashes the coins but does not
upload the chunks is treated more leniently as such a node
may simply be malfunctioning. We set k = D/2 to cover at
least half of its neigbors.

To prevent users from running multiple cash-stealing
nodes we require users to register with the system and make
a minimal deposit of $1. Each time the user joins the system
they must login securely to obtain a signed time-limited to-
ken that they must present when establishing connections to
other nodes.

4 Analysis

We now analyze some of the properties of the system stated
in the introduction. We will formally analyze the probabil-
ities that certain bad events can happen and will then show,
that for typical scenarios, these event are extremely unlikely.
The three properties we analyze are that anonymity is pre-
served, that only authorized downloads occur and that the
load on the content provider is not too heavy. A fourth prop-
erty of our system is that nodes are compensated proportion-
ately for their bandwidth. We do not present the analysis
of this property as it follows directly because in this system,
nodes first cash their coins and then upload the data.

7

4.1 Anonymity
Due to the anonymity imposed by the intermediate nodes,
Peers in a given file-sharing instance are highly unlikely to
learn of one another’s identities and collaborate in a way
that may hurt the content provider’s interests. Consider what
must happen in order for two Peers to collude. Referring to
figure 1, in order for Peers A and D to collude they both must
want to collude and there must be at least one path between
A and D where each Inode on the path is willing to identify
its successor and predecessor.

Let’s now focus on one particular Inode, say A, and calcu-
late the probability that it will find another Inode with which
to collude. (We abbreviate this event as “A learns”.) Assume
that each Peer wants to collude with probability p and that
the probability an Inode wants to collude is i. For a particu-
lar path from A to another Inode, the probability that all three
nodes on the path are willing to collaborate is i2p. We call a
path in which all three nodes collaborate bad, otherwise we
call the path good. Standard calculations now state that

Pr(A learns) =
1− Pr(every path from A to anther Inode is good)

By construction of the download graph (section 3.3.1)
each Peer talks to D I1 Inodes, each I1 Inode talks to D I2
Inodes and each I2 Inode talks to exactly one Peer, and thus
there are at most D2 paths. (We say at most because that
paths need not all be distinct).

Thus

Pr(A learns) = 1− (1− i2p)D2

≈ 1− e−D2i2p .

Let’s assume a realistic file-sharing instance with out-
degree D = 20 and where each paying Peer has a probability
of p = 1/10 desire to participate in a malicious collusion
and the probability an Inode wants to participate is i = 1/40.
(An Inode has little to gain from such collusion and thus we
assume i << p). Then the probability that A learns is ap-
proximately .025.

Now, by our model, A itself is only malicious with prob-
ability 1/10, and so given a node, the probability that it is
has both motive and opportunity to collude is only .0025.
Now, we can use standard calculations to conclude that we
can have up to 200 nodes before the expected number of
compromised identities is 1/2, and 400 nodes before it is 1.
Now using Chernoff Bounds, one can show that the proba-
bility that there is a large number of compromised nodes is
extremely unlikely.

4.2 Authorized Download
In this subsection, we show that a set of colluding Inodes
is unlikely to obtain a full copy of the content that they are
helping distribute. Recall that nodes that serve as interme-
diates are not allowed to serve full files, but rather they are

assigned a random fraction of chunks. We use these facts in
the following analysis.

Let k be the number of colluding nodes, and recall that the
Inodes are chosen to serve given content from a large pool
of nodes, with some probability t. The expected number of
colluding nodes assigned to serve one file is thus kt. Each
of these Inodes is assigned to serve a fraction f of the n data
chunks. Consider a particular chunk, and observe that the
probability that a given chunk is not found among any of
these nodes is (1− f)kt. Thus we conclude the following:

Lemma 4.1 If k colluding nodes each are chosen to serve
content with probability t and has a fraction f of n data
chunks, then the expected number of chunks they will be miss-
ing is n ∗ (1− f)kt.

Assuming k = 50, p = 1/10, f = 0.4 and n = 5000 then
the expected number of chunks they will be missing is 389.
Using Chernoff Bounds it’s easy to show that the probabil-
ity that they are missing fewer than 200 chunks is less than
10−10.

