Who Contributes to the Knowledge Sharing Economy?

Arthi Ramachandran, Augustin Chaintreau Columbia University Nov 2, 2015

Search

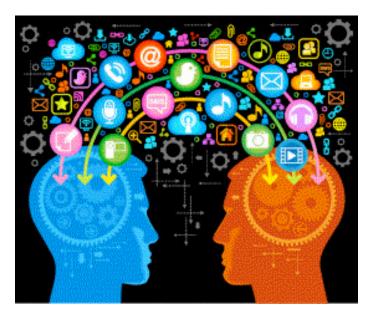
Social

Who brings more people to websites?

Social is increasing in the share of referrals

 Similar to the sharing economy (eg: uber, airbnb), where users benefit from other users' surplus

- Similar to the sharing economy (eg: uber, airbnb), where users benefit from other users' surplus
 - In the *Knowledge Sharing Economy*, other users benefit from users' information search



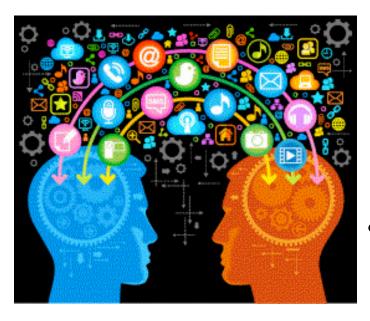
- Information is
 - Financially important
 - In fact, intermediaries can earn a living by curating content ^{1,2}
 - Used for decision making ^{3,4}
 - Eg: job hunting, voting, new products

¹ M. Cha, F. Benevenuto, H. Haddadi, and K. Gummadi. The World of Connections and Information Flow in Twitter. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 2012.

² S. Wu, J. M. Hofman, W. A. Mason, and D. J. Watts. Who says what to whom on twitter. WWW 2011.

³ D. Acemoglu, A. Ozdaglar, and A. ParandehGheibi. Spread of (mis) information in social networks. Games and Economic Behavior, 2010.

⁴ B. Golub and M. O. Jackson. Naive learning in social networks and the wisdom of crowds. American Economic Journal: Microeconomics, 2010.



- Information is
 - Financially important
 - In fact, intermediaries can earn a living by curating content ^{1,2}
 - Used for decision making ^{3,4}
 - Eg: job hunting
 - These analyze information acquisition as an economic rational process

¹ M. Cha, F. Benevenuto, H. Haddadi, and K. Gummadi. The World of Connections and Information Flow in Twitter. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 2012.

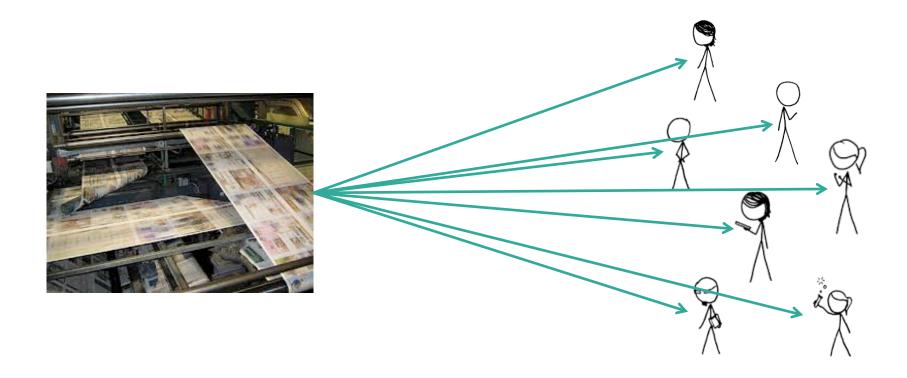
² S. Wu, J. M. Hofman, W. A. Mason, and D. J. Watts. Who says what to whom on twitter. WWW 2011.

³ D. Acemoglu, A. Ozdaglar, and A. ParandehGheibi. Spread of (mis) information in social networks. Games and Economic Behavior, 2010.

⁴ B. Golub and M. O. Jackson. Naive learning in social networks and the wisdom of crowds. American Economic Journal: Microeconomics, 2010.

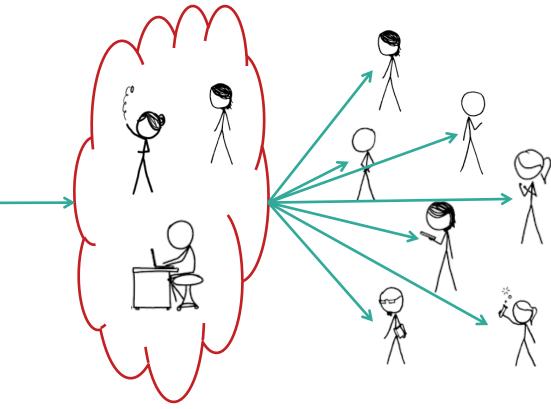
Models of content sharing

• Past: publisher -> reader model



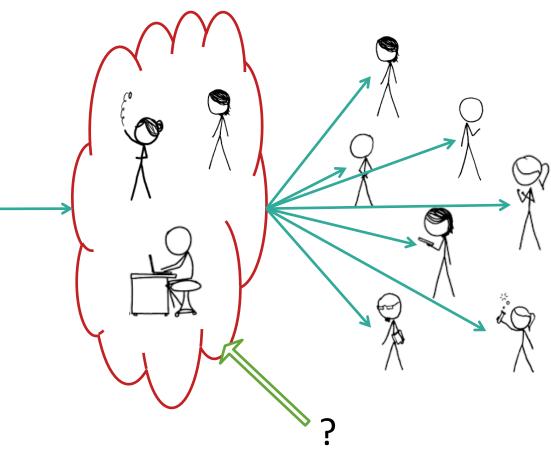
Models of content sharing

With social networks: publisher -> curators -> reader model



Models of content sharing

With social networks: publisher -> curators -> reader model



Types of sharing

• Where is the content coming from? Who looks for content to share on twitter?

Types of sharing

- Where is the content coming from? Who looks for content to share on twitter?
- Heterogeneous sharing
 - Content that many users find and share

Types of sharing

- Where is the content coming from? Who looks for content to share on twitter?
- Heterogeneous sharing
 - Content that many users find and share
 - Content that is more specialized

2	Los Argeleo-Long Boach-Anahoim, CA.	\$007	Netherlands	\$800
а	Chooge Repervile Elger, IL-IV-WI	8010	Repente	\$518
4	Housten-The Woodlands-Sager Land, TX	6625	Taiwan	\$530
5	Dalas-Fort Worth-Arlington, TX	9584	Horway	\$500
4	Washington-Adington-Alexandria, DC-VA-8/D-WV	\$421	Autor	1417
7	Son Psenaisson-Califand Haywani, CA	8412	liters 1	\$406
	Philodelphio-Cander-Wilmington, FA-5U-UE-BID	6381	UAC	\$402
	Boston-Cambridge-Henton, MA-NH	\$082	Colombia	\$305
10	Alanda-Sandy Springs-Rasarell, GA	\$105	Manysia	BART .
11	Scattle Tacona Bollevic, MA	8381	Singapore	\$308
12	Marri-Fort Lauderdak-West Palm Beach, FL	6299	turnel.	\$304
10	Detroil-Warren-Dearborn, MI	\$207	Graece	\$250
18	Minneepolis-St. Paul-Boomington, 599-991	8236	Portugal	\$2.10
15	Photento Meso Scottsdolo, A2	8216	ine)	4221
15	Son Jose-Sunnyvale-Sonta Dana, CA	6214	Algoria	\$214
12	See Diego-Carlsbad, GA	\$297	Vonectude	\$200
	Particular Australia Advanced, 1975	10.000	And an and a second	Arrested.

