
Slicing the Onion: Anonymous Routing Without PKI

Sachin Katti Dina Katabi Katarzyna Puchala
skatti@mit.edu dk@mit.edu kpuchala@mit.edu

Abstract– Recent years have witnessed many proposals for
anonymous routing in overlay peer-to-peer networks. To provide
both sender and receiver anonymity, the proposed protocols require
the overlay nodes to have public-private key pairs, with the public
keys known to everyone. In practice, however, key distribution and
management are well-known difficult problems that have crippled
any widespread deployment of anonymous routing. In this paper,
we propose a novel protocol that uses a combination of information
slicing and source routing to provide anonymous communication
similar to Onion Routing but without a public key infrastructure.

1 INTRODUCTION

Anonymous routing plays a central role in private com-
munication. Its applications range from file sharing to mili-
tary communication, and include anonymous email, private
web browsing and online voting. Traditionally, anonymous
routing has required the help of a trusted third party, which
either acts as a centralized proxy [1, 3], or provides the
sender with the public keys of selected willing relays [2,
8]. However, the recent success of peer-to-peer systems has
evoked interest in using them as anonymizing networks. In-
deed, the large number of nodes (a few million [14]) and
the heterogeneity of their location, communication patterns,
political background and local jurisdiction make these net-
works ideal environments for hiding anonymous traffic. Many
systems have been designed to exploit peer-to-peer over-
lays in anonymous communication, including Tarzan [10],
AP3 [15], MorphMix [17] and Cashmere [19]. But to pro-
vide sender and receiver anonymity, these systems require
the overlay nodes to have public-private keys obtained through
a trusted authority; i.e., they require a public key infrastruc-
ture (PKI).1

But why is PKI problematic for peer-to-peer anonymiz-
ing networks? Key distribution and management are well-
known difficult problems [4]. In particular, prior work as-
sumes the sender knows a priori the public keys of all re-
lay nodes [10, 15, 19]. The underlying assumption is that
a trusted third party generates all keys and distributes them

1A few systems (e.g., Crowds [16]) do no require PKI, but they expose the
receiver and message content.

to the nodes. But such an approach is problematic for many
reasons. First, in a large peer-to-peer network, the trust model
may differ from one node to another (e.g., nodes in Cuba
may not trust the same PKI as nodes in the US). Second, it
opens up the system to attacks on the key distribution proce-
dure and compulsion attacks that force the key originator to
disclose the keys under the threat of force or if required by a
court order [12, 13]. Indeed, some countries have provisions
that allow them to legally request the decryption of material
or the handing over of cryptographic keys [6, 9]. Addition-
ally, PKI makes anonymous multicast difficult as all recip-
ients of a multicast message have to share the same public
private key pair. Finally, with time, an increasing fraction
of the keys can get stolen off compromised machines. This
necessitates the existence of key management and update
protocols, complicating the problem further.

This paper shows how to perform anonymous Onion Rout-
ing without PKI. Onion routing [11] is at the heart of most
prior work on peer-to-peer anonymizing networks [8, 10, 15,
19]. It uses a form of source routing, in which the IP address
of each node along the path is encrypted with the public
key of its previous hop. This creates layers of encryption–
layers of an onion. To send a message, each node decrypts
one layer, discovers its next hop, and forwards the mes-
sage. Thus, each relay node knows only its previous and
next hops; it cannot tell the sender, the receiver, the path,
or the content of the message. Our scheme provides similar
anonymity but without PKI.

Our approach is based on the simple but powerful idea
of Information Slicing. To provide anonymous communi-
cation, each node along the path, the destination included,
needs a particular piece of information, which should be hid-
den from other nodes in the network. For example, the des-
tination needs to learn the content of the message without
revealing that content to other nodes, while each intermedi-
ate relay needs to learn its next hop without other nodes in
the network knowing that information. We divide the infor-
mation needed by a particular node into many small random
pieces. These information pieces are then delivered along
disjoint paths that meet only at the intended node.Thus, only
the intended node has enough bits to decode the information

content. We call this approach information slicing because
it splits the information traditionally contained in an onion
peel (i.e., the ID of the next hop) into multiple pieces/slices.

Anonymity via information slicing is not as straightfor-
ward as it sounds. To send a particular node the identity of
its next hop along different anonymous paths, one needs to
anonymously tell each node along these paths about its own
next hop. Without careful design, this may need an exponen-
tial number of paths. Our keyless onion routing algorithm
provides efficient information slicing using a small constant
number of paths.

