
Mitigating the Effect of Free-Riders in BitTorrent using Trusted
Agents

Alex Sherman, Angelos Stavrou, Jason Nieh and Cliff Stein
Department of Computer Science, Columbia University, New York, NY

asherman, angel, nieh, cliff@cs.columbia.edu

Abstract

Even though Peer-to-Peer (P2P) systems present a
cost-effective and scalable solution to content distribu-
tion, most entertainment, media and software, content
providers continue to rely on expensive, centralized so-
lutions such as Content Delivery Networks. One of the
main reasons is that the current P2P systems cannot guar-
antee reasonable performance as they depend on the will-
ingness of users to contribute bandwidth. Moreover, even
systems like BitTorrent, which employ a tit-for-tat proto-
col to encourage fair bandwidth exchange between users,
are prone to free-riding (i.e. peers that do not upload).
Our experiments on PlanetLab extend previous research
[14, 12, 11] demonstrating that such selfish behavior can
seriously degrade the performance of regular users in
many more scenarios beyond simple free-riding: we ob-
served an overhead of upto 430% for 80% of free-riding
identities easily generated by a small set of selfish users.

To mitigate the effects of selfish users, we propose a
new P2P architecture that classifies peers with the help of
a small number oftrusted nodesthat we call Trusted Au-
ditors (TAs). TAs participate in P2P download like regular
clients and detect free-riding identities by observing their
neighbors’ behavior. Using TAs, we can separate compli-
ant users into a separate service pool resulting in better
performance. Furthermore, we show that TAs are more
effective ensuring the performance of the system than a
mere increase in bandwidth capacity: for 80% of free-
riding identities a single-TA system has a 6% download
time overhead while without the TA and three times the
bandwidth capacity we measure a 100% overhead.

1 Introduction

Even though Peer-to-Peer (P2P) systems present a cost-
effective and scalable solution to content distribution most
companies that distribute videos, games and software on-
line continue to rely on expensive infrastructures such as
Content Delivery Networks (CDNs). The reason for this
is that companies such as Yahoo and YouTube that depend

on ad revenue must guarantee reliable download times to
their users. However, the performance (i.e. download
time) experienced by a P2P participant is heavily depen-
dent on the willingness of other peers to share their band-
width. Some P2P systems including BitTorrent[3], a pop-
ular P2P system, try to encourage pairs of neighbors to
upload data to one another by using a “tit-for-tat” proto-
col. Unfortunately, both earlier research [14, 12, 11] and
our experiments show that simple client modifications al-
low “free-riders”(i.e. selfish nodes that have zero upload
rate) to complete their download. Furthermore, we show
that when we have low and high contributing nodes in Bit-
torrent, there can be a significant increase in download
times for the high contributing nodes.

This inherent Bittorrent weakness can lead to serious
performance degradation from selfish behavior and ex-
pose BitTorrent to Sybil attacks [9]. In such attacks,
a small set of users, or even a single user, participate
in the system with multiple identities. The goal is to
boost their download rate and thus decrease their down-
load time. Such users can generate multiple identities in
the system either by using multiple IP addresses or even
connecting from a single machine through multiple paths
via an anonymous network such as Tor [6]. Observe, that
the software client that automates creation of many fake
identities can be made widely available and adopted by
many users. These fake client instances, which can po-
tentially correspond to a very small set of real users, can
seriously deteriorate the overall download times for the
rest of the users rendering the system unusable for large
files. In our PlanetLab experiments, we observed that in
cases where free-riding clients make up 80% of the sys-
tem the download speed of compliant clients can increase
by 430%. This means that a compliant DSL user will
spend an hour downloading a music video instead of 10
minutes. This degradation in performance is clearly unac-
ceptable for companies that build their online businesses
around video, software or games distributions and must
guarantee reliable times in order to retain their users.

Our aim is to study Bittorrent’s behavior in the presence
of selfish clients and to propose architectural changes

1

that guarantee reliable performance for compliant users.
To that end, we introduce a new class of peers called
Trusted Auditorsto the P2P system. Trusted Auditors (or
TAs) participate in the system along with other peers and
build reputation of their peers by observing their upload
behavior. The reputation is tied to each client’s identity
which in turn determines the level of service received by
this identity. This technique limits the damage from the
free-riding identities. Thus, we guarantees a high level
of service for compliant users. We rely on a set of TAs
managed by the content provider to establish reputation
rather than a peer-based feedback approach in order to
avoid collusion by a large group of peers that may occur
when all malicious clients are generated by a single
user. We also show that this technique of usingTrusted
Auditorsis more effective than simply provisioning more
server bandwidth in the P2P system. We now give a brief
overview of BitTorrent before explaining our additions to
the system.