Understanding America's ridiculously large \$17.4 trillion economy by compari... The table above helps to put America's ridiculously large \$17.4 trillion economy (GDP in 2014) into perspective by comparing America's largest 20 metro economi... aelorg

Outline

- Datasets
- Who are the Content Creators?
- Relationship of Content Lifespan and Concentration
- Model of Perishable Public Goods
- Equilibria and Specialization
- Conclusion

Outline

- Datasets
- Who are the Content Creators?
- Relationship of Content Lifespan and Concentration
- Model of Perishable Public Goods
- Equilibria and Specialization
- Conclusion

Datasets

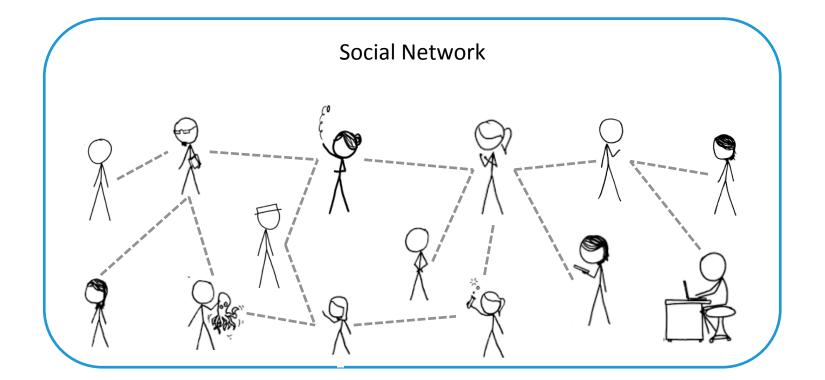
- KAIST: Twitter posts over July 2009
 - Breadth all twitter users and posts for a month
 - 8m unique users
 - 37m unique URLs
- NYT: Twitter posts containing URLs to nytimes.com for 1 week in Dec 2012
 - Depth all twitter users receiving certain urls
 - 346k unique users
 - 70k unique URLs

M. Cha, H. Haddadi, F. Benevenuto, and K. Gummadi. Measuring User Influence in Twitter: The Million Follower Fallacy. ICWSM 2010. May, A. Chaintreau, N. Korula, and S. Lattanzi. Filter & Follow: How Social Media Foster Content Curation. SIGMETRICS 2014

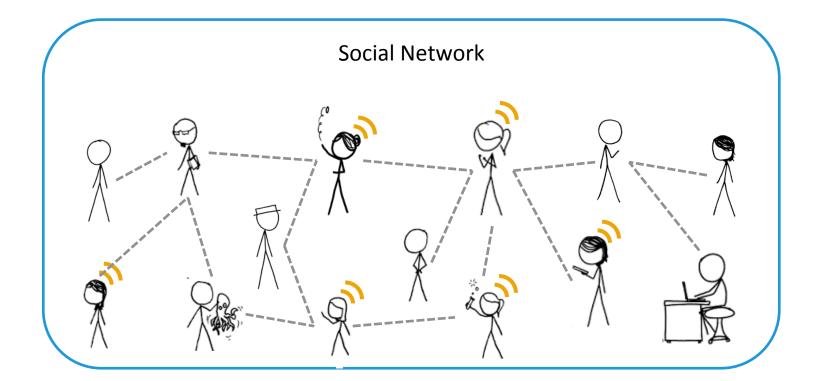
Outline

- Datasets
- Who are the Content Creators?
- Relationship of Content Lifespan and Concentration
- Model of Perishable Public Goods
- Equilibria and Specialization
- Conclusion

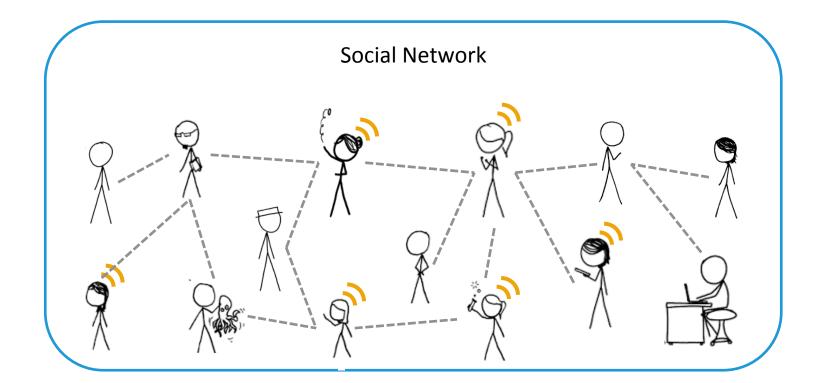
• Network of users



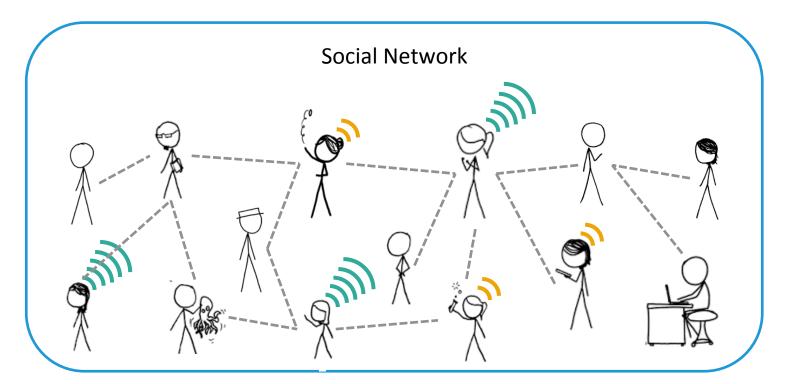
Network of users posting (
) content



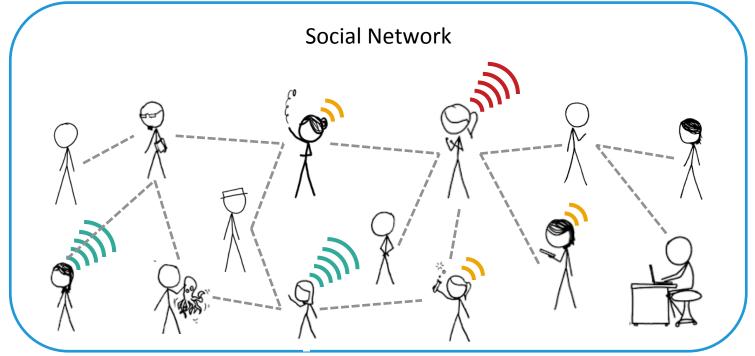
- Different classes of user posts:
 - Anyone who posts



- Different classes of user posts:
 - Anyone who posts
 - Locally the first to post

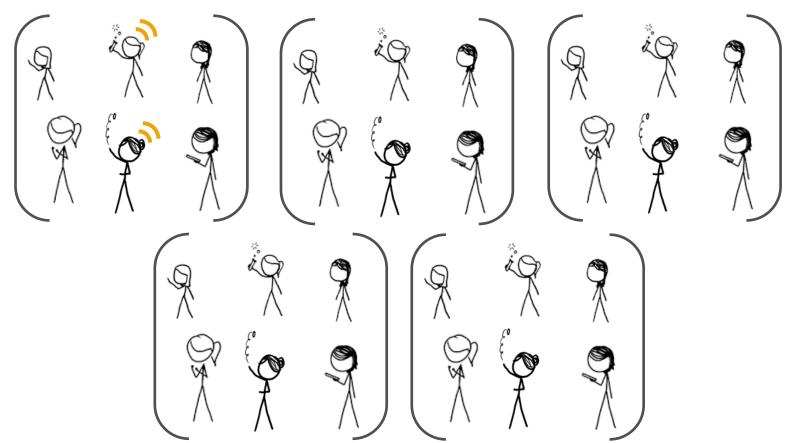


- Different classes of user posts:
 - Anyone who posts
 - Locally the first to post
 - Globally the first to post (very original content)