The rest of the paper describes the details of our informa-
tion slicing protocol, and shows how to construct forward-
ing graphs that deliver anonymous messages using a small
number of paths. It also presents our preliminary implemen-
tation results showing that the latency of setting up anony-
mous routes in our scheme is low enough to be practical.

2 GOALS & MODEL

The objective of this work is to enable large and fully
distributed peer-to-peer anonymizing networks. We focus
on pragmatic anonymity for non-military applications, such
as file sharing, private email and the communication of med-
ical records. These applications strive for privacy but can
deal with low probability of information leakage.

We assume an adversary who can observe some frac-
tion of network traffic, operate relay nodes of his own, and
can compromise some fraction of the relays. We do not pro-
tect against a global attacker who can snoop on all links.
Though such an adversary is usually assumed when analyz-
ing theoretical anonymity designs, all practical low-latency
anonymizing systems, ours included, do not protect against
such an adversary [8, 10, 15, 17, 19]. Also, similar to prior
work [8, 10, 15, 19], we generate enough cover traffic to
prevent simple traffic analysis attacks.

We also assume the sender can send from multiple IP
addresses, and a secure channel like ssh is available be-
tween them. Many people have Internet access both at home
and at work/school, and thus, can send from different IP ad-
dresses. Alternatively, the sender may have both DSL and
cable connectivity. Or, he may belong to a multi-homed or-
ganization. For example, each of the authors has Internet
access at home, as well as at school and on Planetlab ma-
chines. We believe that a large number of Internet users can
send from multiple accounts with different IP addresses. An
attacker may try to correlate IP addresses belonging to the
same sender. However, in all of the examples above the IP
addresses used belong to different domains. Additionally,
most broadband providers and companies utilize NAT, pre-
venting the association of an IP address with a particular
user.

Last, we assume the attacker cannot snoop on all links

Figure 1—Node S sends a confidential message ~m to X by first multi-
plying the message with a random matrix ~I∗ = A~m, then splitting the
resulting information content into multiple pieces, each follows a dis-
joint path to X. Only X receives enough information bits to decode the
original message as ~m = A−1I∗.

leading to the receiver. This assumption can be ignored if
the sender knows the receiver’s key, which guarantees mes-
sage confidentiality even if the attacker can collect all infor-
mation slices sent to the receiver.2

3 ANONYMOUS COMMUNICATION WITH-
OUT PKI

Our approach to anonymity without PKI stems from a
simple observation: anonymity can be built out of confi-
dentiality. In particular, for anonymous communication, the
source needs to send every relay node along the path its rout-
ing information (i.e., its next hop) in a confidential message,
accessible only to the intended relay. One can send confiden-
tial messages without keys using a simple building block:
information slicing.

Consider the scenario in Fig. 1, where sender, S, wants
to send message m to node X. The sender divides the mes-
sage into d blocks mi, ∀i ∈ {1, . . . , d}, such that the orig-
inal message can be recovered only when a node has ac-
cess to all d blocks. Sending a message block mi in the clear
may expose partial information to intermediate nodes. Thus,
the sender multiplies the message vector ~m = (m1, ..., md)
with a random but invertible matrix A and generates d slices
which constitute a random version of the message:

~I∗ = A~m.

Then, the sender picks d disjoint paths to node X. It sends
on path i both the slice I∗i and Ai, where Ai is row i of A.
An intermediate node sees only some random values I∗i and
Ai, and thus cannot tell the content of the message. Once the
receiver receives all slices, it decodes the original message
as:

~m = A−1~I∗.

This slicing mechanism could be considered as a variation
on the concept of secret sharing [18] customized for the our
problem (see §6).

2Note that knowing the receiver’s key is a much weaker constraint that
knowing the keys of the overlay nodes, as in many instances of private
communication the sender and receiver know each other.

Figure 2—An example of anonymous routing with information slicing.
Nodes S and S′ are controlled by the sender. A message like {Zl, Rl}
refers to the low-order words of the IDs of nodes Z and R, rand refers
to random bits.

However, using information slicing to provide anonymity
is tricky. To send a particular node the identity of its next hop
along different anonymous paths, one needs to anonymously
tell each node along these paths about its own next hop. This
will need an exponential number of paths. To avoid expo-
nential blow up, it is essential that the sender construct effi-
cient forwarding graphs and divide the information smartly.
The construction of these graphs in the general case is fairly
complex. Thus, we first explain a simplified example in §3.1,
while leaving the details of our routing protocol to §4.

