Steiner Point Removal with Distortion $O(\log k)$

Arnold Filtser

Ben-Gurion University

April 26, 2018

Arnold Filtser

Steiner Point Removal

April 26, 2018 1 / 37

H is a **minor** of G = (V, E) if *H* can be **formed** from *G* by:

H is a **minor** of G = (V, E) if *H* can be **formed** from *G* by:

• Deleting edges.

H is a **minor** of G = (V, E) if *H* can be **formed** from *G* by:

• Deleting edges.

H is a **minor** of G = (V, E) if *H* can be **formed** from *G* by:

• Deleting edges.

Steiner Point removal problem G = (V, E, w) - a weighted graph. $K \subseteq V$ - a terminal set of size k.

G = (V, E, w) - a **weighted** graph. $K \subseteq V$ - a **terminal** set of size k.

Construct a new graph $M = (K, E', w_M)$ such that:

- G = (V, E, w) a weighted graph.
- $K \subseteq V$ a **terminal** set of size k.

Construct a new graph $M = (K, E', w_M)$ such that:

• *M* has small **distortion**:

$$\forall t,t' \in K, \ d_G(t,t') \leq d_M(t,t') \leq \alpha \cdot d_G(t,t') \;.$$

- G = (V, E, w) a weighted graph.
- $K \subseteq V$ a **terminal** set of size k.

Construct a new graph $M = (K, E', w_M)$ such that:

• *M* has small **distortion**:

 $\forall t,t' \in K, \ d_G(t,t') \leq d_M(t,t') \leq \alpha \cdot d_G(t,t') \;.$

• *M* is a graph **minor** of *G*.

- G = (V, E, w) a weighted graph.
- $K \subseteq V$ a **terminal** set of size k.

Construct a new graph $M = (K, E', w_M)$ such that:

• *M* has small **distortion**:

$$orall t,t'\in K, \ \ d_G(t,t')\leq d_M(t,t')\leq lpha\cdot d_G(t,t') \;.$$

• *M* is a graph **minor** of *G*.

Partition $\{V_1, \ldots, V_k\}$ of V is called a **terminal partition** if for all i, • $t_i \in V_i$. • V_i is **connected**.

Partition $\{V_1, \ldots, V_k\}$ of V is called a **terminal partition** if for all i, • $t_i \in V_i$. • V_i is **connected**.

Partition $\{V_1, \ldots, V_k\}$ of V is called a **terminal partition** if for all *i*,

•
$$t_i \in V_i$$
. • V_i is connected.

Given a terminal partition $P = \{V_1, \ldots, V_k\}$, the **induced minor** M is obtained by **contracting** all the internal edges in each V_i .

Partition $\{V_1, \ldots, V_k\}$ of V is called a **terminal partition** if for all *i*,

•
$$t_i \in V_i$$
. • V_i is connected.

Given a terminal partition $P = \{V_1, \ldots, V_k\}$, the **induced minor** M is obtained by **contracting** all the internal edges in each V_i .

The weight of $\{t, t'\}$ (if exist) is simply $d_G(t, t')$.

Partition $\{V_1, \ldots, V_k\}$ of V is called a **terminal partition** if for all *i*,

•
$$t_i \in V_i$$
. • V_i is connected.

Given a terminal partition $P = \{V_1, \ldots, V_k\}$, the **induced minor** M is obtained by **contracting** all the internal edges in each V_i .

The weight of $\{t, t'\}$ (if exist) is simply $d_G(t, t')$.

Partition $\{V_1, \ldots, V_k\}$ of V is called a **terminal partition** if for all *i*,

•
$$t_i \in V_i$$
. • V_i is connected.

Given a terminal partition $P = \{V_1, \ldots, V_k\}$, the **induced minor** M is obtained by **contracting** all the internal edges in each V_i .

The weight of $\{t, t'\}$ (if exist) is simply $d_G(t, t')$.

Natural candidate:

Let V_j be the **Voronoi cell** of t_j (breaking ties arbitrarily).

$$V_j = \{ v \in V \mid \forall i \neq j \mid d_G(t_j, v) \leq d_G(t_i, v) \}$$

Natural candidate:

Let V_j be the **Voronoi cell** of t_j (breaking ties arbitrarily).

$$V_j = \{ v \in V \mid \forall i \neq j \mid d_G(t_j, v) \leq d_G(t_i, v) \}$$

Natural candidate:

Let V_j be the **Voronoi cell** of t_j (breaking ties arbitrarily).

 $V_j = \{ v \in V \mid \forall i \neq j \quad d_G(t_j, v) \leq d_G(t_i, v) \}$

Natural candidate:

Let V_j be the **Voronoi cell** of t_j (breaking ties arbitrarily).

 $V_j = \{ v \in V \mid \forall i \neq j \quad d_G(t_j, v) \leq d_G(t_i, v) \}$

Natural candidate:

Let V_j be the **Voronoi cell** of t_j (breaking ties arbitrarily).

 $V_j = \{ v \in V \mid \forall i \neq j \quad d_G(t_j, v) \leq d_G(t_i, v) \}$

1 Gupta (2001) showed **upper bound** of **8** for trees.

- **(**) Gupta (2001) showed **upper bound** of **8** for trees.
- Ohan, Xia, Konjevod, and Richa (2006) showed:

lower bound of 8 for trees.

- **(**) Gupta (2001) showed **upper bound** of **8** for trees.
- Chan, Xia, Konjevod, and Richa (2006) showed: lower bound of 8 for trees.

Best known lower bound for general graphs!

() Gupta (2001) showed **upper bound** of **8** for trees.

Chan, Xia, Konjevod, and Richa (2006) showed: lower bound of 8 for trees.

Best known lower bound for general graphs!

Basu and Gupta (2008) showed upper bound of O(1) for outerplanar graphs.

() Gupta (2001) showed **upper bound** of **8** for trees.

Chan, Xia, Konjevod, and Richa (2006) showed: lower bound of 8 for trees.

Best known lower bound for general graphs!

 Basu and Gupta (2008) showed upper bound of O(1) for outerplanar graphs.
 Kamma, Krauthgamer and Nguyen (2014) showed upper bound of O(log⁶ k) for general graphs.

() Gupta (2001) showed **upper bound** of **8** for trees.

Chan, Xia, Konjevod, and Richa (2006) showed:

lower bound of 8 for trees.

Best known lower bound for general graphs!

 Basu and Gupta (2008) showed upper bound of O(1) for outerplanar graphs.
 Kamma, Krauthgamer and Nguyen (2014) showed upper bound of O(log⁶ k) for general graphs. Using the Ball growing algorithm.

() Gupta (2001) showed **upper bound** of **8** for trees.

Chan, Xia, Konjevod, and Richa (2006) showed:

lower bound of 8 for trees.

Best known lower bound for general graphs!

- Basu and Gupta (2008) showed upper bound of O(1) for outerplanar graphs.
- Kamma, Krauthgamer and Nguyen (2014) showed upper bound of O(log⁶ k) for general graphs. Using the Ball growing algorithm.
- Samma, Krauthgamer and Nguyen (2015) improved analysis to O(log⁵ k) (same alg).

() Gupta (2001) showed **upper bound** of **8** for trees.

Chan, Xia, Konjevod, and Richa (2006) showed:

lower bound of 8 for trees.

Best known lower bound for general graphs!

- Basu and Gupta (2008) showed upper bound of O(1) for outerplanar graphs.
- Kamma, Krauthgamer and Nguyen (2014) showed upper bound of O(log⁶ k) for general graphs. Using the Ball growing algorithm.
- Samma, Krauthgamer and Nguyen (2015) improved analysis to O(log⁵ k) (same alg).

• Cheung (2018) improved analysis to $O(\log^2 k)$ (same alg).

Obtain improved the analysis of the Ball Growing algorithm to $O(\log k)$.

Obtain improved the analysis of the Ball Growing algorithm to $O(\log k)$. (Appeared in SODA 18)

Obtain improved the analysis of the Ball Growing algorithm to $O(\log k)$. (Appeared in SODA 18)

Introduce a new algorithm: The Noisy Voronoi algorithm.
Also induce distortion of O(log k).

Obtain improved the analysis of the Ball Growing algorithm to $O(\log k)$. (Appeared in SODA 18)

Introduce a new algorithm: The Noisy Voronoi algorithm.

- Also induce distortion of $O(\log k)$.
- Simpler analysis.

Obtain improved the analysis of the Ball Growing algorithm to $O(\log k)$. (Appeared in SODA 18)

Introduce a new algorithm: The Noisy Voronoi algorithm.