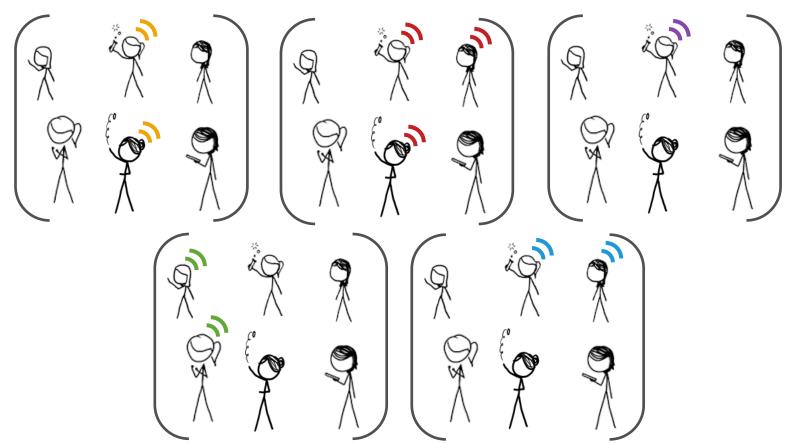


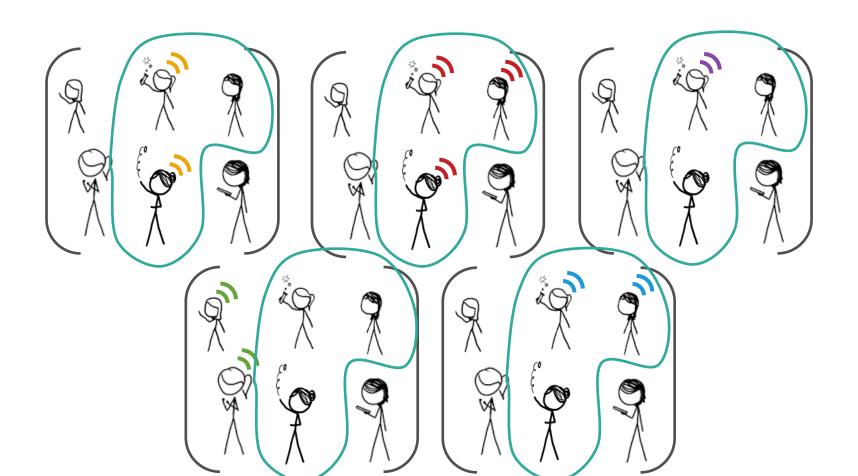
 How many users are responsible for how many posts?

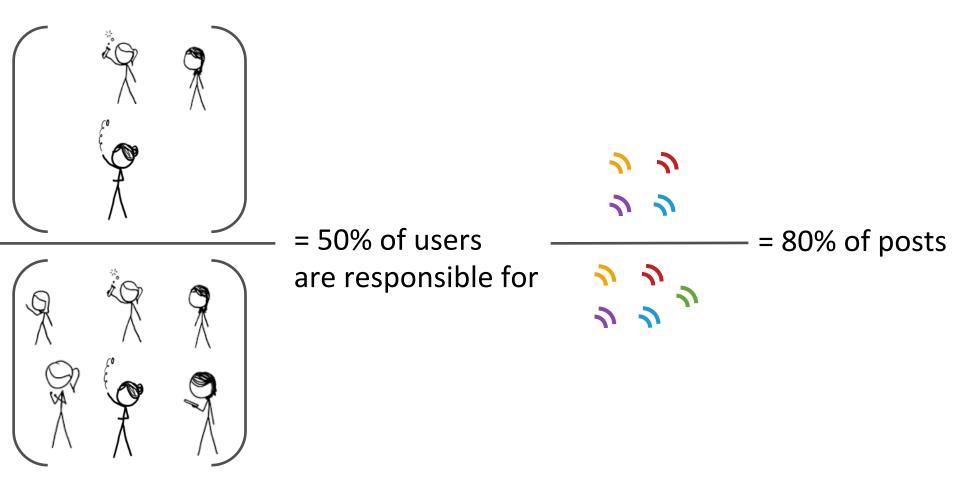
 How many users are responsible for how many posts?

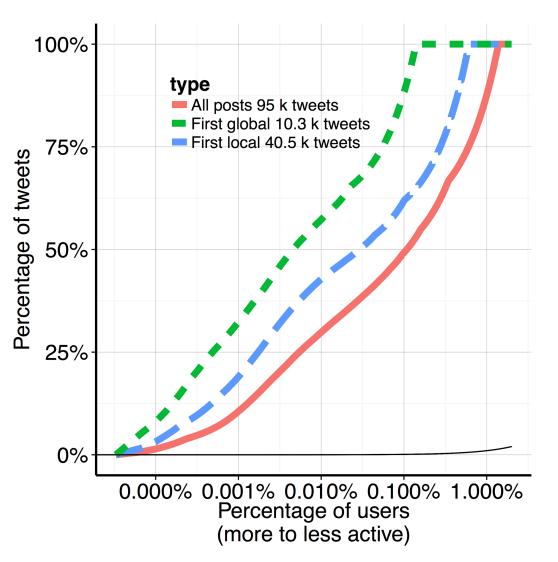


 How many users are responsible for how many posts?

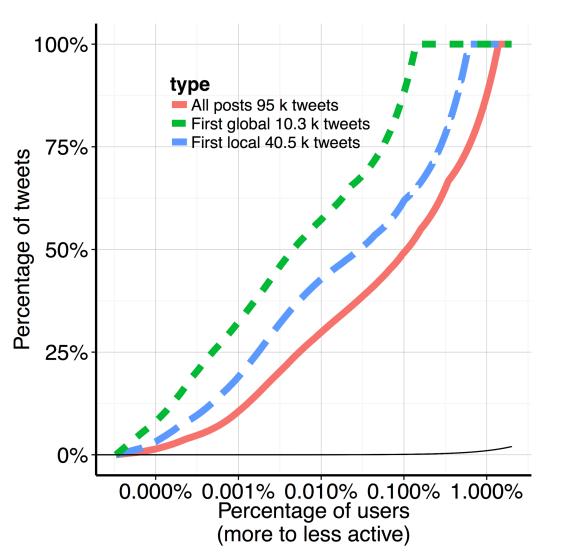








Single domain (cnn.com)

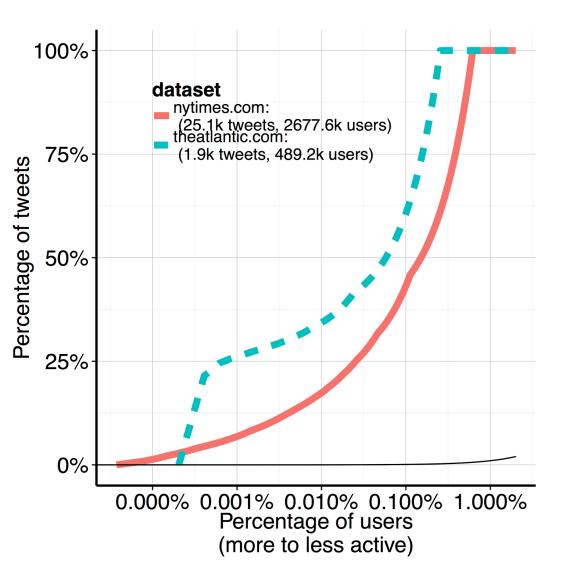


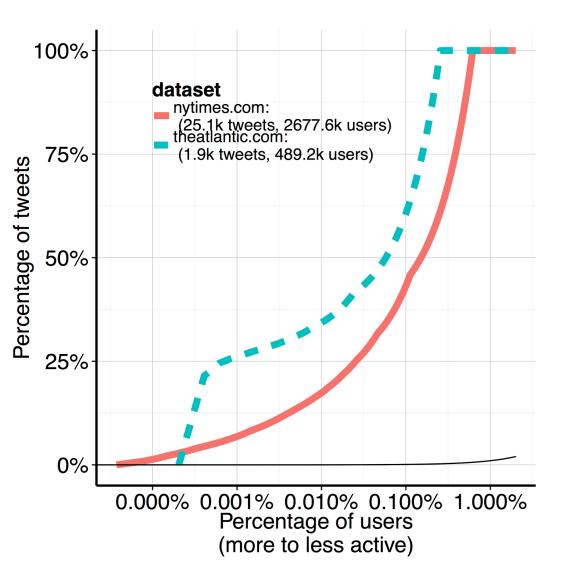
Smaller fraction of users responsible for first tweets :

More original content is *more concentrated*

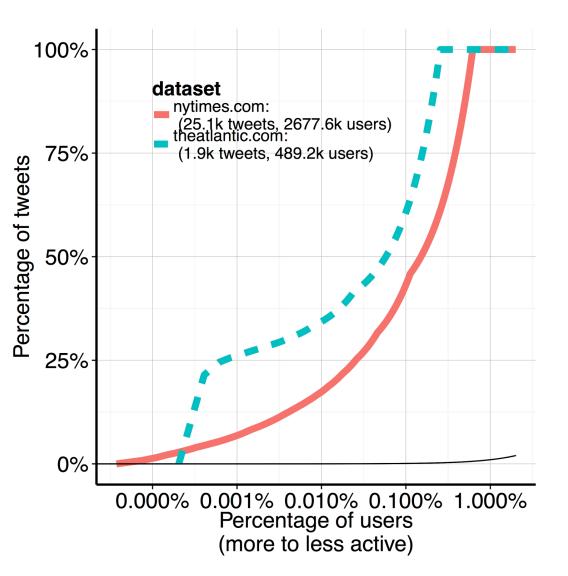
- Compare different types of domains
 - nytimes.com
 - Daily, Shorter lifespan