3.1 Example of Anonymous Routing via Informa-
tion Slicing

We use a simple scenario to show how to provide anonymity
through information slicing. In onion routing, a node learns
its next hop from its parent. Though the parent delivers this
information to its child, it cannot access it because the in-
formation is encrypted with the child’s public key. In the
absence of keys, the path cannot be included in the message
as that allows any intermediate node to learn the whole path
from itself to the receiver. We need an alternative method to
tell a node about its next hop without revealing it to other
nodes, particularly the parent node.

How to preserve anonymity without a PKI? Fig. 2 shows
an example keyless anonymous routing graph. Assume the
sender has access to two IP addresses S and S′. To send an
anonymous message to node R, the sender, in Fig. 2, has
picked a few relay nodes at random. It has arranged them,
with the receiver, into 3 stages (path length L = 3), each
containing 2 nodes (split factor d = 2). The 0’th stage is
the source stage itself. Each node in this graph is connected
to every node in its successive stage. Also, note that the re-
ceiver node (the solid node labeled R) is randomly assigned
to one of the stages in the graph.

Next, the sender in Fig. 2 wants to send each relay the IP
address of its next hop by splitting this information over 2
paths. The sender could have split each IP address to its most
significant and least significant words. This however is un-
desirable as most significant word may indicate the owner of
the IP prefix. Instead the sender transforms the IP addresses
of the relay nodes by multiplying each address by an invert-
ible matrix A of size d × d (2 × 2). For example, assume Vl

IP Header Slice 1 Slice i Slice L

(Cleartext)

 (Cleartext)
Transformation Vector

Flow ID

Ai Ai.
~I′xEncoded block I

∗

xi =

Figure 3—Packet Format. Each packet contains L information slices.

and Vh are the the low and high words of the IP address of
node V; the sender splits the IP address as follows:

(

VL

VH

)

= A

(

Vl

Vh

)

(1)

and sends VL and VH to V’s parents along two different
paths.

Fig. 2 shows how messages are forwarded such that each
node knows no more than its direct parents and children.
Consider an intermediate node in the graph, say V. It re-
ceives the message {ZH , RH}{XH, YH}{randH} from its first
parent S. It receives {ZL, RL} from its second parent S′. Af-
ter receiving both messages, V can discover its children’s IP
addresses as follows:

(

Zl Rl

Zh Rh

)

= A−1

(

ZL RL

ZH RH

)

(2)

But V cannot tell the children of its children (i.e., the chil-
dren of nodes Z and R) because it misses half the bits in
these addresses, nor does it know the rest of the graph. The
same argument applies to other nodes in the graph.

You might be wondering how the graph in Fig. 2 will be
used to send confidential messages to node R, without ex-
posing the content of the messages to other nodes. Indeed,
as it is, R does not even know it is the intended receiver.
But this is easy to fix. In addition to sending each node its
next hop IPs, we send it: (1) a key and (2) a flag indicating
whether it is the receiver. Similar to the next hop, the key
and the flag are also split along disjoint paths, and thus inac-
cessible to other nodes. Now every node in the graph shares
a secret key with the sender. The sender can then use tradi-
tional onion routing to forward the message to the receiver,
encrypting the message in layers using the secret keys of the
nodes in the graph.

4 INFORMATION SLICING PROTOCOL

We use the intuition from the previous section to con-
struct an anonymous routing protocol based on information
slicing.

4.1 Per Node Information

Let x be one of the nodes in the forwarding graph. Ix is
the information the sender needs to anonymously deliver to

node x. Ix consists of the following fields:

• Nexthop IPs. The IP addresses of the d children of node
x.

• Nexthop flow-ids. These are d 64-bit ids whose values
are picked randomly by the sender and are to be put
in the clear in the packets going to the corresponding d
next-hops. The sender ensures that different nodes send-
ing to the same next hop put the same flow-id in the clear.
This allows the next-hop to determine which packets be-
long to the same flow. The flow-id changes from one re-
lay to another to prevent the attacker from detecting the
path by matching flow-ids.

• Receiver Flag. This flag indicates whether the node is
the intended receiver.

• Secret Key. The sender sends each node along the path
a secret key which can be used to encrypt any further
messages intended to this node.

4.2 Creating Information Slices

The node information Ix is chopped into d blocks of |Ix|
d

bits each and a d length vector ~I′x is constructed. Further, ~I′x is
transformed into coded information slices using a full rank
d × d random matrix A as follows:3

~I∗x =

A1
...