4.3 Small Load on Content Provider
Using analysis very similar to above we can show that the
number of missing chunks that a Peer will not be able to find
among its Inodes is small. Thus, the total fraction of missing
chunks that it will need to get from the Content Provider is
small.

By construction of the download graph a Peer and
each I1 node have a degree D. Using the same f and
n as defined above it’s easy to see that the probability
that a Peer can not find a chunk among it’s I1 nodes is

(1− f ∗ (1− (1− f)D))
D

. (It would be just (1− f)D if
we don’t count the possibility that an I1 cannot find a chunk
among it’s I2s). The expected number of missing chunks

is thus n ∗ (1− f ∗ (1− (1− f)D))
D

. Taking D = 20,
f = 0.4 and n = 5000 we get the expected number of miss-
ing chunks to be less than 0.2. To account for a possibility
that half of the nodes are dead or are slow we can equiva-
lently assume the degree of D = 10. This would still mean
that we expect only 0.5% of the chunks to be downloaded
from the content provider.

5 Evaluation

5.1 Setup
In order to evaluate the performance of Aequitas we imple-
mented the required components: P2P nodes, DTS, and the
Bank/Content Provider. The P2P nodes and the DTS where
implemented in C and use non-blocking TCP connections for
communication. The Bank consists of an Apache front-end
connected to a MySql database back-end. MySql is used to
keep track of signed coins and the users’ balances. The logic
to handle node requests for bank transactions is handled with
PHP modules.

8

Figure 5: Aequitas as graph outdegree changes vs “direct
download” speed

All of our experiments were run on a testbed of 400 Plan-
etLab [25] nodes. These are all Linux Boxes that run a 2.6
Linux Kernel.

We use this testbed to test and tune the performance of
Aequitas by varying various parameters of the system such
as the size of the request, the degree of the download graph
and a number of scheduling heuristics.

All of the file-sharing instances we experiment with in-
volve randomly picked Peers (about 40). The rest of the
nodes form the pool of available Inodes. We always use
the same 3 Seed nodes (i.e. nodes initialized by the con-
tent provider to have all the chunks of the files). For all of
our tests we use a dynamic model where file-sharing Peers
enter the system with uniform arrival times. This model of
Peers joining at periodic intervals more accurately models
real-world situations than having all Peers join simultane-
ously. The average arrival time between subsequent Peers in
our tests is 10 seconds, so it takes roughly 400 seconds for all
40 Peers to join the system. A typical file size is 44MBytes,
which is comparable to the size of a long music video or a
short TV show episode.

5.2 Basic Parameters

In our first graph (Figure 5), we compare the performance
of Aequitas to the “direct download” model where the Peers
download directly from the Seeds managed by the Content
Provider. For this test we picked 40 random US and non-US
Peer nodes to download the 44MB File. We experiment by
varying the degree D of the download graph (the outdegree
of the Peer and I1 nodes as described in section 3.3.1). The
y-axis measures the average download speed in KBytes/sec
of the Peers downloading this file.

As we increase the degree D the Peers have more Inodes
to request their files from. They are more likely to find faster
Inodes and thus the average download speed increases. Only
for D = 10 does the direct download slightly outperform
Aequitas. For D = 20 the average download speed of Ae-
quitas Peers outperforms “direct download” by more than
20KBytes/sec.

We next look at how the request size effects the average

Figure 6: Average download times vs. request size

download speed. When making a download request, nodes
request several chunks at a time (as described in section 3.4).
The request size is the number of chunks times the size of
a chunk. Intuitively bigger request sizes are more efficient
because they leave less idle time between requests. It’s es-
pecially true with a system like Aequitas, in which requests
travel up and down layers of nodes. This relationship be-
tween request size and average download rates is captured in
figure 6. The figure has three curves for the average down-
load rates of 90%, 95% and 100% of a file. (That is, the 90%
curve shows the average rate at which the Peers download the
first 90% of the file.). For the 90% curve, requesting 1MB at
a time almost quadruples the download rate (from 320KB re-
quests). For the 100% curve the effect of larger request size
doubles the rate. The effect is still significant but not as pro-
nounced because towards the end of the file download there
is a long tail where the Peer may be waiting for chunks that it
requested from a slow Inode. We next look at the technique
called boosting that helps mitigate slow tail download.