- Also induce distortion of $O(\log k)$.
- Simpler analysis.
- Can be implemented in almost **linear time!** $(O(m \log n))$.

Obtain improved the analysis of the Ball Growing algorithm to $O(\log k)$. (Appeared in SODA 18)

Introduce a new algorithm: The Noisy Voronoi algorithm.

- Also induce distortion of $O(\log k)$.
- Simpler analysis.
- Can be implemented in almost **linear time!** $(O(m \log n))$.

The Noisy Voronoi Algorithm

Set $\delta = \frac{1}{20 \ln k}$ and $p = \frac{1}{5}$. Set $R_j \leftarrow (1 + \delta)^{g_j}$,

where $g_j \sim \text{Geo}(p)$.

Set $\delta = \frac{1}{20 \ln k}$ and $p = \frac{1}{5}$. Set $R_j \leftarrow (1 + \delta)^{g_j}$, where $g_j \sim \text{Geo}(p)$. Note that $g_j = O(\log k) \text{ (w.h.p)} \Rightarrow R_j = O(1)$.

Set $\delta = 1/20 \ln k$ and $p = \frac{1}{5}$. Set $R_i \leftarrow (1+\delta)^{g_j}$, where $g_i \sim \text{Geo}(p)$. Note that $g_i = O(\log k)$ (w.h.p) $\Rightarrow R_i = O(1).$ If v joins V_i , the cluster of t_i , then $d(v, t_i) \leq R_i \cdot D(v) = O(D(v)).$

Set $\delta = 1/20 \ln k$ and $p = \frac{1}{5}$. Set $R_i \leftarrow (1+\delta)^{g_j}$, where $g_i \sim \text{Geo}(p)$. Note that $g_i = O(\log k)$ (w.h.p) \Rightarrow $R_i = O(1).$ If v joins V_i , the cluster of t_i , then $d(v, t_i) \leq R_i \cdot D(v) = O(D(v)).$

Lemma

The Noisy Voronoi algorithm

creates a terminal partition.

 $t, t' \in K$, $P_{t,t'}$ is a shortest path in G.

 $t, t' \in K$, $P_{t,t'}$ is a shortest path in G.

 $t, t' \in K$, $P_{t,t'}$ is a shortest path in G. v_{ℓ_i} is arbitrary vertex on $P_{t,t'}$ covered by t_{ℓ_i} .

 $t, t' \in K$, $P_{t,t'}$ is a shortest path in G. v_{ℓ_i} is arbitrary vertex on $P_{t,t'}$ covered by t_{ℓ_i} .

 $t, t' \in K$, $P_{t,t'}$ is a shortest path in G. v_{ℓ_i} is arbitrary vertex on $P_{t,t'}$ covered by t_{ℓ_i} .

Analyzing $\sum_{i} d_G(t_i, v_i)$ directly will be **tricky**, as $d_G(t_i, v_i)$ depends on V_1, \ldots, V_{i-1} . Analyzing $\sum_{i} d_{G}(t_{i}, v_{i})$ directly will be **tricky**, as $d_{G}(t_{i}, v_{i})$ depends on V_{1}, \ldots, V_{i-1} . We will partition $P_{t,t'}$ into **intervals**, and **charge** the interval starting the detour **instead** of the **terminal**! Analyzing $\sum_{i} d_{G}(t_{i}, v_{i})$ directly will be **tricky**, as $d_{G}(t_{i}, v_{i})$ depends on V_{1}, \ldots, V_{i-1} . We will partition $P_{t,t'}$ into **intervals**, and **charge** the interval starting the detour **instead** of the **terminal**!

Arnold Filtser

Partition of $P_{t,t'}$ to Intervals Q is a interval of $P_{t,t'}$.

Partition $P_{t,t}$ into Q, s.t. for each $Q \in Q$

$$L(Q) = \Theta(\frac{1}{\log k}) \cdot D(Q)$$

Partition of $P_{t,t'}$ to Intervals Q is a interval of $P_{t,t'}$. $t_j \longrightarrow D(Q) = \Theta(\log k) \cdot L(Q)$ $t_t \longrightarrow U(Q) \longrightarrow U(Q) \longrightarrow U(Q)$ $t_t \longrightarrow U(Q)$ $t_t \longrightarrow U(Q) \longrightarrow U(Q)$ $t_t \longrightarrow U(Q)$

Partition $P_{t,t}$ into Q, s.t. for each $Q \in Q$

$$L(Q) = \Theta(\frac{1}{\log k}) \cdot D(Q)$$

Partition of $P_{t,t'}$ to Intervals Q is a interval of $P_{t,t'}$. $t_j \longrightarrow D(Q) = \Theta(\log k) \cdot L(Q)$ $t_t \longrightarrow Q \longrightarrow v_b \longrightarrow v_b \longrightarrow v_b \longrightarrow v_b$ Interval lenght

Partition $P_{t,t}$ into \mathcal{Q} , s.t. for each $Q \in \mathcal{Q}$

$$L(Q) = \Theta(\frac{1}{\log k}) \cdot D(Q)$$

Once t_j covered some $v_j \in Q$, w.p 1 - p it covers all of Q.

At the beginning all vertices are **active**.

At the beginning all vertices are **active**.

Terminal t_j grows cluster V_j .

At the beginning all vertices are **active**.

Terminal t_j grows cluster V_j . a_j (resp. b_j) is the leftmost (resp. rightmost) **active** covered vertex.

At the beginning all vertices are **active**.

Terminal t_j grows cluster V_j . a_j (resp. b_j) is the leftmost (resp. rightmost) **active** covered vertex. $\mathcal{D}_j = \{a_j, \ldots, b_j\} \subseteq P_{t,t'}$ is called a **detour**.

At the beginning all vertices are **active**.

Terminal t_j grows cluster V_j . a_j (resp. b_j) is the leftmost (resp. rightmost) **active** covered vertex. $\mathcal{D}_j = \{a_j, \ldots, b_j\} \subseteq P_{t,t'}$ is called a **detour**. All the vertices in \mathcal{D}_j become **inactive**.

At the beginning all vertices are **active**.

Terminal t_j grows cluster V_j . a_j (resp. b_j) is the leftmost (resp. rightmost) **active** covered vertex. $\mathcal{D}_j = \{a_j, \ldots, b_j\} \subseteq P_{t,t'}$ is called a **detour**. All the vertices in \mathcal{D}_j become **inactive**.

At the beginning all vertices are **active**.

Terminal t_j grows cluster V_j . a_j (resp. b_j) is the leftmost (resp. rightmost) **active** covered vertex. $\mathcal{D}_j = \{a_j, \ldots, b_j\} \subseteq P_{t,t'}$ is called a **detour**. All the vertices in \mathcal{D}_j become **inactive**.

Detour \mathcal{D}_i will be **charged** upon a single interval.

Detour \mathcal{D}_i will be **charged** upon a single interval.

Detour \mathcal{D}_j will be **charged** upon a single interval. v_j is the "**first active**" covered vertex by t_j in $P_{t,t'}$.

Detour \mathcal{D}_j will be **charged** upon a single interval. v_j is the "**first active**" covered vertex by t_j in $P_{t,t'}$.

Detour \mathcal{D}_j will be **charged** upon a single interval. v_j is the "**first active**" covered vertex by t_j in $P_{t,t'}$.

Charges

Detour \mathcal{D}_j will be **charged** upon a single interval. v_j is the "**first active**" covered vertex by t_j in $P_{t,t'}$. $Q_j \in \mathcal{Q}$ ($v_j \in Q_j$) is charged upon \mathcal{D}_j .

Detour \mathcal{D}_j will be **charged** upon a single interval. v_j is the "**first active**" covered vertex by t_j in $P_{t,t'}$. $Q_j \in \mathcal{Q} \ (v_j \in Q_j)$ is charged upon \mathcal{D}_j . X_Q is the **current** number of detours the interval Q is **charged** for.

Detour \mathcal{D}_j will be **charged** upon a single interval. v_j is the "**first active**" covered vertex by t_j in $P_{t,t'}$. $Q_j \in \mathcal{Q} \ (v_j \in Q_j)$ is charged upon \mathcal{D}_j . X_Q is the **current** number of detours the interval Q is **charged** for.