BitTorrent Overview A file that is distributed over a
BitTorrent system is broken up into a number of smaller
chunks (typically 256KB in size). BitTorrent leverages
the P2P users’ upload bandwidth by having them upload
these chunks to one another. A BitTorrent system typi-
cally contains one or moreSeedsor clients that contain
all the chunks of the file. A BitTorrent system also
includes aTracker. Clients joining the system contact the
tracker to obtain IP addresses of other clients. By default
the tracker hands out upto 50 IPs selected at random.
A Bit-Torrent client implements a tit-for-tat heuristic to
foster fair data exchange between clients. Based on the
official tit-for-tat specification [2] a BitTorrent clients
unchokes(or allows uploads to) four peers, from which it
receives fastest download rate. The client updates this set
of peers every 30 seconds and also selects an additional
peer to unchoke at random. This latter part intended to
help the client with discovery of faster peers is known as
optimistic unchoking. A full description of the BitTorrent
behavior can be found in [2].

Our Approach In the presence of many free-riding
clients the performance of compliant peers suffers tremen-
dously in BitTorrent for two reasons. First, since the
mapping of clients and Seeds to one another is random,
free-riders consume much of the Seeds’ upload bandwidth
and compliant peers receive a smaller inflow of new file
chunks from the Seeds. Second,optimistic unchokingal-
gorithm is very slow [11] at helping compliant peers to
discover one another.

Our proposed design addresses these problems by iden-
tifying free-riders and separating free-riders and compli-
ant users into different service pools. Inside their service
pool compliant users get the full benefit of the Seed up-

load bandwidth and also have easier time discovering fast
peers viaoptimistic unchoking. In order to identify free-
riders we introduce a new class of peers calledTrusted Au-
ditors (or simply TAs). TAs are a set of peers managed by
the content provider. They download the file just like reg-
ular clients, but in addition they gather information about
bandwidth contribution rates of their neighbors (i.e. peers
assigned to them by the tracker). In this way TAs help the
system build a reputation history of each peer based on
their bandwidth contribution rate. In addition, the system
enforces strong client identities via password-protection.
Client identities with good reputation are assigned to the
same service pool isolated from the free-riding clients that
have poor reputation.

We now explain why we believe our approach to be
the right solution to the free-rider problem by addressing
several alternatives and counter-arguments:

If the Seed bandwidth becomes the scarce resource in
the case of many free-riders why not resolve it simply by
provisioning more Seed servers?. It turns out based on our
experiments that a system with fewer Seeds and TAs is
more resilient against attacks by free-riders. For example,
in our experiments on a 100-client BitTorrent system we
found that even after provisioning 20 times the required
seed bandwidth enough free-riding identities can cause a
100% increase in the download times of compliant users.
At the same time we show that a system of one Seed and
one TA are sufficient to identify and remove a great ma-
jority of free-riders in the system of the same size. Thus
the total amount of bandwidth that the content provider
needs to provision to implement TAs is significantly less
and more effective than the extra Seed servers.

Why need an extra set of TAs and not establish repu-
tation based on feedback from other Peers?. Peer-based
reputations systems [7, 10] do not address the problem of
collusion by a large set of free-riding peers who can col-
lude to inflate one another’s reputation. A malicious user
who creates a majority of free-riding identities can easily
have them collude.

Why is it sufficient to only separate the free-riders and
not split the rest of the users based on their specific contri-
bution level ?Once we filter out free-riders (and very low-
contributing peers) we can use the results of Legout et.al
[1]. Although their work does not study the free-riders
they show for other scenarios peers with similar upload
rates tend to cluster together in BitTorrent. We believe
that we can use our methods to improve the results in [1]
further by creating multiple service pools, but we leave
that as an item for future work.

Finally, what if the malicious peers can learn the
IPs of TAs and send data just to those IPs in order to
raise their reputation? We suggest two reasons why it
would be difficult to do that. First, the behavior of TAs
is indistinguishable from other clients. Outwardly they

2

implement the exact BitTorrent protocol. Second, the
system of a large content provider employs many TAs
that frequently renew their IP addresses using dynamic
DNS. The study of the reliability of these services is
beyond the scope of this paper.