5.3 Boosting

As shown in figure 6 above the tail of the download time
can be quite long. This happens when a Peer has all the
chunks but is waiting for some download to complete from
one or two very slow Inodes. To deal with slow tail down-
loads we implement a technique we call boosting. Boosting
simply means that when the client has downloaded all but a
small number of remaining chunks and the rate of download
is very slow it simply takes the chunks and re-requests them
via other Inodes.

Figure 7 measures the same relationship between request
size and the download rate, but now using boosting. This
graph compares the average download rate for download-
ing the entire file with and without boosting. One can see
that the 100% average download times improves by about 20
KBytes/sec with this technique.

To determine when the download enters the boosting
mode, we watch the download rate over the moving 15 sec-

9

Figure 7: Improvement of download rate due to boosting

Figure 8: Average download rate vs. the download threshold
at which boosting kicks in

ond window. If the download rate falls beyond a certain
threshold the boosting mode begins. Figure 8 examines the
improvement in the average download of the file for the
thresholds of 5KBytes , 15KBytes and 25KBytes/sec. (The
point 0 on the x-axis represents the case where Boosting is
not used). As expected the higher the threshold the faster the
speedup for the average download of the file (lower curve).
This occurs because, at higher threshold, we don’t wait for
the download rate to drop as much before switching into
boosting. Unsurprisingly, the rate of the download of the first
90% of the file does not depend much on boosting.

Of course using boosing requires paying extra coins to the
Inodes since we repeat the requests already sent to the slower
nodes. In our evaluation we found that the improvement due
to boosting raised the number of coins required to pay for
extra downloads only by 4-6%. (The total cost in coins for a
file download is already only a fraction of the file cost).

5.4 Variations in Other Parameters
We now look at the effect of downloading multiple files and
the effect of some nodes dying or unexpectedly leaving the
system. We continue to use boosting for these measurements.

We also experiment using our file-sharing network for si-
multaneous download of 3 44MB files. Each file in this in-

Figure 9: Multiple files shared over the same P2P system

Figure 10: The effect of killing a percentage of nodes duing
the download

stance is being download by 30 clients. Figure 9 shows the
average download times experienced by all clients in each
instance (i.e when one file is being downloaded when 2, and
when 3 are downloaded). The graph shows that the average
download rate does drop slightly with the increased number
of files as the system bandwidth becomes more saturated.
The drop is sublinear however as more aggregate bandwidth
is used with more files.

We next examine how the system copes as some nodes be-
come unavailable. We generate a schedule for killing a frac-
tion of the nodes on the network after the download process
has begun and measure the average download speeds of the
Peers. Figure 10 shows the average download speed as we
schedule to kill off 10%, 20% and 30% of randomly picked
P2P nods. As some nodes join the network dynamically other
nodes are killed off at the rates of 10, 20, and 30% relative
to the joining rate. As one would expect the reduction in the
average download speed is proportional to the rate at which
nodes are being killed off. For the 30% rate of killing nodes
the download rate drops by about 25%.

10

Figure 11: The effect of pipelining and degree on download
times

Figure 12: The effect of chunks constraints on download
times

5.5 Chunk Restrictions and Pipelining

We next perfom tests in which we only allow Inodes to down-
load randomly assigned chunks. The heuristics required to
schedule download requests in this scenario are more com-
plex than those without restrictions. For instance, there is a
high probability that a small number of requests received by
an I1 Inode may only be served by one of its I2 nodes. If that
I2 node is busy the requests will block causing slow downs
in the system.

To deal with this scenario we implemented another tech-
nique called Pipelining where we allow nodes to add to the
request queues of their upstream nodes even if those queues
are not empty. So even if a queue is blocked because it is
hard to find an upstream node that can service this request,
it can still receive more requests from its downstream node
without blocking the system. Figure 11 shows the improve-
ment due to pipelining when we use chunks restrictions on
the node. The performance is improved with both the use
of pipelining and the higher out-degree which increases the
probability of finding a node which can serve a given chunk.
Figure 12 demonstrates the download times for the first 90%,
95% and 100% of the file respectively, using pipelining.