Detour \mathcal{D}_j will be **charged** upon a single interval. v_j is the "**first active**" covered vertex by t_j in $P_{t,t'}$. $Q_j \in \mathcal{Q} \ (v_j \in Q_j)$ is charged upon \mathcal{D}_j . X_Q is the **current** number of detours the interval Q is **charged** for. Every detour $\mathcal{D}_{j'}$ which is **contained** in \mathcal{D}_j **erased**, and its charge **re-funded**!

X_{Q_j} increases by **at most** 1.

X_{Q_i} increases by **at most** 1.

For every $Q \neq Q_j$, X_Q can **only decrease**.

Slices: "The Potential to be Charged"

Within interval $Q \in \mathcal{Q}$,

maximal sub-interval of active vertices is called a slice.

Slices: "The Potential to be Charged"

Within interval $Q \in \mathcal{Q}$,

maximal sub-interval of active vertices is called a slice.

We denote by #S(Q) the current **number of slices** in Q.

Slices: "The Potential to be Charged"

Within interval $Q \in \mathcal{Q}$,

maximal sub-interval of active vertices is called a slice.

We denote by #S(Q) the current **number of slices** in Q.

At the start, #S(Q) = 1. At the end, #S(Q) = 0.

In any case, $\#S(Q_j)$ can increase by **at most** 1!

In any case, $\#S(Q_j)$ can increase by **at most** 1!

If $\#S(Q_j)$ is decreased, we call it a **success**.

In any case, $\#S(Q_j)$ can increase by **at most** 1!

If $\#S(Q_j)$ is decreased, we call it a **success**.

Otherwise, we call it a failure.

In any case, #S(Q) cannot increase!

$$t' \bullet D(Q) = \Theta(\log k) \cdot L(Q_j)$$

$$S_j$$

$$Q_j \qquad S_j$$

$$L(Q_j)$$

$$t_j$$

$$V_j \in V_j \Rightarrow R_j \ge d(v_j, t_j)/D(v_j).$$
For all $z \in S_j$,
$$\frac{d(z, t_j)}{D(z)} \le \frac{d(v_j, t_j) + L(Q_j)}{D(v_j) - L(Q_j)} \le \frac{d(v_j, t_j)}{D(v_j)} (1 + \frac{O(1)}{\log k})$$
Recall that $R_j = (1 + \delta)^{g_j}$, where $g_j \sim \text{Geo}(p).$

$$W.P. 1 - p.$$

$$R_j \ge (1 + \delta) \frac{d(v_j, t_j)}{D(v_j)} \ge \frac{d(z, t_j)}{D(z)}$$

$$t' \bullet D(Q) = \Theta(\log k) \cdot L(Q_j)$$

$$V_j \in V_j \Rightarrow R_j \ge d(v_j, t_j)/D(v_j).$$
For all $z \in S_j$,
$$\frac{d(z, t_j)}{D(z)} \le \frac{d(v_j, t_j) + L(Q_j)}{D(v_j) - L(Q_j)} \le \frac{d(v_j, t_j)}{D(v_j)} (1 + \frac{O(1)}{\log k})$$
Recall that $R_j = (1 + \delta)^{g_j}$, where $g_j \sim \text{Geo}(p).$

$$R_j \ge (1 + \delta) \frac{d(v_j, t_j)}{D(v_j)} \ge \frac{d(z, t_j)}{D(z)}$$
W.P. $1 - p.$

$$t' \bullet D(Q) = \Theta(\log k) \cdot L(Q_j)$$

$$S_j$$

$$V_j \in V_j \Rightarrow R_j \ge d(v_j, t_j)/D(v_j).$$
For all $z \in S_j$,
$$\frac{d(z, t_j)}{D(z)} \le \frac{d(v_j, t_j) + L(Q_j)}{D(v_j) - L(Q_j)} \le \frac{d(v_j, t_j)}{D(v_j)} (1 + \frac{O(1)}{\log k})$$
Recall that $R_j = (1 + \delta)^{g_j}$, where $g_j \sim \text{Geo}(p).$

$$W.P. 1 - p.$$

$$R_j \ge (1 + \delta) \frac{d(v_j, t_j)}{D(v_j)} \ge \frac{d(z, t_j)}{D(z)}$$

Lemma (Success probability) Assuming at least one active vertex joins V_i , the probability of success is at least 1 - p. $t' \bullet D(Q) = \Theta(\log k) \cdot L(Q_i)$ **CCESS** $L(Q_i)$ $-t_i$ $v_i \in V_i \implies R_i > d(v_i, t_i)/D(v_i).$ For all $z \in S_i$, Recall that $R_i = (1 + \delta)^{g_i}$, where $g_i \sim \text{Geo}(p)$. W.P. 1 - p. $R_j \ge (1+\delta) \frac{d(v_j, t_j)}{D(v_j)} \ge \frac{d(z, t_j)}{D(z)}$

In fact, the success probability is **either** 1 or 1 - p.

Proof.

 $\mathbb{E}[X_Q] \leq 1 + p \cdot 2\mathbb{E}[X_Q] \quad \Rightarrow \quad \mathbb{E}[X_Q] \leq \frac{1}{1-2p} = O(1).$

Proof.

 $\mathbb{E}[X_Q] \leq 1 + p \cdot 2\mathbb{E}[X_Q] \quad \Rightarrow \quad \mathbb{E}[X_Q] \leq \frac{1}{1-2p} = O(1).$

Corollary (High Probability Charge Bound) With high probability, for all $Q \in Q$, $X_Q = O(\log k)$.

Proof.

 $\mathbb{E}[X_Q] \leq 1 + p \cdot 2\mathbb{E}[X_Q] \quad \Rightarrow \quad \mathbb{E}[X_Q] \leq \frac{1}{1-2p} = O(1).$

Corollary (High Probability Charge Bound) With high probability, for all $Q \in Q$, $X_Q = O(\log k)$.

Proof.

Chernoff.

$$\begin{array}{l} \text{Definition (Charge Function)} \\ f(x_1, x_2, \dots, x_{\varphi}) = \sum_i x_i \cdot L(Q^i) \quad , \qquad \qquad \text{here } \varphi = |\mathcal{Q}|. \end{array}$$

Definition (Charge Function)	
$f(x_1,x_2,\ldots,x_arphi)=\sum_i x_i\cdot L(Q^i)$,	here $\varphi = \mathcal{Q} $.

f is linear and monotonically increasing.

 $\begin{array}{l} \text{Definition (Charge Function)} \\ f(x_1, x_2, \dots, x_{\varphi}) = \sum_i x_i \cdot L(Q^i) \\ \text{here } \varphi = |\mathcal{Q}|. \end{array}$

$$egin{aligned} &d_{\mathcal{M}}(t,t') \leq d_{\mathcal{G}}(t,t') + 2\sum_{j}d_{\mathcal{G}}(t_{j},\mathsf{v}_{j}) \ &= d_{\mathcal{G}}(t,t') + O(1)\cdot\sum_{j}D(\mathsf{v}_{j}) \end{aligned}$$

Recall
$$R_j = O(1)$$
, thus $d_G(t_j, v_j) \leq R_j \cdot D(v_j) = O(D(v_j))$.

Definition (Charge Function) $f(x_1, x_2, ..., x_{\varphi}) = \sum_i x_i \cdot L(Q^i)$, here $\varphi = |Q|$.

$$d_{M}(t, t') \leq d_{G}(t, t') + 2 \sum_{j} d_{G}(t_{j}, v_{j})$$

$$= d_{G}(t, t') + O(1) \cdot \sum_{j} D(v_{j})$$

$$= d_{G}(t, t') + O(\log k) \cdot \sum_{j} L(Q_{j})$$

$$t_{j} \qquad D(Q) = \Theta(\log k) \cdot L(Q)$$

$$U_{v_{0}} \qquad V_{b} \qquad t'$$

$$L(Q) = d_{G}(v_{a}, v_{b}) \qquad \text{Interval lenght}$$

t.
$$egin{aligned} &d_M(t,t') \leq d_G(t,t') + 2\sum_j d_G(t_j,v_j) \ &= d_G(t,t') + O(1) \cdot \sum_j D(v_j) \ &= d_G(t,t') + O(\log k) \cdot \sum_j L(Q_j) \ &= d_G(t,t') + O(\log k) \cdot \sum_{Q \in \mathcal{Q}} X_Q \cdot L(Q) \end{aligned}$$

$$egin{aligned} &d_M(t,t') \leq d_G(t,t') + 2\sum_j d_G(t_j,\mathbf{v}_j) \ &= d_G(t,t') + O(1)\cdot\sum_j D(\mathbf{v}_j) \ &= d_G(t,t') + O(\log k)\cdot\sum_j L(Q_j) \ &= d_G(t,t') + O(\log k)\cdot\sum_{Q\in\mathcal{Q}} X_Q\cdot L(Q) \ &= d_G(t,t') + O(\log k)\cdot f\left(X_{Q^1},\ldots,X_{Q^arphi}
ight) \end{aligned}$$