Contributions Our contributions are:
• We present results from our PlanetLab experiments

that study the effect of a large number of free-riding
identities on compliant users including the case of many
Seeds.
• We present a design sketch of the system that uses
Trusted Auditors to guarantee fast download times to
good peers in the face of free-riders.
• We present measurement results that demonstrate the
effectiveness of TAs in identifying malicious peers.

We present the design of our system in section 2. Our
measurement methodology is described in section 3. Ex-
perimental results are presented in section 4. We review
related work in section 5. We conclude and list future
work in section 6.

2 System Design

In this paper we sketch out the design of our system and
carry out the measurements on the effectiveness of Trusted
Auditors. We leave the implementation of the rest of the
system components to future work. In brief, we augment
the existing BitTorrent design by adding a set of TAs that
help identify free-riders and low-riders (i.e. peers con-
tributing very little bandwidth). The compliant clients and
free-riders are separated into distinctservice pools.

In future work we plan to take this idea further and
differentiate compliant clients into multiple service pools
based on their specific upload rates. However, we find
that the biggest gain of our system comes from filtering
out free-riders and low-riders because they significantly
constrain data flow to compliant users. For this reason our
current design and measurements focus on two classes of
users: selfish and compliant. We now discuss the service
pools, TA functionality and implementation of strong
client identities.

Service Pools In its most basic state for each down-
loadable file our system contains three service pools:
free-rider pool for free-riders,compliant poolfor com-
pliant clients andfresh poolfor newly joining identities
who do not yet have a sufficient reputation history in the
system. Each service pool contains its own Seed servers,
a tracker and a set of TAs.

Evaluation by TAs A small percentage of the clients in
each pool are the Trusted Auditors. TAs evaluate their

neighbors based on the download rate from those neigh-
bors weighted by the amount of time that the TAs them-
selvesunchoke(or push data to) that neighbor. TAs submit
the clients’ reputation statistics to the localtracker that
maintains each client’s history. Eachta epochthe tracker
examines the clients’ history and may decide to move a
client between service pools. The number of TAs (de-
termined by thepercentta parameter) and the time they
take to make a decision to move a client (determined by
ta epoch) present a tradeoff between how quick vs. how
accurate is the classification. In our measurements we
found that in a 50 client system with 1 TA (percentta = 2
) over 20 minutes (ta epoch= 20) we can reliably iden-
tify 75-80% of the free-riders. This means that say for
a large movie download that may take 2 hours even with
a large number of free-riding identities, compliant clients
that join the system for the first time only need to spend a
relatively short time in the fresh pool before being placed
in the compliant pool. Returning compliant clients are
placed immediately in the compliant pool.

Observe, that the classification of the clients need not
be fully accurate. As long as the TAs can identify and
separate a large fraction of free-riders they can signifi-
cantly improve the performance of the remaining compli-
ant users. Further to make up for classification errors TAs
continue to evaluate all the clients in the free-rider and
compliant service pools and make corrective moves.

The history of clients’ contribution is weighted by
time over multiple downloads by that client. However,
the history is heavily weighted towards the most recent
ta epoch. Although we do not report these measurements
here due to lack of space we observe that such weighing
of the history makes the system very effective against
smart free-riders who may for instance pretend to be
compliant in the fresh pool and then turn the free-rider
behavior on. We leave the study of such strategies to the
future work.

Strong Client Identities A client’s reputation is tied to
her identity. To maintain strong identities after the client
selects to download a file they log in to the system with
a username and a password so that the history associated
with the identity can be retrieved from the system. Upon
login the client receives a signed credential and a verifica-
tion key. We modify the protocols to have peers verify one
another’s credentials. When a compliant peer A receives
a connection from peer B it is in the interest of peer A to
adhere to the protocol and to verify that B is authorized
by the system to be in its compliant pool.

3

3 Methodology

We performed two sets of measurements on the Planet-
Lab. The first set was to evaluate the behavior of the stan-
dard BitTorrent system with free-riders. The second set
was to evaluate the effectiveness of TA(s) in identifying
the free-riding clients. In all our experiments we used 50
BitTorrent clients that were downloading a 64MB file. For
different experiments we would add different number of
Seeds (1,2,3,5,10) and configured a different percentage
of the 50 clients to act as free-riders (0,20,40,60,80%).
The Seed service were initialized with the 64MB file and
the clients would begin the download simultaneously. The
64MB corresponds to a typical size of a music video file.