Figure 13: Number of missing chunks from random 10 Inode
samples

Figure 14: Indegree of I2 Inodes

5.6 Aequitas Mapping Properties
Figure 13 demonstrates that even if a significant subset of the
Inodes are restricted to serving random fractions of the same
file, they still cannot combine to obtain a full file. Here each
Inode is assigned 40% of the total chunks. We collected 10
random samples of 10 Inodes each to show that each set of
nodes combined is still missing parts of the file.

Figure 14 demonstrates the indegree of an I2 node. The
normal curve shows the stability of the consistent hashing
function that maps I1 nodes to I2s.

The properties of consistent hashing guarantee that the
mapping of nodes will change only slightly despite nodes
joining and leaving the network. For instance Figure 15
shows the remapping of a number of Peers for a graph with
outdegree 5 when 10% of Inodes leave the system. Most of
the Peers remain mapped to 5 Inodes, while a few are mapped
to one or two new nodes.

6 Conclusion and Future Work

We have tackled an important problem in the content distri-
bution industry: leveraging P2P file sharing for legitimate
content distributions. To address this problem we brought
together several concepts including anonymity and the fair
use of economic incentives. Although these concepts are not

11

Figure 15: Remapping of Peers with outdegree 5 due to net-
work changes

new, we use them in a novel and inter-dependent way, and
show that they do not compromise anonymity. Furthermore,
our system carries a number of beneficial side-effects, such
as privacy (that comes with anonymity) and fair use of re-
sources (due to direct payments). The incentives also con-
vince users that finished the download to stay longer online
and continue speeding up downloads for others.

We have shown in evaluation that the extra layers of
anonymity do not add extra overhead to the “direct down-
load” methods. In fact, as we increase the degree of the
download graph (the number of nodes that a Peer talks to)
we achieve more than 10% improvement over a direct down-
load system. We have introduced techniques such as boost-
ing and pipelining that help the system heal and continue
perform efficiently despite the existing bottlenecks. In par-
ticular, Boosting helps improve the slow tail of the download
common in P2P systems.

We see much potential in the future work on this system
in areas including economic incentives, reputation building,
DRM and efficient tuning. Although in is clear that incen-
tivized Peers that stay online longer help improve perfor-
mance for other Peers, it would be interesting to see how
much longer would the Peers remain on line. We plan to
conduct a user study with the prototype that we have created
to study those effects.

Moreover we believe that adding intermediate nodes not
only helps with anonymous communication but will, with
further system tuning, enhance performance efficiency. The
existence of intermediate nodes creates more available total
download bandwidth as well as more routing paths to route
around potential glitches between communicating Peers.

Another area of future work is to use a fluid economic
model rather then fixed prices. Intermediate nodes and Peers
could bid for service in response to discovery messages. The
bidding has potential of reducing the infrastructure costs for
the end-user even further. We will then evaluate whether such
a bidding system will improve system performance.

References

[1] J. G. Aguilar. personal communication, February 2006.

[2] Akamai. http://www.akamai.com/.

[3] Apple Itunes. http://www.apple.com/itunes.

[4] K. Bennett and C. Grothoff. GAP — practical anony-
mous networking, 2003.

[5] Bit Torrent. http://www.bitconjurer.org/bittorrent.

[6] D. Chaum. Untraceable electronic mail, return ad-
dresses, and digital pseudonyms. In Proceedings of
ACM, pages 84–90, February 1981.

[7] A. Clarke, O. Sandberg, B. Wiley, and T. Hong.
Freenet: A distributed anonymous information storage
and retrieval system. In Workshop on Design Issues in
Anonymity and Unobservability, pages 311–320, July
2000.

[8] L. P. Cox and B. D. Noble. Samsara: Honor Among
Thieves in Peer-to-Peer Storage. In SOSP ’03, 2003.

[9] D.Goldschlag, M.Reed, and P. Syverson. Onion Rout-
ing for Anonymous and Private Internet Connections.
In Communications of the ACM, vol. 42, num. 2, Feb
1999.