 $d_M(t,t') = d_G(t,t') + O(\log k) \cdot f(X_{Q^1},\ldots,X_{Q^{\varphi}})$

 $\begin{array}{l} \text{Definition (Charge Function)} \\ f(x_1, x_2, \dots, x_{\varphi}) = \sum_i x_i \cdot L(Q^i) , & \text{here } \varphi = |\mathcal{Q}|. \end{array}$

$$d_M(t,t') = d_G(t,t') + O(\log k) \cdot f(X_{Q^1},\ldots,X_{Q^{\varphi}})$$

$$\mathbb{E}\left[f(X_{Q^1},\ldots,X_{Q^{\varphi}})\right] = \sum_{Q \in \mathcal{Q}} \mathbb{E}\left[X_Q\right] \cdot L(Q)$$

 $\begin{array}{l} \text{Definition (Charge Function)} \\ f(x_1, x_2, \dots, x_{\varphi}) = \sum_i x_i \cdot L(Q^i) \\ \text{,} \\ \end{array} \text{ here } \varphi = |\mathcal{Q}|. \end{array}$

$$d_M(t,t') = d_G(t,t') + O(\log k) \cdot f(X_{Q^1},\ldots,X_{Q^{\varphi}})$$

$$egin{aligned} \mathbb{E}\left[f(X_{Q^1},\ldots,X_{Q^arphi})
ight] &= \sum_{Q\in\mathcal{Q}}\mathbb{E}\left[X_Q
ight]\cdot L(Q) \ &= O(1)\cdot\sum_{Q\in\mathcal{Q}}L(Q) = O\left(1
ight)\cdot d_G(t,t') \end{aligned}$$

 $\begin{array}{l} \text{Definition (Charge Function)} \\ f(x_1, x_2, \dots, x_{\varphi}) = \sum_i x_i \cdot L(Q^i) \\ \text{,} \\ \end{array} \text{ here } \varphi = |\mathcal{Q}|. \end{array}$

$$d_M(t,t') = d_G(t,t') + O(\log k) \cdot f(X_{Q^1},\ldots,X_{Q^{\varphi}})$$

$$egin{aligned} \mathbb{E}\left[f(X_{Q^1},\ldots,X_{Q^arphi})
ight] &= \sum_{Q\in\mathcal{Q}}\mathbb{E}\left[X_Q
ight]\cdot L(Q) \ &= O(1)\cdot\sum_{Q\in\mathcal{Q}}L(Q) = O\left(1
ight)\cdot d_G(t,t') \end{aligned}$$

Theorem

The **expected distortion** of the minor M

returned by the Noisy Voronoi algorithm is $O(\log k)$.

 $\begin{array}{l} \text{Definition (Charge Function)} \\ f(x_1, x_2, \dots, x_{\varphi}) = \sum_i x_i \cdot L(Q^i) , & \text{here } \varphi = |\mathcal{Q}|. \end{array}$

$$d_M(t,t') = d_G(t,t') + O(\log k) \cdot f(X_{Q^1},\ldots,X_{Q^{\varphi}})$$

Moreover, with high probability

 $\begin{array}{l} \text{Definition (Charge Function)} \\ f(x_1, x_2, \dots, x_{\varphi}) = \sum_i x_i \cdot L(Q^i) \\ \text{,} \\ \end{array} \text{ here } \varphi = |\mathcal{Q}|. \end{array}$

$$d_M(t,t') = d_G(t,t') + O(\log k) \cdot f(X_{Q^1},\ldots,X_{Q^{\varphi}})$$

Moreover, with high probability

$$f(X_{Q_1},\ldots,X_{Q_{\varphi}}) = \sum_{Q\in\mathcal{Q}} X_Q \cdot L(Q)$$

$$d_M(t,t') = d_G(t,t') + O(\log k) \cdot f(X_{Q^1},\ldots,X_{Q^{\varphi}})$$

Moreover, with high probability

$$f(X_{Q_1}, \dots, X_{Q_{\varphi}}) = \sum_{Q \in \mathcal{Q}} X_Q \cdot L(Q)$$

= $O(\log k) \cdot \sum_{Q \in \mathcal{Q}} L(Q) = O(\log k) \cdot d_G(t, t')$

$$d_M(t,t') = d_G(t,t') + O(\log k) \cdot f(X_{Q^1},\ldots,X_{Q^{\varphi}})$$

Moreover, with high probability

$$f(X_{Q_1}, \dots, X_{Q_{\varphi}}) = \sum_{Q \in \mathcal{Q}} X_Q \cdot L(Q)$$

= $O(\log k) \cdot \sum_{Q \in \mathcal{Q}} L(Q) = O(\log k) \cdot d_G(t, t')$

Theorem

With high probability, the Noisy Voronoi algorithm returns a minor M with distortion $O(\log^2 k)$.

Arnold Filtser

Steiner Point Removal

But you promised distortion $O(\log k)!$

Analyze
$$f(X_{Q^1},\ldots,X_{Q^arphi})=\sum_{Q\in\mathcal{Q}}X_Q\cdot L(Q)$$
 better.

Analyze $f(X_{Q^1}, \ldots, X_{Q^{\varphi}}) = \sum_{Q \in Q} X_Q \cdot L(Q)$ better. But $X_{Q^1}, \ldots, X_{Q^{\varphi}}$ are dependent.

Analyze $f(X_{Q^1}, \ldots, X_{Q^{\varphi}}) = \sum_{Q \in Q} X_Q \cdot L(Q)$ better.

But $X_{Q^1}, \ldots, X_{Q^{\varphi}}$ are **dependent**.

What can we do?

Analyze $f(X_{Q^1}, \ldots, X_{Q^{\varphi}}) = \sum_{Q \in Q} X_Q \cdot L(Q)$ better.

But $X_{Q^1}, \ldots, X_{Q^{\varphi}}$ are **dependent**.

What can we do?

They maybe dependent, but in a "positive" way!

Arnold Filtser

Denote by A(B) the number of **active** Coins in the bucket B. Denote by IN(B) the number of **inactive** Coins in the bucket B.

$\begin{array}{c} \textbf{Coupling} \\ \#S(Q^{1}) = 1 \\ X_{Q^{1}} = 0 \\ \hline Q^{1} \end{array} \xrightarrow{\#S(Q^{i-1}) = 1} \\ \#S(Q^{i-1}) = 1 \\ X_{Q^{i}} = 0 \\ \hline Q^{i-1} \\ \hline Q^{i} \\ \hline Q^{i} \\ \hline Q^{i+1} \\ \hline Q^{i+1} \\ \hline Q^{i+1} \\ \hline Q^{\varphi} \end{array} \xrightarrow{\#S(Q^{\varphi}) = 1} \\ \#S(Q^{\varphi}) = 1 \\ X_{Q^{\varphi}} = 0 \\ \hline Q^{\varphi} \\ \hline Q^{\varphi} \end{array}$

 $\mathcal{B}_1, \ldots, \mathcal{B}_{\varphi}$ are independent buckets.

 $\mathcal{B}_1, \ldots, \mathcal{B}_{\varphi}$ are independent buckets. We execute Noisy Voronoi algorithm and use it in order to determine $IN(\mathcal{B}_1), \ldots, IN(\mathcal{B}_{\varphi})$.

Maintain, for all i,

 $X_{Q^i} \leq IN(\mathcal{B}_i)$ & $\#S(Q^i) \leq A(\mathcal{B}_i)$

Maintain, for all i, $X_{Q^i} \leq IN(\mathcal{B}_i)$ & $\#S(Q^i) \leq A(\mathcal{B}_i)$

Maintain, for all i, $X_{Q^i} \leq IN(\mathcal{B}_i) \& \#S(Q^i) \leq A(\mathcal{B}_i)$ Suppose t_j grows cluster V_j .

Maintain, for all *i*, $X_{Q^i} \leq IN(\mathcal{B}_i) \& \#S(Q^i) \leq A(\mathcal{B}_i)$ Suppose t_j grows cluster V_j .

• If no active vertex joins V_j . Nothing change.

Maintain, for all i, $X_{Q^i} \leq IN(\mathcal{B}_i)$ & $\#S(Q^i) \leq A(\mathcal{B}_i)$ Suppose t_j grows cluster V_j .