To implement free-riders we modified the BitTorrent
clients not to send not to announce or upload data chunks.
To make sure that our results were not skewed by bad
clients we carefully selected PlanetLab machines that
were capable of uploading at this rate.

We performed three experiments for each set of pa-
rameters and measured the download completion times of
the compliant users. In each test, we randomly config-
ured three of the compliant users to act as Trusted Audi-
tors. The download/upload behavior of a TA did not differ
from that of a compliant user and thus having TAs did
not skew any download measurements. Each minute TAs
logged the bytes that they sent and received from each of
their neighbors. By analyzing the TAs’ logs after each ex-
periment we could then evaluate how precisely and how
quickly could a subset of 1, 2 or all 3 of the TAs identify
the free-riders.

4 Evaluation

4.1 Free-rider Problem

In the first part of the evaluation, we performed exper-
iments to assess the impact of selfish participants with
zero or low upload rate, on the performance of compli-
ant bittorrent clients. Table 1 presents the increase in the
average download time as we vary the percentage of free-
riders in a 50-client system for a 64MB file download.
The upload bandwidth capacity of the seed and the com-
pliant clients was limited to a maximum of 25KB/s. We
observe that even for a mere 20% of free riding identi-
ties, we have a 25% time overhead. In practice, 20% of
free-riding identities correspond to 10 fake identities for a
system of 50 nodes and can be easily generated by a sin-
gle user. To make things worse, when 60% and 80% of
the identities behave selfishly as free-riders, the average
download times increase by 146% and 430% respectively.
The more free-riding identities there are in the system the
more of the Seed upload bandwidth they use without shar-
ing it with the rest of the system. The secondary effect

is that compliant user has a hard time distinguishing be-
tween good and bad users since the compliant users have
little new data to share.

Our experiments show that the effect of selfish users
on compliant users is extend beyond the case of free-
riders. Table 2 shows the effect of low-riders (contributing
3KB/sec) on compliant users and a Seed that contribute
at 80KB/sec. Here for 40% and 80% of low-riders the
slowdown for the compliant users is 18% and 47% re-
spectively. A 47% slowdown corresponds approximately
to an increase of a movie download from 3 hours to 4 and
a half.

% Free-Riders Mean Download % Increase
0% 2690 0%
20% 3370 25%
40% 4440 65%
60% 6620 146%
80% 14270 430%

Table 1: Percentage of increase in mean download time (sec-
onds) with free-riders in a 50-client system with 1 Seed

4.2 Trusted Auditors

In this section, we evaluate the effectiveness of TAs in
classifying the free-riders in the system. TAs attempt to
identify as many free-riders as possible with as few as pos-
sible false positives (i.e. compliant users that do not push
data to these TAs at a reasonable rate). To reduce false
positives to negligible levels (below 0.01%), we consider
only those clients whom TA(s) unchoke (i.e. push data
to) for a considerable period of time. Our experiments
indicate that having TAs unchoke a node for a combined
time of one minute without that node’s reciprocation with
a reasonable upload rate is sufficient to classify it as a free
or low rider (Observe that BitTorrent uses 30 seconds as a
conservative estimate during its optimistic unchoking).

% Low-Riders Mean Download % Increase
0% 874 0%
20% 933 7%
40% 1034 18%
60% 1128 29%
80% 1282 47%

Table 2: Percentage of increase in mean download time with
increase in low-riders in a 50-client system with 1 Seed. Low-
riders upload rate: 3KB/s. Other clients: 80KB/s

Figure 1 depicts the percentage of free-riders (y-axis)
correctly identified by TAs over time (x-axis) in a 50 client
system with 80% free-riders. Three different curves cor-
respond to different number of TAs used. Although 3 TAs
identify free-riders faster even 1 TA can identify 75% of
those free-riders after 20 minutes even with 80% of free-
riders in the system. This means that after 20 minutes

4

75% of the free-riders can be identified and filtered out
and performance for the compliant users can be immedi-
ately improved. (We found similar results for identifica-
tion of low-rides but we do not report them here due to
space limitations).