- theatlantic.com
 - Monthly, Longer lifespan





Shorter lifespan is *less concentrated*



Shorter lifespan is *less concentrated*

Longer lifespan is more concentrated

Outline

- Datasets
- Who are the Content Creators?
- Relationship of Content Lifespan and Concentration
- Model of Perishable Public Goods
- Equilibria and Specialization
- Conclusion

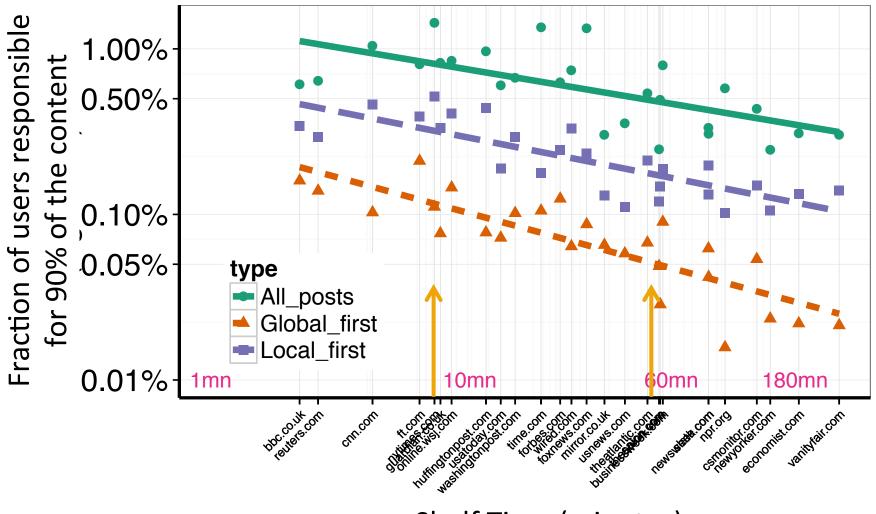
What's the relationship between lifespan and concentration?

- Measure of lifespan : *Shelf life*
 - Expected attention for an article before it is replaced
 - Multiple ways to measure
 - based on volume of tweets
 - based on duration

What's the relationship between lifespan and concentration?

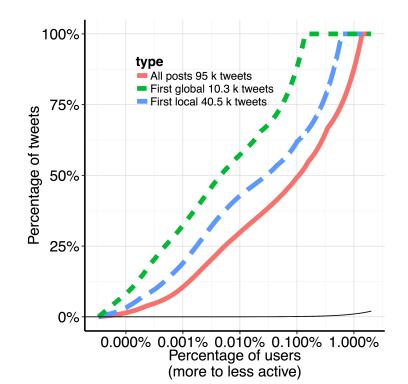
- Measure of lifespan : *Shelf life*
 - Expected attention for an article before it is replaced
 - Multiple ways to measure
 - based on volume of tweets
 - based on duration
 - Here we use the one based on volume

Concentration of sharing for different media sources

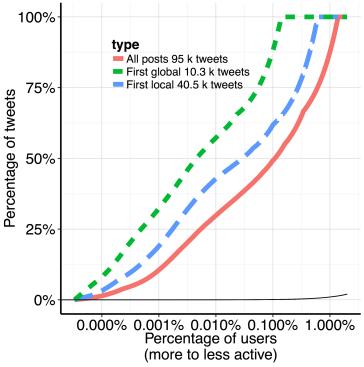


Shelf Time (minutes)

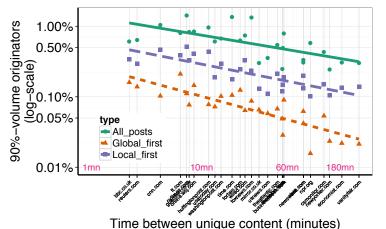
• Specialization exists



- Specialization exists
- Understanding who contributes is not trivial
 - Eg: Original content doesn't come from the highest degree nodes



- Specialization exists
- Understanding who contributes is not trivial
 - Eg: Original content doesn't come from the highest degree nodes
- Time in an important factor
 - Short lived content reduces specialization

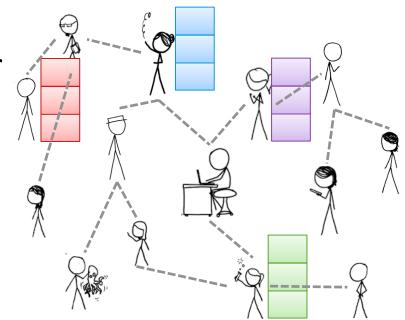


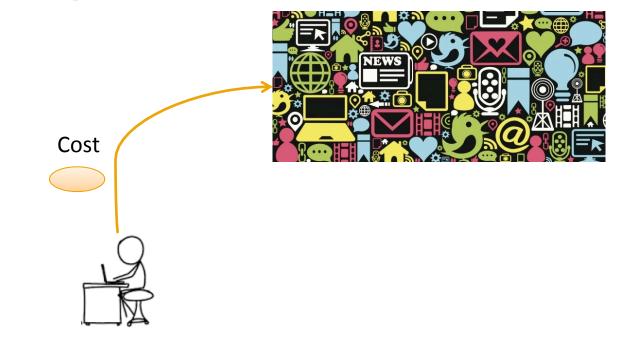
- Specialization exists
- Understanding who contributes is not trivial
 - Eg: Original content doesn't come from the highest degree nodes
- Time in an important factor
 - Short lived content reduces specialization
- What are the conditions under which specialization occurs?
 - Formally?
 - What dynamics causes this effect?

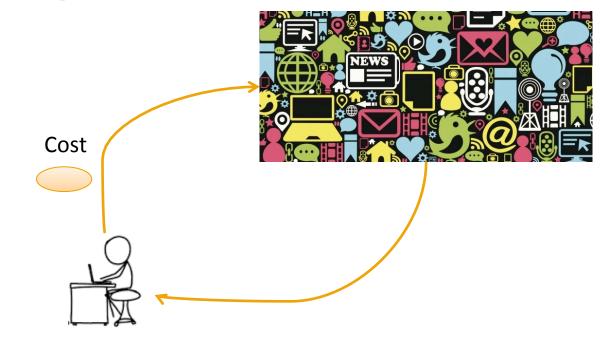
Outline

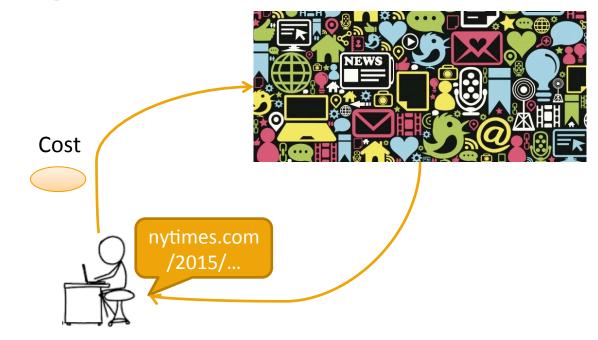
- Datasets
- Who are the Content Creators?
- Relationship of Content Lifespan and Concentration
- Model of Perishable Public Goods
- Equilibria and Specialization
- Conclusion

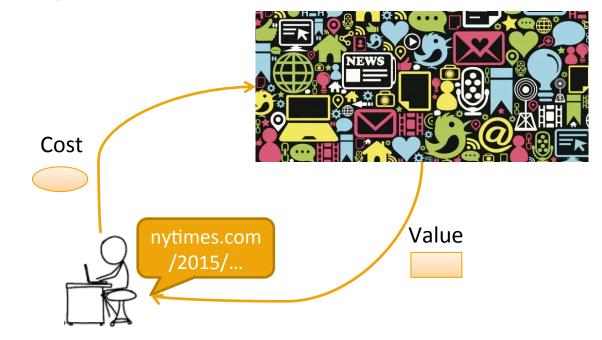
- Properties of the model
 - Specialization exists
 - Understanding who contributes is not trivial
 - Eg: Original content doesn't come from the highest degree nodes
 - Time in an important factor
 - Short lived content reduces specialization