• If no active vertex joins V_j . Nothing change.

Else, $v_j \in S_j \subseteq Q_j$ is the first vertex to **join** V_j . $\mathcal{B}_{(j)}$ is the corresponding bucket to Q_j .

Maintain, for all i, $X_{Q^i} \leq IN(\mathcal{B}_i) \& \#S(Q^i) \leq A(\mathcal{B}_i)$ Suppose t_j grows cluster V_j .

• If no active vertex joins V_j . Nothing change.

Else, $v_j \in S_j \subseteq Q_j$ is the first vertex to **join** V_j . $\mathcal{B}_{(j)}$ is the corresponding bucket to Q_j . Let p' be the **probability** that **not all** of S_j **joins** V_j . Recall $p' \leq p$.

Maintain, for all i, $X_{Q^i} \leq IN(\mathcal{B}_i) \& \#S(Q^i) \leq A(\mathcal{B}_i)$ Suppose t_j grows cluster V_j .

• If no active vertex joins V_j . Nothing change.

Else, $v_j \in S_j \subseteq Q_j$ is the first vertex to **join** V_j . $\mathcal{B}_{(j)}$ is the corresponding bucket to Q_j . Let p' be the **probability** that **not all** of S_j **joins** V_j . Recall $p' \leq p$.

• If not all of S_j joins V_j: **Fail in both processes**. Add two active coins.

Maintain, for all i, $X_{Q^i} \leq IN(\mathcal{B}_i) \& \#S(Q^i) \leq A(\mathcal{B}_i)$ Suppose t_j grows cluster V_j .

• If no active vertex joins V_j . Nothing change.

Else, $v_j \in S_j \subseteq Q_j$ is the first vertex to **join** V_j . $\mathcal{B}_{(j)}$ is the corresponding bucket to Q_j . Let p' be the **probability** that **not all** of S_j **joins** V_j . Recall $p' \leq p$.

• If not all of S_j joins V_j: **Fail in both processes**. Add two active coins.

►
$$A(\mathcal{B}_{(j)}) \leftarrow A(\mathcal{B}_{(j)}) + 1$$
, $IN(\mathcal{B}_{(j)}) \leftarrow IN(\mathcal{B}_{(j)}) + 1$.
For $i \neq (j)$, $A(\mathcal{B}_i)$, $IN(\mathcal{B}_i)$ unchanged.

Maintain, for all i, $X_{Q^i} \leq IN(\mathcal{B}_i) \& \#S(Q^i) \leq A(\mathcal{B}_i)$ Suppose t_j grows cluster V_j .

• If no active vertex joins V_j . Nothing change.

Else, $v_j \in S_j \subseteq Q_j$ is the first vertex to **join** V_j . $\mathcal{B}_{(j)}$ is the corresponding bucket to Q_j . Let p' be the **probability** that **not all** of S_j **joins** V_j . Recall $p' \leq p$.

- If not all of S_j joins V_j: **Fail in both processes**. Add two active coins.
 - ► $A(\mathcal{B}_{(j)}) \leftarrow A(\mathcal{B}_{(j)}) + 1$, $IN(\mathcal{B}_{(j)}) \leftarrow IN(\mathcal{B}_{(j)}) + 1$. For $i \neq (j)$, $A(\mathcal{B}_i)$, $IN(\mathcal{B}_i)$ unchanged.
 - ► $\#S(Q_j) \le \#S(Q_j) + 1$, $X_{Q_j} \le X_{Q_j} + 1$. For $i \ne j$, $\#S(Q_i)$, X_{Q_i} might only decrease.

Maintain, for all *i*, $X_{Q_i} \leq IN(\mathcal{B}_i)$ & $\#S(Q_i) \leq A(\mathcal{B}_i)$ Suppose t_j grows cluster V_j .

• If no active vertex joins V_j . Nothing change.

Else, $v_j \in S_j \subseteq Q_j$ is the first vertex to **join** V_j . $\mathcal{B}_{(j)}$ is the corresponding bucket to Q_j .

Let p' be the **probability** that **not** all of S_j joins V_j . Recall $p' \leq p$.

Maintain, for all *i*, $X_{Q_i} \leq IN(\mathcal{B}_i) \& \#S(Q_i) \leq A(\mathcal{B}_i)$ Suppose t_j grows cluster V_j .

• If no active vertex joins V_j . Nothing change.

Else, $v_j \in S_j \subseteq Q_j$ is the first vertex to **join** V_j . $\mathcal{B}_{(j)}$ is the corresponding bucket to Q_j . Let p' be the **probability** that **not all** of S_j **joins** V_j . Recall $p' \leq p$.

If all of S_j joins V_j: Success in alg.
 With probability ^{p-p'}/_{1-p'}, add two active coins (fail in buckets).

Maintain, for all *i*, $X_{Q_i} \leq IN(\mathcal{B}_i) \& \#S(Q_i) \leq A(\mathcal{B}_i)$ Suppose t_j grows cluster V_j .

• If no active vertex joins V_j. Nothing change.

Else, $v_j \in S_j \subseteq Q_j$ is the first vertex to **join** V_j . $\mathcal{B}_{(j)}$ is the corresponding bucket to Q_j . Let p' be the **probability** that **not all** of S_j **joins** V_j . Recall $p' \leq p$.

If all of S_j joins V_j: Success in alg.
 With probability ^{p-p'}/_{1-p'}, add two active coins (fail in buckets).

►
$$A(\mathcal{B}_{(j)}) \ge A(\mathcal{B}_{(j)}) - 1$$
, $IN(\mathcal{B}_{(j)}) \leftarrow IN(\mathcal{B}_{(j)}) + 1$.
For $i \neq (j)$, $A(\mathcal{B}_i)$, $IN(\mathcal{B}_i)$ unchanged.

Maintain, for all *i*, $X_{Q_i} \leq IN(\mathcal{B}_i) \& \#S(Q_i) \leq A(\mathcal{B}_i)$ Suppose t_j grows cluster V_j .

• If no active vertex joins V_j . Nothing change.

Else, $v_j \in S_j \subseteq Q_j$ is the first vertex to **join** V_j . $\mathcal{B}_{(j)}$ is the corresponding bucket to Q_j . Let p' be the **probability** that **not all** of S_j **joins** V_j . Recall $p' \leq p$.

- If all of S_j joins V_j: Success in alg.
 With probability ^{p-p'}/_{1-p'}, add two active coins (fail in buckets).
 - ► $A(\mathcal{B}_{(j)}) \ge A(\mathcal{B}_{(j)}) 1$, $IN(\mathcal{B}_{(j)}) \leftarrow IN(\mathcal{B}_{(j)}) + 1$. For $i \neq (j)$, $A(\mathcal{B}_i)$, $IN(\mathcal{B}_i)$ unchanged.
 - ► $\#S(Q_j) \le \#S(Q_j) 1$, $X_{Q_j} \le X_{Q_j} + 1$. For $i \ne j$, $\#S(Q_i)$, X_{Q_i} might only decrease.
Coupling

Maintain, for all *i*, $X_{Q_i} \leq IN(\mathcal{B}_i) \& \#S(Q_i) \leq A(\mathcal{B}_i)$ Suppose t_j grows cluster V_j .

• If no active vertex joins V_j. Nothing change.

Else, $v_j \in S_j \subseteq Q_j$ is the first vertex to **join** V_j . $\mathcal{B}_{(j)}$ is the corresponding bucket to Q_j . Let p' be the **probability** that **not all** of S_j **joins** V_j . Recall $p' \leq p$.

If all of S_j joins V_j: Success in alg.
 With probability prob

►
$$A(\mathcal{B}_{(j)}) \ge A(\mathcal{B}_{(j)}) - 1$$
, $IN(\mathcal{B}_{(j)}) \leftarrow IN(\mathcal{B}_{(j)}) + 1$.
For $i \neq (j)$, $A(\mathcal{B}_i)$, $IN(\mathcal{B}_i)$ unchanged.

► $\#S(Q_j) \le \#S(Q_j) - 1$, $X_{Q_j} \le X_{Q_j} + 1$. For $i \ne j$, $\#S(Q_i)$, X_{Q_i} might only decrease.

The probability of failure in the bucket is: $p' + (1 - p') \cdot \frac{p - p'}{1 - p'} = p$

Coupling

Maintain, for all *i*, $X_{Q_i} \leq IN(\mathcal{B}_i)$ & $\#S(Q_i) \leq A(\mathcal{B}_i)$ Suppose t_j grows cluster V_j .