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

P
er

ce
nt

ag
e

of
 fr

ee
-r

id
er

s
co

rr
ec

tly
 c

la
ss

ifi
ed

Time (seconds)

1 TA
2 TAs
3 TAs

Figure 1: Percentage of free-riders correctly identified over
time with a system of 50 clients, 80% of which are free-riders.
Different curves correspond to the different number of TAs used

Based on the TA identification rate figure 2 compares
download times of our system with 1 TA vs BitTorrent
provisioned with multiple Seeds. Although the TA-based
system takes a slight hit in the beginning to identify the
free-riders it beats the setup with 10 Seeds starting with
200MB file size. Thus with a fifth of the provisioned re-
sources (1 Seed+ 1 TA vs. 10 Seeds) our system is ex-
pected to perform better for 200MB+ sizes. It behaves
better than a 3 Seed system even for smaller file sizes. We
also observe that the returning users who already have a
reputation history in the system immediately see the im-
proved download times.

 25000

 20000

 10000

 4000

 512 400 300 200 100

P
ro

je
ct

ed
 D

ow
nl

oa
d

T
im

e
(s

ec
on

ds
)

File Size (MB)

1 Seed, 1 TA
10 Seeds

5 Seeds
3 Seeds

Figure 2: Mean download times for various file sizes in a 50-
client system with 80% free-riders. Compares our system (1
Seed, 1 TA) vs multiple Seed provisioning.

4.3 Multiple Seeds

Figure 3 shows the effect of free-riders on the system with
various number of seeds and TAs. For each percentage
of free-riders (x-axis) the graph shows the overhead fac-
tor (y-axis) on the mean download time when these free-
riders are present. The system with just one seed and 1 TA
is much more resilient to free-riders than any other setup
including one with 10 seeds. In fact while other setups
have at least 10, 20 and 40% overhead for 40,60 and 80%
free-riders respectively the system with a TA has under
6% overhead. The only overhead for the case with 1 Seed
+ 1 TA is the time taken to identify free-riders which gets
amortized over a large file download.

5.0

1.6

1.4

1.2
1.1
1.0

80604020

O
ve

rh
ea

d
F

ac
to

r

Percentage of Free-Riders

1 Seed
3 Seeds
5 Seeds

10 Seeds
1 Seed + 1 TA

Figure 3: Effect of free-riders in systems with multiple seeds
as well as the system with 1 Seed+ 1 TA for a 512 MB file
download. The y-axis shows the overhead factor of the mean
download time with a given percentage of free-riders vs. the
same setup (Seeds, TAs) without free-riders

Finally, we comment on the distribution of the down-
load times in the case of free-riders with multiple seeds
(figure 4). Without any free-riders, we observed that all
clients complete almost simultaneously while with free-
riders the tail of the distribution takes an especially heavy
hit. While the mean goes up by about 40% the 90th per-
centile takes almost double the time to finish the down-
load. This means that even in a system that is well pro-
visioned with Seed bandwidth the content provider can
expect that at least some users will see a doubling of their
download times with free-riders.5 Related Work

Free-Riding in Bit-Torrent Qiu and Srikant [4] point
out in their analysis that theoptimistic unchokingbehavior
in BitTorrent [2] opens up the client to losing upto 20% of
its bandwidth to free-riders who simply need to wait for
other peers to “optimistically” connect to them.

Recent research [14, 12, 11], has demonstrated how
in practice a modified BitTorrent client can exploit dif-
ferent strategies to achieve better performance. In [14]

5

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
ve

rh
ea

d
of

 d
ow

nl
oa

d
w

ith
 fr

ee
-r

id
er

s

Fraction Completed

80% FR, 5 Seeds
80% FR, 10 Seeds

Figure 4: Overhead in completion times of compliant peers
with a system of 50 clients+ multiple Seeds, and 80% of free-
riders as compared to mean download time without free-riders

authors implement a BitThief client that, similar to our
free-riding client, does not contribute data to others. They
demonstrated that BitThief can perform better than regu-
lar clients with scenarios where majority of the client run
the regular BitTorrent.BitTyrantclient [11] takes advan-
tage of some of the altruism of other BitTorrent clients to
send minimum possible data and achieves a 70% perfor-
mance improvement. LargeView Exploit [12] implements
a free-riding client that connects to as many IPs as possi-
ble. This is perhaps the closest to our work. [12] shows
that their free-riding clients can perform on par with the
rest of the clients even where free-riders are upto 40%
of the network. We focus our work on the study of the
degradation of service for compliant users in the face of
free-riders. We also extend the study to show that adding
significant Seed bandwidth does not negate the effect of a
large percentage of free-riders.