Ad

~I′x = A~I′x (3)

We call the elements in~I∗x information slices. We also add to
information slice I∗xi the row of the matrix A which created
it i.e. Ai. The sender delivers the d slices to node x along
disjoint paths.

4.3 Packet Format

Fig. 3 shows the format of a packet used in our system.
In addition to the IP header, a packet has a flow id, which
allows the node to identify packets from the same flow and
decode them together. The packet also contains L slices. The
first slice is always for this node (i.e., for the receiver of the
packet). The other slices are for nodes downstream on the
forwarding graph.

4.4 Constructing the Forwarding Graph

The sender constructs a forwarding graph which routes
the information slices to the respective nodes along vertex
disjoint paths, as explained in Algorithm 1. We demonstrate
the algorithm by constructing such a graph in Fig. 4, where
L = 3 and d = 2. We start with the 2 nodes in the last stage,

3Elements of ~I′x and A belong to a finite field Fpq where p is a prime number
and q is a positive integer. All operations are therefore defined in this field
and differ from conventional arithmetic.

Algorithm 1 Information Slicing Algorithm
Pick Ld nodes randomly including the destination
Randomly organize the Ld nodes into L stages of d nodes each
for Stage l = L to l = 0 do

for Node x in stage l do
Assign to node x its own slices I∗xk, k ∈ (1, . . . , d).
for Stages m = l − 1 to m = 1 do

Distribute slices I∗xk, k ∈ (1, . . . , d) uniformly among
the d nodes in stage m, assigning one slice per node

end for
end for
Connect every node in stage l − 1 to every node in stage l by
a directed edge going towards l
for every edge e do

Assign the slices which are present at both the nodes at the
endpoints of the edge e to the packet to be transmitted on
e.

end for
end for

X and Y. The sender assigns both the slices, I∗X1, I∗X2 to X.
Then it goes through the preceding stages, one by one, and
distributes (I∗X1, I∗X2) among the 2 nodes at each stage; each
node receives one of the slices. The path taken by slice I∗X1 to
reach X can be constructed by tracing it through the graph.
Slice I∗X1 traverses (S′, W, Z, X), which is disjoint from the
path taken by I∗X2, i.e., (S, V, R, X). The source repeats the
process for the slices of Y and every other node in every
stage.

Slices are delivered in packets transmitted between nodes
in successive stages. The slices a node sends to its down-
stream neighbor are the intersection of the sets of slices as-
signed to both nodes by Algorithm 1. E.g., for edge (V, R),
the slices (I∗R2, I∗X2) are present at both nodes V and R. These
slices are contained in the packet transmitted from node V
to node R. The source determines the packet contents for ev-
ery edge in the graph. The algorithm thus ensures that slices
belonging to a node take vertex disjoint paths to the node.

4.5 Decoding the Information Slices

A node can decode its information from the d slices it re-
ceives from its parents. The first slice in every packet node
x receives is for itself. It consists of one of d-slices of x’s
information, I∗xi, and the row of the transform matrix that
helped create it, Ai. Node x constructs the d × 1 vector ~I∗x
from the d slices it receives, and assembles a d × d matrix
A = [A1; . . . ; Ad] from the d rows of the transform matrix
sent in the slices. Then, node x computes its information
vector, ~I′x, as ~I′x = A−1~I∗x . Node x lays out the elements of
~I′x next to each other to reconstruct the original information
sent to it by the source, as shown in Fig. 5. The node then re-
covers the IP addresses of each of its d next hops along with
the flow id to be put on packets destined to that next hop.

(I∗Z1, I
∗

Y1)

(I∗R1, I
∗

Y2)

(I ∗

R
2 , I ∗

X
2)

(I
∗

Z
2
,

I
∗

X
1
)

(I ∗

Y
1)

(I
∗

X
2
)

(I∗X1)

(I∗Y2)

(I∗Y1, I
∗

Y2)

W

V

Y

Z

R

X

(I∗V1, I
∗

V2, I
∗

Z1, I
∗

R2, I
∗

X2, I
∗

Y1)

(I∗
W1

, I
∗

W2
, I

∗

Z2
, I

∗

R1
, I

∗

X1
, I

∗

Y2
)

(I∗Z1, I
∗

Z2, I
∗

X1, I
∗

Y1) (I∗X1, I
∗

X2)

(I∗
R1

, I
∗

R2
, I

∗

X2
, I

∗

Y2
)