• If no active vertex joins V_j. Nothing change.

Else, $v_j \in S_j \subseteq Q_j$ is the first vertex to **join** V_j . $\mathcal{B}_{(j)}$ is the corresponding bucket to Q_j . Let p' be the **probability** that **not all** of S_j **joins** V_j . Recall $p' \leq p$.

- If all of S_j joins V_j: Success in alg.
 With probability ^{p-p'}/_{1-p'}, add two active coins (fail in buckets).
 - ► $A(\mathcal{B}_{(j)}) \ge A(\mathcal{B}_{(j)}) 1$, $IN(\mathcal{B}_{(j)}) \leftarrow IN(\mathcal{B}_{(j)}) + 1$. For $i \neq (j)$, $A(\mathcal{B}_i)$, $IN(\mathcal{B}_i)$ unchanged.
 - ► $\#S(Q_j) \le \#S(Q_j) 1$, $X_{Q_j} \le X_{Q_j} + 1$. For $i \ne j$, $\#S(Q_i)$, X_{Q_i} might only decrease.

The probability of failure in the bucket is: $p' + (1 - p') \cdot \frac{p - p'}{1 - p'} = p$ The **marginal distribution** on the buckets is correct!

Arnold Filtser

 $X_{Q^i} \leq IN(\mathcal{B}_i)$ & $\#S(Q^i) \leq A(\mathcal{B}_i)$

$$X_{Q^i} \leq IN(\mathcal{B}_i)$$
 & $\#S(Q^i) \leq A(\mathcal{B}_i)$

At end, if active coins remain, just flip them regularly.

$$X_{Q^i} \leq IN(\mathcal{B}_i)$$
 & $\#S(Q^i) \leq A(\mathcal{B}_i)$

At end, if active coins remain, just flip them regularly. IN(B) can only grow!

$$X_{Q^i} \leq IN(\mathcal{B}_i)$$
 & $\#S(Q^i) \leq A(\mathcal{B}_i)$

At end, if active coins remain, just **flip** them **regularly**. $IN(\mathcal{B})$ can **only grow**!

Thus, $(X_{Q^1}, \ldots, X_{Q^{\varphi}}) \leq (IN(\mathcal{B}_1), \ldots, IN(\mathcal{B}_{\varphi}))$ coordinatewise

$$X_{Q^i} \leq IN(\mathcal{B}_i)$$
 & $\#S(Q^i) \leq A(\mathcal{B}_i)$

At end, if active coins remain, just **flip** them **regularly**. $IN(\mathcal{B})$ can **only grow**!

$$\mathsf{Thus}, \quad (X_{\mathcal{Q}^1}, \dots, X_{\mathcal{Q}^{\varphi}}) \leq (\mathit{IN}(\mathcal{B}_1), \dots, \mathit{IN}(\mathcal{B}_{\varphi})) \quad \text{ coordinatewise}$$

Corollary (The buckets **dominate** the detour charges) For all $\alpha \ge 0$,

$$\Pr\left[f\left(X_{Q^{1}},\ldots,X_{Q^{\varphi}}\right)\geq\alpha\right]\leq\Pr\left[f\left(IN(\mathcal{B}_{1}),\ldots,IN(\mathcal{B}_{\varphi})\right)\geq\alpha\right]$$

$\Pr[IN(\mathcal{B}) \geq \alpha] \leq \Pr[Exp(10) + 1 \geq \alpha]$

$$\Pr[IN(\mathcal{B}) \ge \alpha] \le \Pr[Exp(10) + 1 \ge \alpha]$$

Proof.

Meh. Too Technical.

$$\Pr[IN(\mathcal{B}) \ge \alpha] \le \Pr[Exp(10) + 1 \ge \alpha]$$

Corollary (Series of Exponential Dominates the Buckets)

For all $\alpha \ge 0$, $\Pr[f(IN(\mathcal{B}_1), \dots, IN(\mathcal{B}_{\varphi})) \ge \alpha]$ $\le \Pr[f(Exp(10) + 1, \dots, Exp(10) + 1) \ge \alpha]$

$$\Pr\left[IN(\mathcal{B}) \geq \alpha\right] \leq \Pr\left[Exp(10) + 1 \geq \alpha\right]$$

Corollary (Series of Exponential Dominates the Buckets)

$$\begin{array}{ll} \textit{For all } \alpha \geq 0, \qquad \Pr\left[f\left(\textit{IN}(\mathcal{B}_1), \ldots, \textit{IN}(\mathcal{B}_{\varphi})\right) \geq \alpha\right] \\ & \leq \Pr\left[f\left(\textit{Exp}(10) + 1, \ldots, \textit{Exp}(10) + 1\right) \geq \alpha\right] \end{array}$$

Proof.

You know the drill... (*f* is linear and monotone coordinatewise.)

$$\Pr\left[IN(\mathcal{B}) \geq \alpha\right] \leq \Pr\left[Exp(10) + 1 \geq \alpha\right]$$

Corollary (Series of Exponential Dominates the Buckets)

For all
$$\alpha \ge 0$$
, $\Pr[f(IN(\mathcal{B}_1), \dots, IN(\mathcal{B}_{\varphi})) \ge \alpha]$
 $\le \Pr[f(Exp(10) + 1, \dots, Exp(10) + 1) \ge \alpha]$

Note that

$$egin{aligned} f\left(\mathsf{Exp}(10)+1,\ldots,\mathsf{Exp}(10)+1
ight) &= f\left(\mathsf{Exp}(10),\ldots,\mathsf{Exp}(10)
ight) \ &+ f(1,\ldots,1) \end{aligned}$$

$$\Pr\left[IN(\mathcal{B}) \geq \alpha\right] \leq \Pr\left[Exp(10) + 1 \geq \alpha\right]$$

Corollary (Series of Exponential Dominates the Buckets)

For all $\alpha \ge 0$, $\Pr[f(IN(\mathcal{B}_1), \dots, IN(\mathcal{B}_{\varphi})) \ge \alpha]$ $\le \Pr[f(Exp(10) + 1, \dots, Exp(10) + 1) \ge \alpha]$

Thus, in order to bound $f\left(X_{Q_1},\ldots,X_{Q_{\varphi}}
ight)$ it will be enough to bound

$$f(\mathsf{Exp}(10), \dots, \mathsf{Exp}(10)) = \sum_{i=1}^{\varphi} \mathsf{Exp}(10) \cdot L(Q_i)$$
$$= \sum_{i=1}^{\varphi} \mathsf{Exp}(10 \cdot L(Q_i))$$

Goal: bound	$\sum_{i=1}^{\varphi} \operatorname{Exp}\left(10 \cdot L(Q_i)\right).$
-------------	--

Lemma (Concentration Bound for Exp) $X_1, \ldots, X_n \text{ are } i.r.v, \text{ where } X_i \sim \operatorname{Exp}(\lambda_i).$ $Set: \quad X = \sum_i X_i, \quad \lambda_M = \max_i \lambda_i, \quad \mu = \mathbb{E}[X] = \sum_i \lambda_i.$ For $a \ge 2\mu$ $\Pr[X \ge a] \le \exp\left(-\frac{1}{2\lambda_M}(a-2\mu)\right)$

Lemma (Concentration Bound for Exp)

$$X_1, \ldots, X_n$$
 are *i.r.v*, where $X_i \sim \text{Exp}(\lambda_i)$.
Set: $X = \sum_i X_i$, $\lambda_M = \max_i \lambda_i$, $\mu = \mathbb{E}[X] = \sum_i \lambda_i$.
For $a \ge 2\mu$ $\Pr[X \ge a] \le \exp\left(-\frac{1}{2\lambda_M}(a-2\mu)\right)$

In our case, $X_i \sim \text{Exp}(10 \cdot L(Q_i))$. $X = \sum_i X_i$.