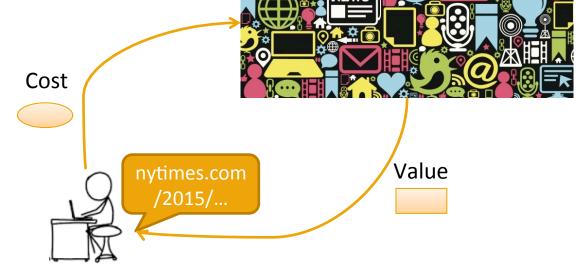


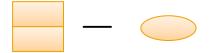






Choosing Investment to Find Information

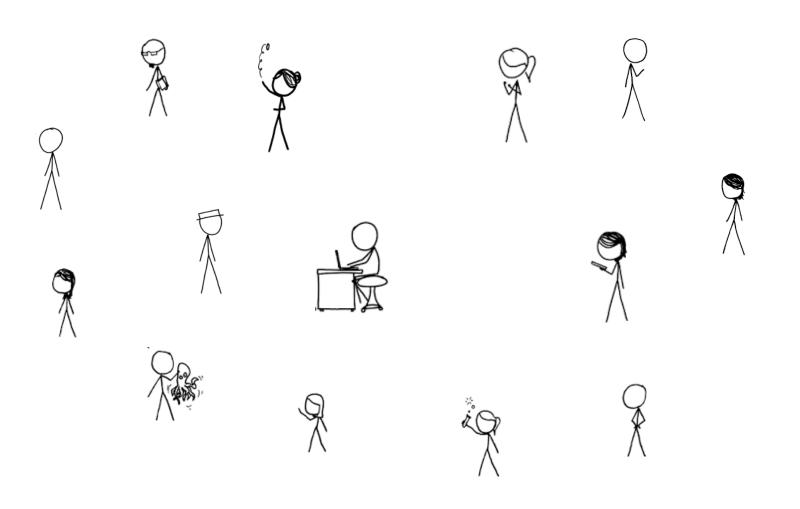


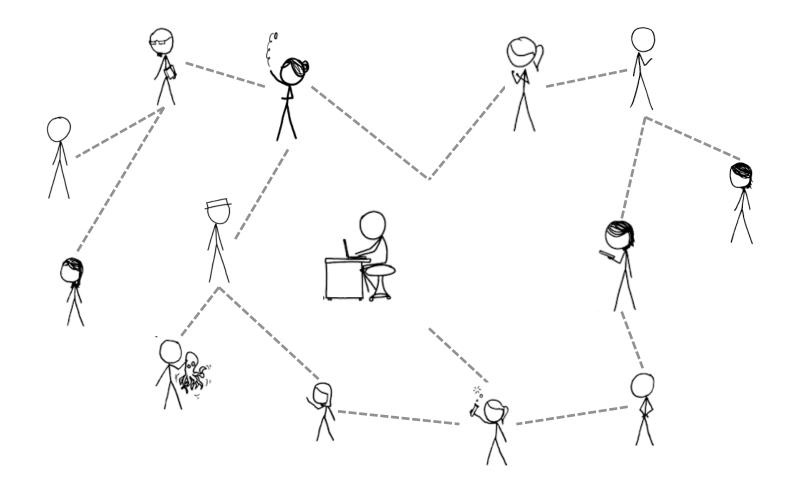


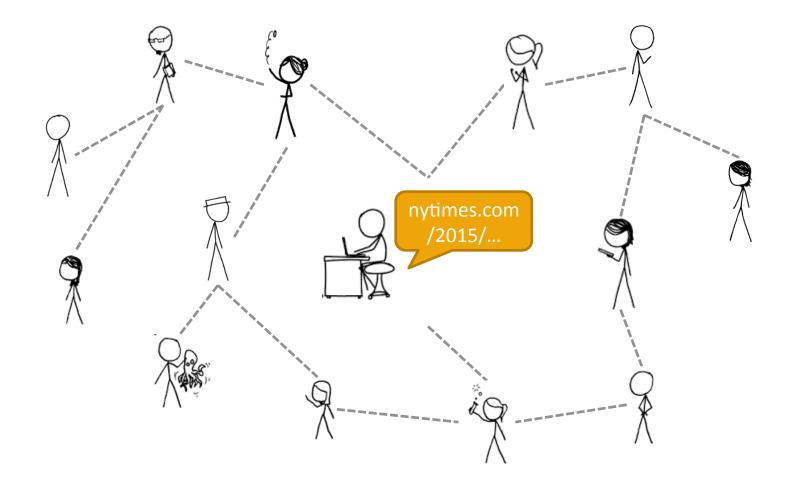
Choosing Investment to Find Information Cost Value nytimes.com /2015/... $- \longrightarrow > 0 \implies \not\models$ Spends effort to find content

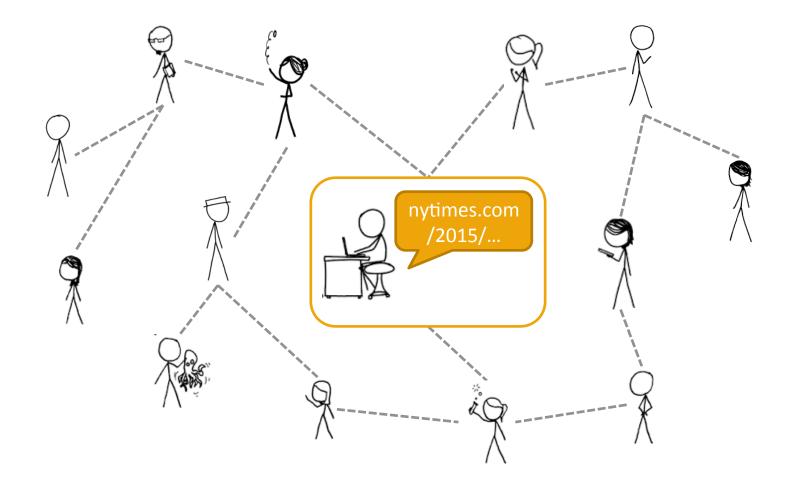
Choosing Investment to Find Information Cost Value nytimes.com /2015/... $- \bigcirc > 0 \Longrightarrow$ Spends effort to find content **Does NOT spend effort** < 0to find content