(I∗V1, I
∗

Z1, I
∗

X2)
S

S
′

(I ∗

W
1 , I ∗

Z
2 , I ∗

Y
2)

(I
∗

V
2
,

I
∗

R
2
,

I
∗

Y
1
)

(I∗W2, I
∗

R1, I
∗

X1)

(I∗V1, I
∗

Z1, I
∗

X2, I
∗

W1, I
∗

Z2, I
∗

Y2)

(I∗
W2

, I
∗

R1
, I

∗

X1
, I

∗

V2
, I

∗

R2
, I

∗

Y1
)

Figure 4—An example showing how to split information slices along disjoint paths. R is the receiver, S and S’ are the senders.

FlowID1

IP2

IP3 FlowID3

IP1

FlowID2

Rcvr. Flag

Secret Key

A1

A2

A3

Slice1

Slice2

Slice3

Node

Slice1
Slice2
Slice3

A1
A2
A3

Decoding

−1

Figure 5—An example showing how a node decodes its information
from its incoming slices. It uses the 3 incoming slices and reconstructs
the original information by inverting the matrix A and gets the IP ad-
dresses of its next hops as well as the flows ids and its secret key.

It also recovers its key and the receiver flag, which tells it
whether it is the intended receiver for the eventual message.

4.6 Data Transmission

After the forwarding graph has been set up and every
node has a shared key with the source, the source uses tra-
ditional onion routing to transmit its data messages. In the
graph we setup in the initial phase, each node has d next
hops. The source picks one path within this graph to be used
for delivering data messages using traditional onion rout-
ing. It encrypts each message with the receiver’s key and
then encrypts the encrypted message with the previous hops
key and so on. Each node can then decrypt incoming packets
with its own key and forward it to the next hop.

5 PERFORMANCE

We have implemented our scheme in Python, and per-
formed preliminary tests on a 100 Mbps switched network
with the tested relay daemons running on 2.8 GHz Pentium
boxes with 1 GB of RAM and a Linux 2.6.11 kernel. Ta-
ble 1 shows route setup latency for different path lengths
and split factor of 2. Setup latency is measured end-to-end
from when the sender initiates route establishment, connects
to the stage-1 relay processes, which process the next hop
computation, store the forwarding information, and connect
to their next hop relays, which repeat the procedure until all
routing messages reach the receiver. On average, we incur

Route Length
& Split factor

Setup Latency (ms) Standard Deviation (ms)

L=1, D=2 11.59 1.88
L=2, D=2 39.05 4.20
L=3, D=2 61.14 9.33
L=4, D=2 89.86 7.56
L=5, D=2 109.12 11.09

Table 1—Setup latency in milliseconds and its variance for the con-
struction of multi-hop routes through pre-defined relays.

a setup cost of 19 ms per hop. This figure suggests that the
latency of the underlying network will dominate even dur-
ing route setup. The table shows that the route setup latency
incurred by our scheme is comparable to other anonymous
routing protocols such as Tarzan [10], and is low enough to
make it practical.

6 RELATED WORK

Related work can be divided into two areas: anonymous
communication and secret sharing.

(a) Anonymous Communication: Research on anonymous
communications started in 1981 with Chaum’s seminal pa-
per [7]. Early anonymous systems redirected traffic through
a trusted centralized proxy [1, 3]. The services failed after a
lawsuit attempted to force the administrator to reveal confi-
dential information [12].

Modern anonymizing systems are based on the principle
of onion routing [11]. The communication traverses a se-
quence of relays, which the sender picks from a set of will-
ing nodes. The sender recursively encrypts the message and
the address of the next hop with the public key of each relay
on the path. Recently, there has been a number of proposals
on peer-to-peer anonymizing networks based on onion rout-
ing. The large size and diversity of nodes in a peer-to-peer
network makes collusion difficult, hence they are promising
candidates for anonymous communication. Many such sys-
tems exist including Tarzan [10], MorphMix [17], AP3 [15],
and Cashmere [19], all of which assume a centralized trusted
PKI.

In contrast to the above, Crowds [16] does not rely on

onion routing. In Crowds, a user relays her message by pass-
ing it to a randomly selected node in the crowd. Upon re-
ceiving a message, a relay node forwards the message to its
final receiver with probability p and sends it to another ran-
domly picked relay with probability 1 − p. Thus, Crowds
does not require PKI. However, Crowds does not provide
the anonymity our system provides: it exposes the receiver
and the message content, and a snooping attacker can easily
correlate the clear-text of the message on various links.