Lemma (Concentration Bound for Exp)

$$X_1, \ldots, X_n$$
 are *i.r.v*, where $X_i \sim \text{Exp}(\lambda_i)$.
Set: $X = \sum_i X_i$, $\lambda_M = \max_i \lambda_i$, $\mu = \mathbb{E}[X] = \sum_i \lambda_i$.
For $a \ge 2\mu$ $\Pr[X \ge a] \le \exp\left(-\frac{1}{2\lambda_M}(a-2\mu)\right)$

In our case, $X_i \sim \text{Exp}(10 \cdot L(Q_i))$. $X = \sum_i X_i$.

$$\mu = \mathbb{E}[X] = \mathbb{E}\left[\sum_{i} X_{i}\right] = \sum_{i} \mathbb{E}[X_{i}] = \sum_{i} 10 \cdot L(Q_{i}) \leq 10 \cdot d_{G}(t, t')$$

Lemma (Concentration Bound for Exp)

$$X_1, \ldots, X_n$$
 are *i.r.v*, where $X_i \sim \text{Exp}(\lambda_i)$.
Set: $X = \sum_i X_i$, $\lambda_M = \max_i \lambda_i$, $\mu = \mathbb{E}[X] = \sum_i \lambda_i$.
For $a \ge 2\mu$ $\Pr[X \ge a] \le \exp\left(-\frac{1}{2\lambda_M}(a-2\mu)\right)$

In our case, $X_i \sim \text{Exp}(10 \cdot L(Q_i))$. $X = \sum_i X_i$.

$$\mu = \mathbb{E}[X] = \mathbb{E}\left[\sum_{i} X_{i}\right] = \sum_{i} \mathbb{E}[X_{i}] = \sum_{i} 10 \cdot L(Q_{i}) \leq 10 \cdot d_{G}(t, t')$$

$$\lambda_M = \max_i \left\{ 10 \cdot L(Q_i) \right\} = \max_i \left\{ O\left(\frac{D(Q_i)}{\log k}\right) \right\} = O\left(\frac{d_G(t, t')}{\log k}\right)$$

$$\mu \leq 10 \cdot d_G(t, t')$$

Thus for $a = 30 \cdot d_G(t, t')$

$$\Pr\left[X \ge a
ight] \le \exp\left(-rac{1}{2\lambda_{\mathcal{M}}}\left(a-2\mu
ight)
ight) =$$

$$\lambda_M = O\left(\frac{d_G(t,t')}{\log k}\right)$$

$$\mu \leq 10 \cdot d_G(t, t')$$

Thus for $a = 30 \cdot d_G(t, t')$
 $\lambda_M = O\left(\frac{d_G(t, t')}{\log k}\right)$

$$\Pr\left[X \ge a\right] \le \exp\left(-\frac{1}{2\lambda_{\mathcal{M}}}\left(a - 2\mu\right)\right) = \exp\left(\Omega\left(\log k\right)\right) = \frac{1}{k^3}$$

$$\mu \leq 10 \cdot d_G(t, t') \qquad \qquad \lambda_M = O\left(\frac{d_G(t, t')}{\log k}\right)$$

Thus for $a = 30 \cdot d_G(t, t')$

$$\Pr\left[X \ge a\right] \le \exp\left(-\frac{1}{2\lambda_M}\left(a - 2\mu\right)\right) = \exp\left(\Omega\left(\log k\right)\right) = \frac{1}{k^3}$$

$$\Pr\left[f\left(X_{Q_1},\ldots,X_{Q_{arphi}}
ight)\geq O(d_G(t,t'))
ight]$$

$$\mu \le 10 \cdot d_G(t, t') \qquad \qquad \lambda_M = O\left(\frac{d_G(t, t')}{\log k}\right)$$

Thus for $a = 30 \cdot d_G(t, t')$

$$\Pr\left[X \ge a\right] \le \exp\left(-\frac{1}{2\lambda_M}\left(a - 2\mu\right)\right) = \exp\left(\Omega\left(\log k\right)\right) = \frac{1}{k^3}$$

$$\Pr\left[f\left(X_{Q_1},\ldots,X_{Q_{\varphi}}\right) \ge O(d_G(t,t'))\right] \\ \le \Pr\left[f\left(IN(\mathcal{B}_1),\ldots,IN(\mathcal{B}_{\varphi})\right) \ge O(d_G(t,t'))\right]$$

$$\mu \leq 10 \cdot d_G(t, t')$$

Thus for $a = 30 \cdot d_G(t, t')$
 $\lambda_M = O\left(\frac{d_G(t, t')}{\log k}\right)$

$$\Pr\left[X \ge a\right] \le \exp\left(-\frac{1}{2\lambda_M}\left(a - 2\mu\right)\right) = \exp\left(\Omega\left(\log k\right)\right) = \frac{1}{k^3}$$

$$\begin{aligned} & \Pr\left[f\left(X_{Q_1},\ldots,X_{Q_{\varphi}}\right) \geq O(d_G(t,t'))\right] \\ & \leq \Pr\left[f\left(IN(\mathcal{B}_1),\ldots,IN(\mathcal{B}_{\varphi})\right) \geq O(d_G(t,t'))\right] \\ & \leq \Pr\left[f\left(\text{Exp}(10),\ldots,\text{Exp}(10)\right) \geq O(d_G(t,t'))\right] \end{aligned}$$

$$\mu \leq 10 \cdot d_G(t, t')$$

Thus for $a = 30 \cdot d_G(t, t')$
 $\lambda_M = O\left(\frac{d_G(t, t')}{\log k}\right)$

$$\Pr\left[X \ge a\right] \le \exp\left(-\frac{1}{2\lambda_M}\left(a - 2\mu\right)\right) = \exp\left(\Omega\left(\log k\right)\right) = \frac{1}{k^3}$$

$$\begin{aligned} & \Pr\left[f\left(X_{Q_1},\ldots,X_{Q_{\varphi}}\right) \geq O(d_G(t,t'))\right] \\ & \leq \Pr\left[f\left(IN(\mathcal{B}_1),\ldots,IN(\mathcal{B}_{\varphi})\right) \geq O(d_G(t,t'))\right] \\ & \leq \Pr\left[f\left(\mathsf{Exp}(10),\ldots,\mathsf{Exp}(10)\right) \geq O(d_G(t,t'))\right] \\ & = \Pr\left[X \geq a\right] \leq \frac{1}{k^3} \end{aligned}$$

$$\mu \leq 10 \cdot d_G(t, t')$$

Thus for $a = 30 \cdot d_G(t, t')$
 $\lambda_M = O\left(\frac{d_G(t, t')}{\log k}\right)$

$$\Pr\left[X \ge a\right] \le \exp\left(-\frac{1}{2\lambda_M}\left(a - 2\mu\right)\right) = \exp\left(\Omega\left(\log k\right)\right) = \frac{1}{k^3}$$

$$\begin{aligned} & \Pr\left[f\left(X_{Q_1},\ldots,X_{Q_{\varphi}}\right) \geq O(d_G(t,t'))\right] \\ & \leq \Pr\left[f\left(IN(\mathcal{B}_1),\ldots,IN(\mathcal{B}_{\varphi})\right) \geq O(d_G(t,t'))\right] \\ & \leq \Pr\left[f\left(\mathsf{Exp}(10),\ldots,\mathsf{Exp}(10)\right) \geq O(d_G(t,t'))\right] \\ & = \Pr\left[X \geq a\right] \leq \frac{1}{k^3} \end{aligned}$$

If this event indeed occurs

`

$$\mu \leq 10 \cdot d_G(t, t')$$

Thus for $a = 30 \cdot d_G(t, t')$
 $\lambda_M = O\left(\frac{d_G(t, t')}{\log k}\right)$

$$\Pr\left[X \ge a\right] \le \exp\left(-\frac{1}{2\lambda_M}\left(a - 2\mu\right)\right) = \exp\left(\Omega\left(\log k\right)\right) = \frac{1}{k^3}$$

$$\begin{aligned} & \Pr\left[f\left(X_{Q_1},\ldots,X_{Q_{\varphi}}\right) \geq O(d_G(t,t'))\right] \\ & \leq \Pr\left[f\left(IN(\mathcal{B}_1),\ldots,IN(\mathcal{B}_{\varphi})\right) \geq O(d_G(t,t'))\right] \\ & \leq \Pr\left[f\left(\mathsf{Exp}(10),\ldots,\mathsf{Exp}(10)\right) \geq O(d_G(t,t'))\right] \\ & = \Pr\left[X \geq a\right] \leq \frac{1}{k^3} \end{aligned}$$

If this event indeed occurs

$$d_M(t,t') \leq d_G(t,t') + O(\log k) \cdot f\left(X_{Q_1},\ldots,X_{Q_{arphi}}
ight)$$

$$\mu \leq 10 \cdot d_G(t, t')$$

Thus for $a = 30 \cdot d_G(t, t')$
 $\lambda_M = O\left(\frac{d_G(t, t')}{\log k}\right)$

$$\Pr\left[X \ge a\right] \le \exp\left(-\frac{1}{2\lambda_M}\left(a - 2\mu\right)\right) = \exp\left(\Omega\left(\log k\right)\right) = \frac{1}{k^3}$$

$$\begin{aligned} & \Pr\left[f\left(X_{Q_1},\ldots,X_{Q_{\varphi}}\right) \geq O(d_G(t,t'))\right] \\ & \leq \Pr\left[f\left(IN(\mathcal{B}_1),\ldots,IN(\mathcal{B}_{\varphi})\right) \geq O(d_G(t,t'))\right] \\ & \leq \Pr\left[f\left(\mathsf{Exp}(10),\ldots,\mathsf{Exp}(10)\right) \geq O(d_G(t,t'))\right] \\ & = \Pr\left[X \geq a\right] \leq \frac{1}{k^3} \end{aligned}$$

If this event indeed occurs

$$egin{aligned} d_M(t,t') &\leq d_G(t,t') + O(\log k) \cdot f\left(X_{Q_1},\ldots,X_{Q_{arphi}}
ight) \ &= O(\log k) \cdot d_G(t,t') \end{aligned}$$

By union bound, w.h.p for all $t, t', d_M(t, t') = O(\log k) \cdot d_G(t, t')$.