Legout et.al [1] study the clustering behavior of BitTor-
rent and demonstrate that peers that upload at the same
rate tend to cluster with one another. We were able to
confirm the results of their scenario where the lowest class
of peers still upload at 5KBytes/s. However, they do not
consider the case of free-riders or peers that upload at a
very low rate (1-2KBytes/sec).Our experiments show that
in those cases the flow of new data can be significantly
constrained and clustering does not play a role.
Reputation and Incentives Some systems such as [13]
use virtual credits to incentivize peers in P2P systems to
exchange services fairly. Both ARA and Dandelion pro-
vide secure methods for credit-checks and peer validation.
[5, 8] go a step further and implement actual currency pay-
ment for rendered services among peers. However, with
a large number of malicious users who do not share data
the compliant users will need to waste a lot of resources
and overhead of credit checks only to discover that their
neighbors are cheating. Reputation systems such as [7]

and PeerTrust [10] rely on feedback from other peers to
establish trusted peers who provide good service. Such
systems, however, are open to collusion especially where
majority of the peers are malicious and can to hype one
another reputation. In contrast, our system avoid collu-
sion by utilizing TAs, a managed set of peers.

6 Conclusion and Future Work

We presented a study of the effect of selfish users on com-
pliant users in BitTorrent. Through extensive experimen-
tation on Planet-Lab, we demonstrate how such selfish
behavior, which can span from zero to low content con-
tribution, can deteriorate the overall system performance
by causing a 4-5 times increase in compliant users’ down-
load time. To address the effects of selfish behavior, we
presented a novel architecture that employs Trusted Au-
ditors to identifying and separate compliant from selfish
clients. Our preliminary results demonstrate that our ap-
proach can ensure the download times of regular clients
even when we have 80% of free-riding identities in the
system.

As a future work, we plan to extend our measurements
and present a full implementation of our system that in-
cludes identification and separation users into multiple
download classes. Furthermore, we would like to study
the overall effect of such a separation on user perfor-
mance and to the overall system. Finally, we want to con-
sider scenarios where the selfish users attempt to game the
system using dynamic behavior by initially contributing
bandwidth to obtain admittance to a good service pool.

References
[1] A.Legout, N.Liogkas, E.Kohler, and L.Zhnag. Clustering

and sharing incentives in bittorrent systems. InSIGMET-
RICS, 2007.

[2] B.Cohen. Incentives build robustness in bittorrent. In
Workshop on Economics of P2P Systems, 2003.

[3] Bittorrent. http://www.bittorrent.com.

[4] R. D. Qiu. Modeling and performance analysis of
bittorrent-like peet-to-peer networks. InSIGCOMM, 2004.

[5] R. Dingledine, N. Mathewson, and P. Syverson. Reputa-
tion In P2P Anonymity Systems. InWorkshop on Eco-
nomics of Peer-to-Peer Systems, 2003.

[6] R. Dingledine, N. Mathewson, and P. Syverson. TOR: The
second generation onion router. InUsenix Security, 2004.

[7] F.Cornelli, E.Damiani, S. C. di Vimercati, S.Paraboschi,
and P.Samarati. Choosing reputable servents in a p2p net-
work. In WWW, 2002.

[8] D. R. Figueiredo, J. K. Shapiro, and D. Towsley. Payment-
based incentives for anonymous peer-to-peer systems.
Technical report, July 2004.

6

[9] J.R.Douceur. The sybil attack. InIPTPS, 2002.

[10] L. L.Xiong. Peertrust: Supporting reputation-based trust
for peer-to-peer electronic communities. InIEEE Trans-
actions on Knowledge and Data Engineering, July 2004.

[11] M.Pieatek, T.Isdal, T.Anderson, A.Krishnamurthy, and
A.Venkataramani. Do incentives build robustness in bit-
torrent. InNSDI, 2007.

[12] M.Sirivianos, J.H.Park, R.Chen, and X.Yang. Free rid-
ing in bittorrent networks with the large view exploit. In
IPTPS, 2007.

[13] S. M.Sirivianos, X.Yang. Dandelion: Cooperative content
distribution with robust incentives. InUSENIX, 2007.

[14] T.Locher, P.Moor, S.Schmid, and R.Wattenhofer. Free rid-
ing in bittorrent is cheap. In5th Workshop on Hot Topics
in Networks, 2006.

7