(b) Secret Sharing: A secret sharing scheme is a method for
distributing a secret among a group of participants, each of
which is allotted a share of the secret. The secret can only be
reconstructed when the shares are combined together, indi-
vidual shares are of no use on their own. Research on secret
sharing started with Shamir’s seminal paper [18]. Informa-
tion slices can be viewed as shares of a secret. Similar to
secret sharing, a node can reconstruct the original informa-
tion only when it gets all the slices. Indeed there are linear
block code based secret sharing [5] schemes, but our work
is the first to apply secret sharing to anonymous communi-
cation.

7 CONCLUSION AND FUTURE WORK

We have shown it is possible to design anonymizing peer-
to-peer overlays that do not need a public key infrastructure
(PKI). Our information slicing protocol can hide the source,
the destination, the path, and the content of the message,
even when the sender does not know the public keys of the
nodes in the overlay. We believe this is an important step
towards truly peer-to-peer anonymous communications; it
obviates the need for a universal trusted PKI and avoids the
difficulties of large scale key distribution in a global peer-
to-peer network.

A number of avenues for future work suggest themselves.
Node churn is quite significant in peer to peer overlay net-
works. We are investigating how to make our slicing proto-
col robust against node departures in the middle of a session.
Snooping attackers can link similar incoming and outgoing
packets at a relay node to detect the chain of forwarders,
and eventually trace the source. We are investigating tech-
niques to make packets belonging to the same flow bitwise
unlinkable, thereby preventing such attacks. Finally, a true
evaluation of a system happens only when it is deployed and
used in the real Internet; we are building and deploying the
Information Slicing protocol on the Planetlab overlay net-
work.

8 ACKNOWLEDGMENTS

We thank Jeremy Stribling, Vinod Vaikuntanathan, Har-
iharan Rahul, Maxwell Krohn and Frank Dabek for their
comments on the paper. The authors acknowledge the sup-
port of NSF under NSF Career Award CNS-0448287. The

opinions and findings in this paper are those of the authors
and do not necessarily reflect the views of NSF.

REFERENCES

[1] Anonymizer- Anonymous Web Surfing.
http://www.anonymizer.com.

[2] MixMinion- Anonymous Remailer.
http://www.mixminion.net.

[3] Safeweb- Anonymous Web Surfing.
http://www.safeweb.com.

[4] M. Bellare and P. Rogaway. Entity authentication and key
distribution. In CRYPTO ’93.

[5] M. Bertilsson and I. Ingemarsson. A construction of
practical secret sharing schemes using linear block codes. In
AUSCRYPT ’92.

[6] Bob Sullivan. FBI software cracks encryption wall.
www.msnbc.com/news/660096.asp?cp1=1.

[7] D. L. Chaum. Untraceable Electronic Mail, Return
Addresses and Digital Pseudonyms. Commun. ACM 21,
2(1981).

[8] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. In USENIX Security 2004.

[9] Foundation for Information Policy Research. Regulation of
Investigatory Powers Information Centre. www.fipr.org/rip/.

[10] M. J. Freedman and R. Morris. Tarzan: A peer-to-peer
anonymizing network layer. In Proceedings of ACM CCS
2002.

[11] D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Hiding
Routing Information. In Proceedings of Information Hiding:
First International Workshop, 1996.

[12] Johan Helsingius. anon.penet.fi is closed! www.penet.fi.
[13] John Markoff. New File-Sharing Techniques Are Likely to

Test Court Decision. The New York Times, Aug 1.
[14] Kazaa. http://www.kazaa.com/.
[15] A. Mislove, G. Oberoi, A. Post, C. Reis, P. Druschel, and

D. Wallach. Ap3: A cooperative, decentralized service
providing anonymous communication. In Proceedings of the
11th ACM SIGOPS European Workshop, September 2004.

[16] M. Reiter and A. Rubin. Crowds: Anonymity for web
transactions. ACM Transactions on Information and System
Security, 1(1), June 1998.

[17] M. Rennhard and B. Plattner. Introducing MorphMix:
Peer-to-Peer based Anonymous Internet Usage with
Collusion Detection. In WPES 2002, Washington, DC, USA.

[18] A. Shamir. How to share a secret. In Communications of the
ACM, 1979.

[19] L. Zhuang, F. Zhou, B. Y. Zhao, and A. Rowstron.
Cashmere: Resilient anonymous routing. In NSDI 2005.