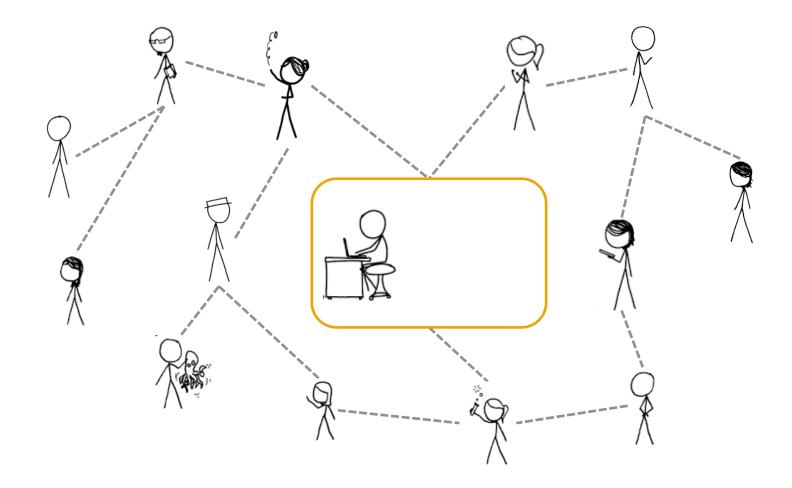
Public Goods Model

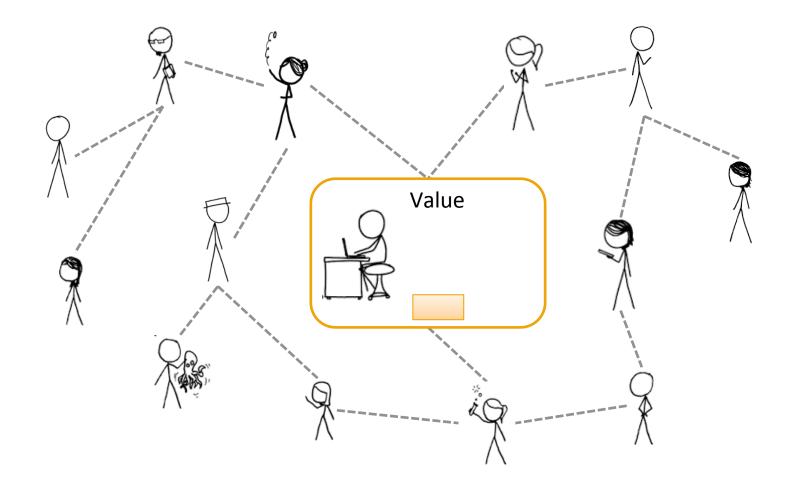


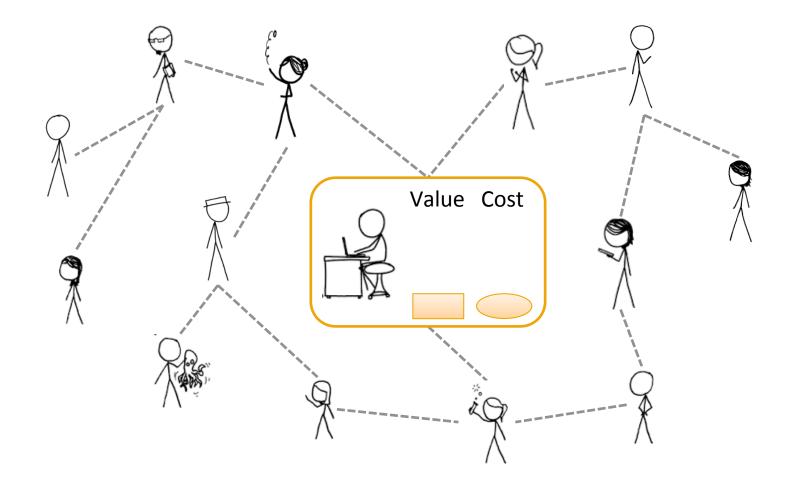


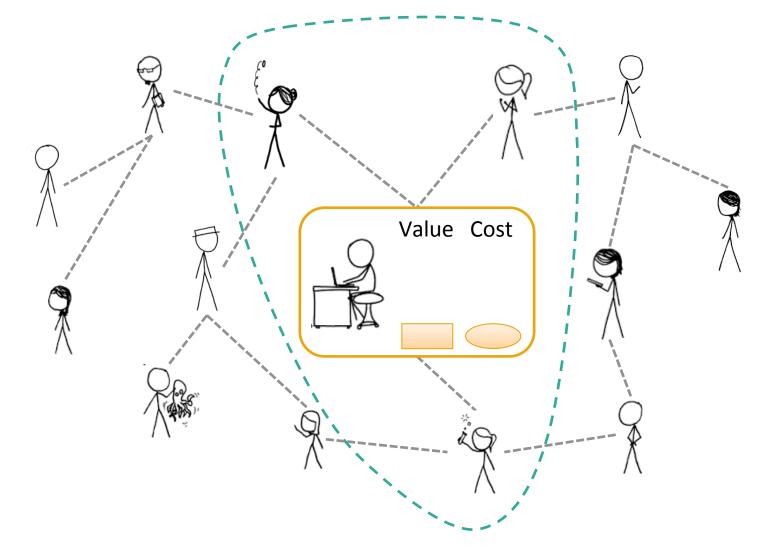


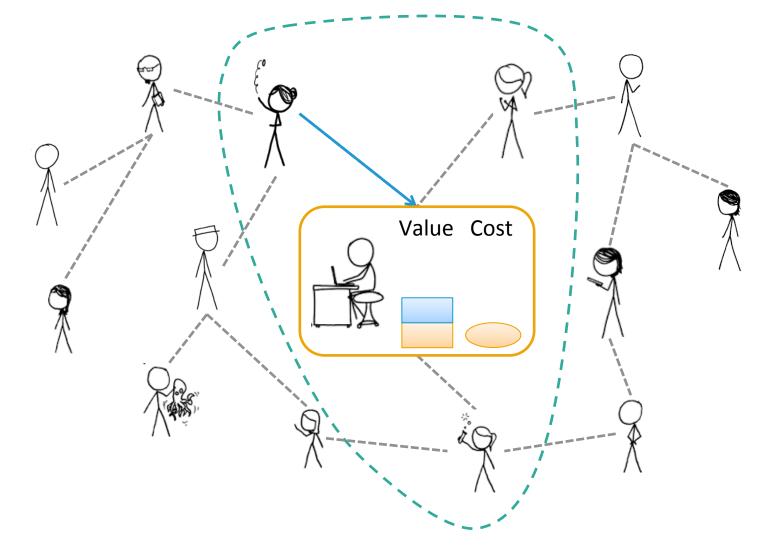


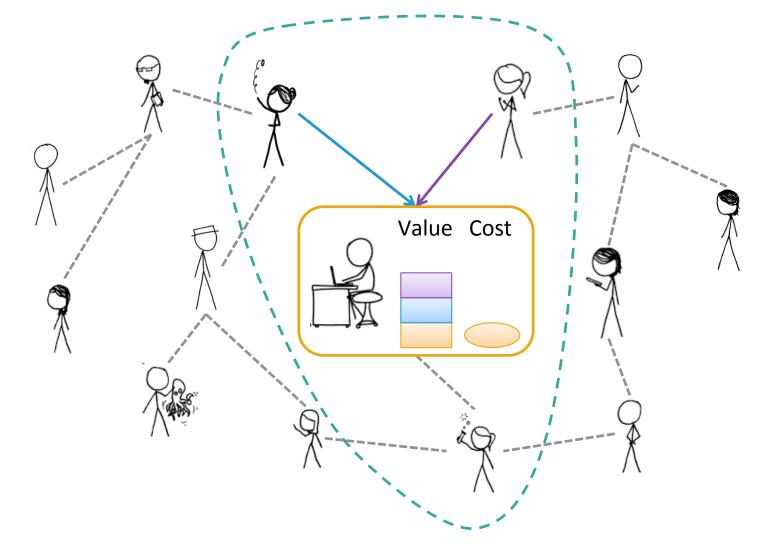


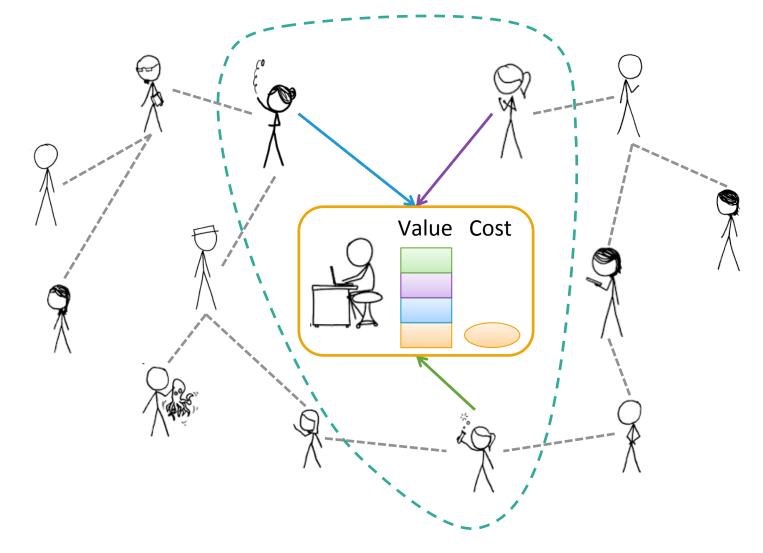


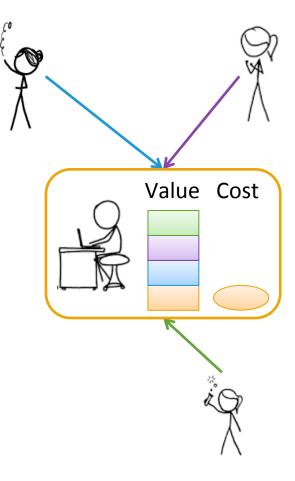


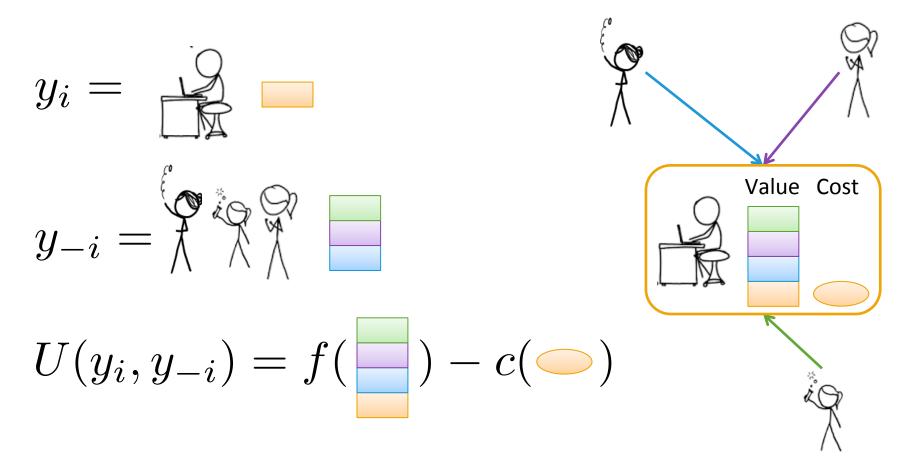




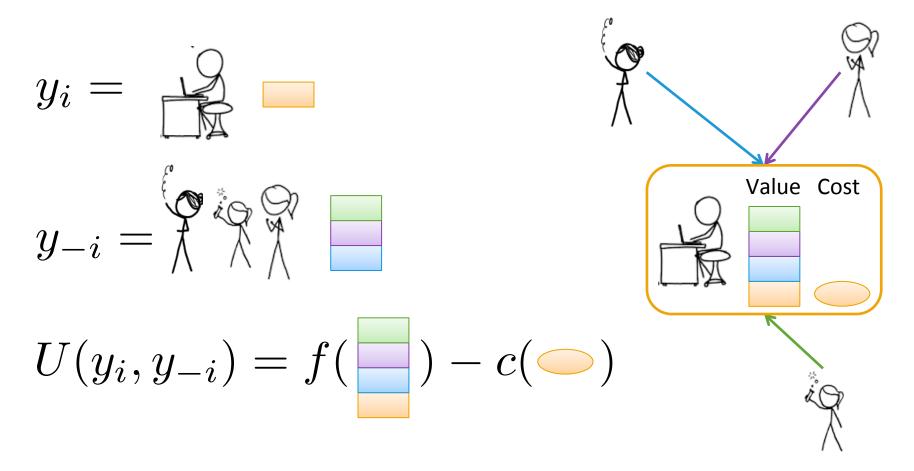


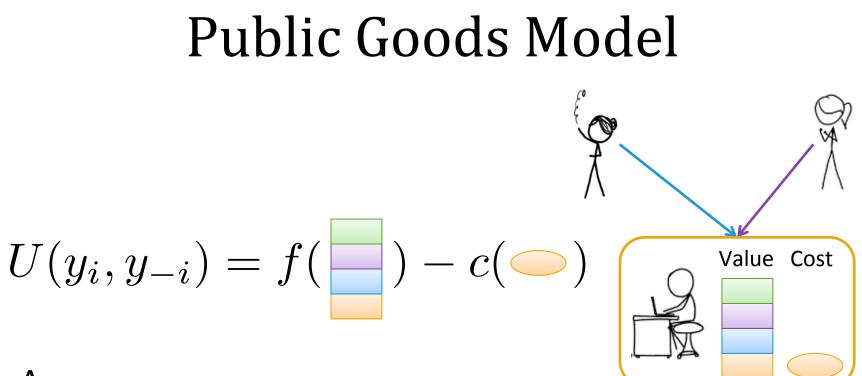






Public Goods Model





Assume :

- an article has a shelf life of τ
- y_i is the rate of discovery of information

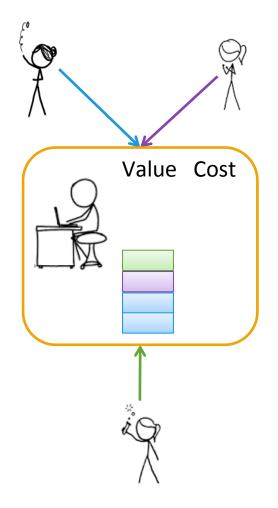
Perishable Public Goods Model