Open Question

Close the gap between 8 to $\log k!$

Open Question

Close the gap between 8 to $\log k!$

Thank You!

We can assume that edges has infinitesimally small weights. Otherwise we simply subdivide.

The set of minors and the geometry of the terminals remain the same!

Ball Growing Algorithm [KKN14]

Algorithm 1 $M = \text{Ball-Growing}(G = (V, E), w, K = \{t_1, \dots, t_k\})$

1: Set
$$r \leftarrow 1 + \delta/\ln k$$
, where $\delta = 1/80$.
2: Set $D \leftarrow \frac{\delta}{\ln k}$.
3: For each $j \in [k]$, set $V_j \leftarrow \{t_j\}$, and set $R_j \leftarrow 0$.
4: Set $V_{\perp} \leftarrow V \setminus \left(\bigcup_{j=1}^k V_j\right)$.
5: Set $\ell \leftarrow 0$.
6: while $\left(\bigcup_{j=1}^k V_j\right) \neq V$ do
7: for j from 1 to k do
8: Choose independently at random q_j^{ℓ} distributed according to $\text{Exp}(D \cdot r^{\ell})$.
9: Set $R_j \leftarrow R_j + q_j^{\ell}$.
10: Set $V_j \leftarrow B_{G[V_{\perp} \cup V_j]}(t_j, R_j)$.
11: Set $V_{\perp} \leftarrow V \setminus \left(\bigcup_{j=1}^k V_j\right)$.
12: end for
13: $\ell \leftarrow \ell + 1$.
14: end while

15: **return** the terminal-centered minor M of G induced by V_1, \ldots, V_k .

Ball Growing Algorithm

- Arbitrary order.
- Expand cluster in every round.
- $R_1 = 0$
- *R*₂ =0
- $R_{3} = 0$
- $R_4 = 0$
- *R*₅ =0

Ball Growing Algorithm

- Arbitrary order.
- Expand cluster in every round.
- **R**₁ =0.2
- *R*₂ =0
- $R_{3} = 0$
- $R_{4} = 0$
- $R_{5} = 0$

- Arbitrary order.
- Expand cluster in every round.
- **R**₁ =0.2
- $R_2 = 0.1$
- $R_{3} = 0$
- $R_4 = 0$
- $R_{5} = 0$

- Arbitrary order.
- Expand cluster in every round.
- **R**₁ =0.2
- $R_2 = 0.1$
- $R_3 = 0.3$
- $R_4 = 0.1$
- $R_5 = 0.25$

- Arbitrary order.
- Expand cluster in every round.
- $R_1 = 0.5$
- $R_2 = 0.1$
- $R_3 = 0.3$
- $R_4 = 0.1$
- $R_5 = 0.25$

- Arbitrary order.
- Expand cluster in every round.
- $R_1 = 0.5$
- *R*₂ =0.55
- $R_3 = 0.3$
- $R_4 = 0.1$
- $R_5 = 0.25$

- Arbitrary order.
- Expand cluster in every round.
- **R**₁ =0.5
- *R*₂ =0.55
- $R_3 = 0.6$
- *R*₄ =0.2
- *R*₅ =0.8

- Arbitrary order.
- Expand cluster in every round.
- $R_1 = 0.9$
- *R*₂ =0.55
- $R_3 = 0.6$
- *R*₄ =0.2
- *R*₅ =0.8

- Arbitrary order.
- Expand cluster in every round.
- **R**₁ =0.9
- *R*₂ =1.05
- $R_3 = 0.6$
- *R*₄ =0.2
- *R*₅ =0.8

- Arbitrary order.
- Expand cluster in every round.
- **R**₁ =0.9
- *R*₂ =1.05
- *R*₃ =0.85
- *R*₄ =0.7
- $R_5 = 1.1$

- Arbitrary order.
- Expand cluster in every round.
- $R_1 = 1.1$
- *R*₂ =1.05
- *R*₃ =0.85
- *R*₄ =0.7
- $R_5 = 1.1$

- Arbitrary order.
- Expand cluster in every round.
- $R_1 = 1.1$
- *R*₂ =1.2
- *R*₃ =0.85
- *R*₄ =0.7
- $R_5 = 1.1$

- Arbitrary order.
- Expand cluster in every round.
- **R**₁ =1.1
- *R*₂ =1.2
- $R_3 = 1.1$
- *R*₄ =1.05
- *R*₅ =1.9

- Arbitrary order.
- Expand cluster in every round.
- **R**₁ =2.5
- R₂ =2.2
- $R_3 = 2.3$
- $R_4 = 1.8$
- *R*₅ =2.8

- Arbitrary order.
- Expand cluster in every round.
- *R*₁ =2.9
- *R*₂ =3.2
- $R_3 = 3.15$
- *R*₄ =2.2
- *R*₅ =3.2

- Arbitrary order.
- Expand cluster in every round.
- **R**₁ =3.4
- $R_2 = 4.1$
- $R_3 = 3.8$
- $R_4 = 3.1$
- *R*₅ =3.6

- Arbitrary order.
- Expand cluster in every round.
- *R*₁ =4.2
- *R*₂ =4.8
- $R_3 = 4.5$
- *R*₄ =3.7
- *R*₅ =3.8

- Arbitrary order.
- Expand cluster in every round.
- **R**₁ =5.5
- *R*₂ =6
- *R*₃ =4.9
- $R_4 = 4.5$
- *R*₅ =5.1

- Arbitrary order.
- Expand cluster in every round.
- **R**₁ =5.5
- *R*₂ =6
- *R*₃ =4.9
- $R_4 = 4.5$
- *R*₅ =5.1

7

- Arbitrary order.
- Expand
- cluster in
- $every \ round.$
- $R_1 = 5.5$
- *R*₂ =6
- *R*₃ =4.9
- $R_4 = 4.5$
- *R*₅ =5.1

Noisy Voronoi

Algorithm 2 $M = Noisy-Voronoi(G = (V, E, w), K = \{t_1, \dots, t_k\})$

- 1: Set $\delta = 1/20 \ln k$ and $p = \frac{1}{5}$.
- $2: \text{ Set } V_{\perp} \leftarrow V \setminus K.$
- 3: for j from 1 to k do
- 4: Choose independently at random g_i distributed according to Geo(p).
- 5: Set $R_j \leftarrow (1+\delta)^{g_j}$.
- 6: Set $V_j \leftarrow \text{Create-Cluster}(G, V_{\perp}, t_j, R_j)$.
- 7: Remove all the vertices in V_j from V_{\perp} .
- 8: end for
- 9: **return** the terminal-centered minor M of G induced by V_1, \ldots, V_k .

Noisy Voronoi

Algorithm 2 $M = Noisy-Voronoi(G = (V, E, w), K = \{t_1, \dots, t_k\})$

- 1: Set $\delta = 1/20 \ln k$ and $p = \frac{1}{5}$.
- 2: Set $V_{\perp} \leftarrow V \setminus K$.
- 3: for j from 1 to k do
- 4: Choose independently at random g_j distributed according to Geo(p)
- 5: Set $R_j \leftarrow (1+\delta)^{g_j}$.
- 6: Set $V_j \leftarrow \text{Create-Cluster}(G, V_{\perp}, t_j, R_j)$.
- 7: Remove all the vertices in V_j from V_{\perp} .
- 8: end for
- 9: **return** the terminal-centered minor M of G induced by V_1, \ldots, V_k .