[10] R. Dingledine, N. Mathewson, and P. Syverson. Rep-
utation In P2P Anonymity Systems. In Workshop on
Economics of Peer-to-Peer Systems, 2003.

[11] R. Dingledine, N. Mathewson, and P. Syverson. TOR:
The second generation onion router. In Usenix Security,
2004.

[12] R. Dingledine and P. Syverson. Reliable mix cascade
networks through repuation. In In Proc. Sixth Inter-
national Financial Cryptography Conference - FC02,
2002.

[13] P. Druschel and A. Rowstron. PASTRY: Scalable Dis-
tributed object location and routine for large-scale peer-
to-peer systems. In IFIPS/ACM International Confer-
ence on Distributed Systems Platforms (Middleware),
pages 329–350, November 2001.

[14] D. R. Figueiredo, J. K. Shapiro, and D. Towsley.
Payment-based incentives for anonymous peer-to-peer
systems. Technical report, July 2004.

[15] E. Franz, A. Jerichow, and G. Wicke. A Payment
Scheme for Mixes providing anonymity. In Proc.
Trends in Distributed Systems for Electronic Commerce
(TREC ’98), volume 1402, pages 94–108. Springer-
Verlag, 1998.

12

[16] M. Freedman and R. Morris. Tarzan: A peer-to-
peer anonymizing network layer. In Proceedings of
ACM Conf. On Computer and Communications Secu-
rity (CCS), November 2002.

[17] G.Denezis, R.Dingledine, and N.Mathewson. Mixmin-
ion: Design of type iii anonymous remailer protocol.
In IEEE Symposium on Security and Privacy. IEEE CS,
pages 12 – 15, May 2003.

[18] Gnutella. http://rfc-gnutella.sourceforge.net.

[19] I2P. http://www.i2p.net.

[20] D. Karger, E. Lehman, F. Leighton, M. Levine,
D. Lewin, and R. Panigrahy. Consistent hashing and
random trees: Distributed caching protocols for reliev-
ing hot spots on the World Wide Web. In 29th Annual
ACM Symposium on Theory of Computing, pages 654–
663, May 1997.

[21] Kazaa. http://www.kazaa.com.

[22] U. Moller, L. Cottrell, P. Palfrader,
and L. Sassman. Mixmaster protocol
http://www.abditum.com/mixmaster-spec.txt, July
2003.

[23] A. Nandan, G. Pau, and P. Salomoni. Ghostshare - reli-
able and anonymous p2p video distribution.

[24] Napster. http://www.napster.com.

[25] PlantLab. http://www.planetlab.org/.

[26] T. Poutanen, H. Hinton, and M. Stumm. Netcents: A
Lightweight Protocol for Secure Micropayments. In
Proceedings of the 3rd USENIX Workshop on Elec-
tronic Commerce, 1998.

[27] Prodigem. http://www.prodigem.com.

[28] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scaleable Content-addressable network.
In ACM SIGCOMM, 2001.

[29] M. Reiter and A. Rubin. Crowds: Anonymity for web
transactions. In ACM Transactions on Information and
System Security, volume 1, pages 66–92, 1998.

[30] M. Rennhard and B. Plattner. Practical anonymity for
the masses with morphmix. In Financial Cryptography,
Springer-Verlag, LNCS, 2004.

[31] R. Rivest and A. Shamir. Payword and micromint -
two simple micropayment schemes. In International
Workshop on Security Protocols, volume 1189, pages
69–87. Springer-Verlag, 1996.

[32] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. CHORD: A scalable p2p lookup
service for internet applications. In ACM SIGCOMM
2001, August 2001.

[33] R. S. Tracker. http://www.inkrecharge.com/ttrc2/.

[34] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer.
Karma: A virtual Currency for Peer-To-Peer Systems.
In ACM Workshop on the Economics of Peer-to-Peer
Systems, June 2003.

[35] Xbox-sky. http://bt.xbox-sky.com/.

[36] B. Yang and H. Garcia-Molina. PPay: micropayment
for peer-to-peer systems. In ACM Conference on Com-
puter and Communication Security (CCS), volume 10,
pages 300–310. ACM Press, 2003.

[37] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location.
Technical report, April 2001.

13