$$U(y_i, y_{-i}) = f(\bigcirc) - c(\bigcirc) \qquad \bigvee_{\text{value Cost}} \\ \text{Assume :} \\ \text{ an article has a shelf life of } \\ \text{ y}_i \text{ is the rate of discovery of information} \\ U(y_i, y_{-i}) = (1 - e^{\tau(y_i + y_{-i})}) \\ \text{ of } (y_i) = e(y_i) \\ \text{ of }$$

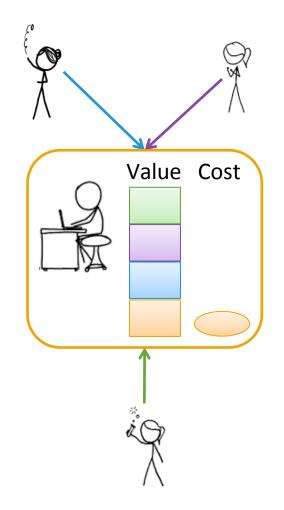
$$U(y_i, y_{-i}) = (1 - e^{\tau(y_i + y_{-i})}) - c(y_i)$$

Strategies for a user

Free-riding



Equitable distribution

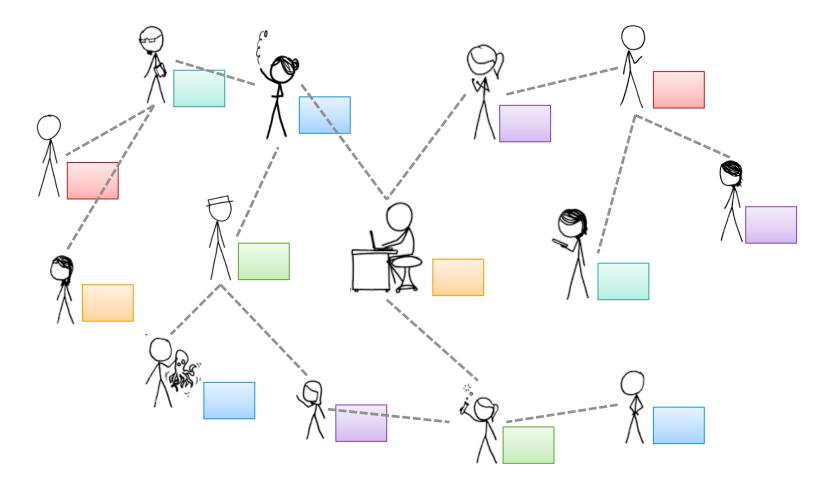


Outline

- Datasets
- Who are the Content Creators?
- Relationship of Content Lifespan and Concentration
- Model of Perishable Public Goods
- Equilibria and Specialization
- Conclusion

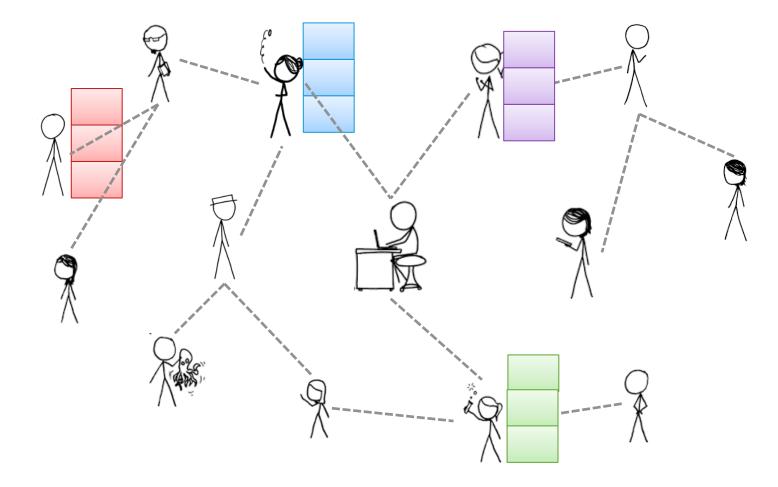
Types of Equilibria

• Equitable distribution of work

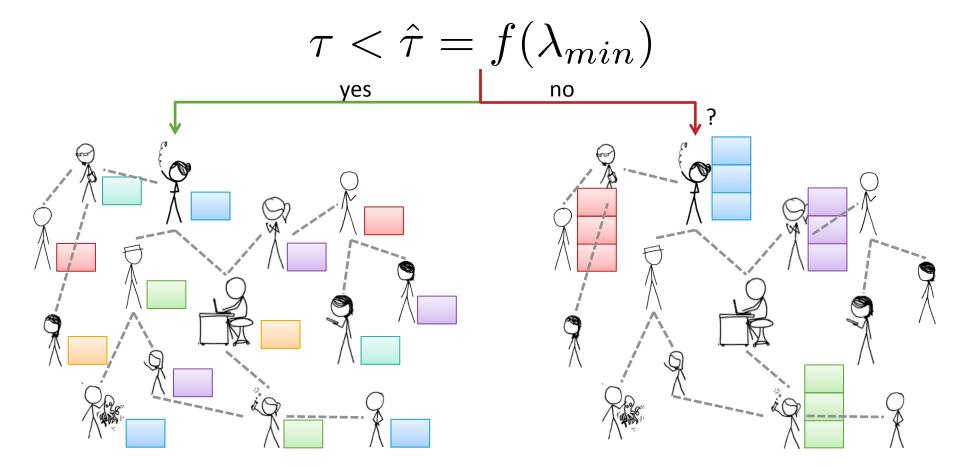


Types of Equilibria

• Specialized distribution of work



THM: Conditions for Specialization

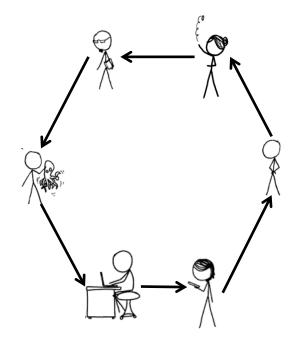


Smaller $\tau \implies$ less specialized equilibrium i.e. shorter lived content is less specialized

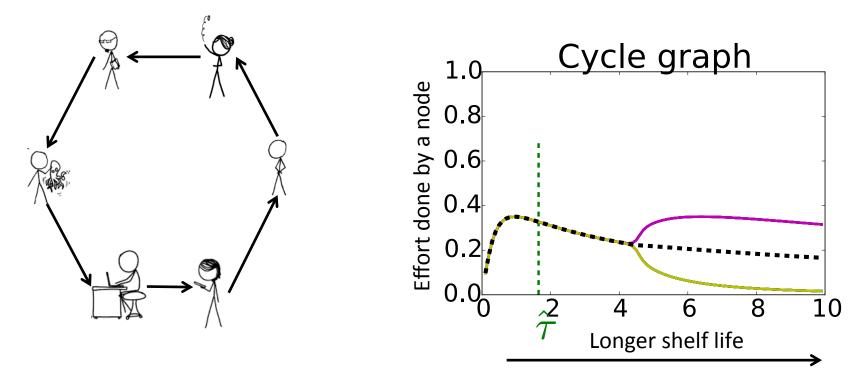
Specialization occurs with longer lived content

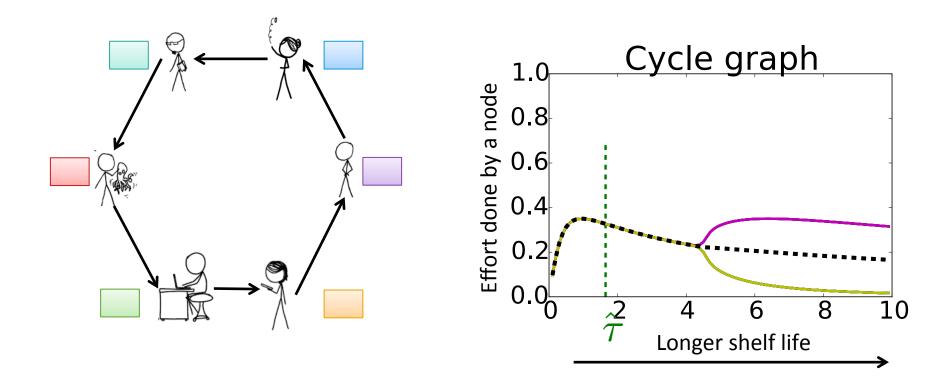
- How much effort does each person expend?

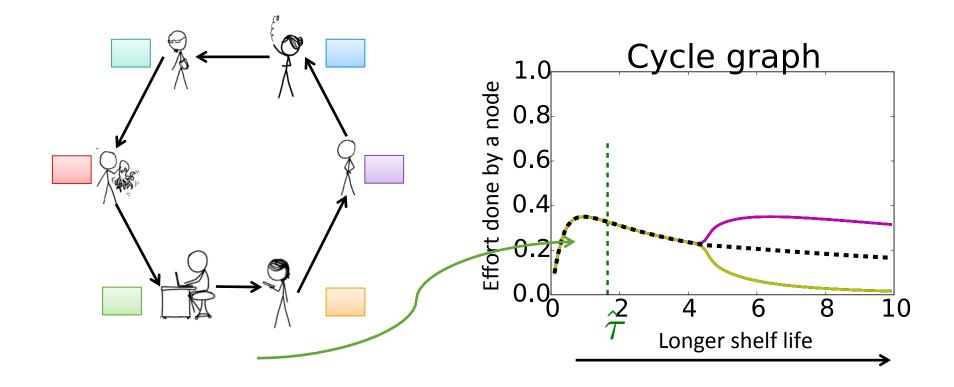
Depends on τ

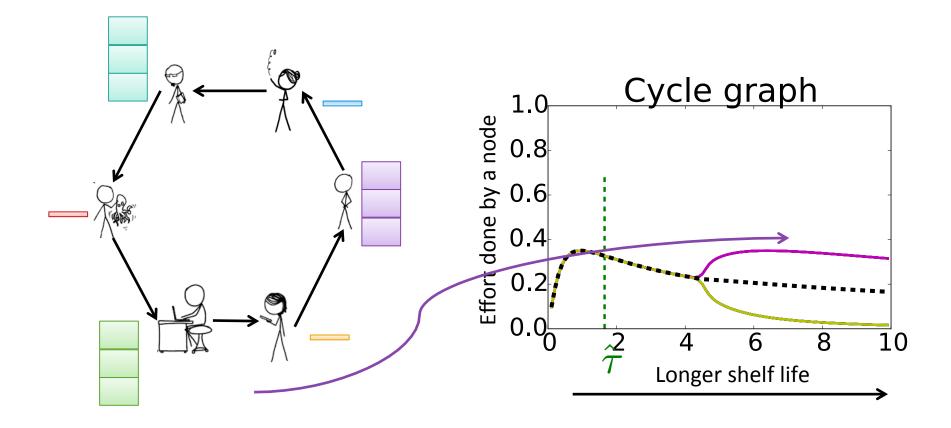


Depends on τ









Specialization in Different Graphs

Graph	λ_{min}	$\hat{ au}$
Complete	-1	orall au
Cycle (Even)	-2	\sqrt{e}
Cycle (Odd)	$-2 + \frac{\pi^2}{n^2}$	$\frac{n}{(n^2 - \pi^2)^{\frac{1}{2}}} e^{\frac{n^2}{2(n^2 - \pi^2)}} \\ (\frac{1}{2\sqrt{np} - 1})^{\frac{1}{2}} e^{\frac{1}{2(2\sqrt{np} - 1)}}$
Erdös-Renyi	$-2\sqrt{np}$	$(\frac{1}{2\sqrt{np}-1})^{\frac{1}{2}}e^{\frac{1}{2(2\sqrt{np}-1)}}$
Star	$-\sqrt{n-1}$	$(\frac{1}{\sqrt{n-1}-1})^{\frac{1}{2}}e^{\frac{1}{2(\sqrt{n-1}-1)}}$
Complete Bipartite	$-rac{n}{2}$	$(\frac{2}{n-2})^{\frac{1}{2}}e^{\frac{1}{n-2}}$

Conclusion

- Specialization occurs in social graphs
 - Long lived content exhibits specialization
 - Specialization *cannot* occur for arbitrarily short lived content
- The existence of specialized equilbria are based on properties of the graph

Thank you

Any Questions?

Microsoft[®] Research

Best Response

$$U(y_i, y_{-i}) = 1 - e - \tau(y_i + y_{-i}) - c(y_i)$$

where $(c: y_i \rightarrow \frac{\theta}{\alpha + 1}y^{\alpha + 1}), \alpha > 0$

$$\phi(y_{-i},\tau) = \frac{\alpha}{\tau} W(\frac{\tau^{\frac{\alpha+1}{\alpha}}}{\alpha} e^{-\tau y_{-i}})$$

Condition for Nash Equilibrium

$$\tau < \hat{\tau} =^{\operatorname{def}} \left(\frac{\alpha}{-\lambda_{\min}-1}\right)^{\frac{\alpha}{\alpha+1}} e^{\frac{\alpha}{(\alpha+1)(-\lambda_{\min}-1)}}$$