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Graph Minor

H is a minor of G = (V, E) if H can be formed from G by:

@ Deleting edges.

=

@ Deleting vertices.
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Steiner Point removal problem
G =(V,E,w) - a weighted graph.
K C V - a terminal set of size k.
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G, K M
The distortion is: Z"é’((::,/)) =3=2
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Induced Minor by Voronoi Cells
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Let V; be the Voronoi cell of t; (breaking ties arbitrarily).
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Induced Minor by Voronoi Cells

Natural candidate:
Let V; be the Voronoi cell of t; (breaking ties arbitrarily).

Vi={veV|Vi#j ds(t,v)<ds(t,v)}
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History

© Gupta (2001) showed upper bound of 8 for trees.
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@ Basu and Gupta (2008) showed
upper bound of O(1) for outerplanar graphs.

© Kamma, Krauthgamer and Nguyen (2014) showed
upper bound of O(log® k) for general graphs.
Using the Ball growing algorithm.

@ Kamma, Krauthgamer and Nguyen (2015)
improved analysis to O(log® k) (same alg).

@ Cheung (2018) improved analysis to O(log? k) (same alg).
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Noisy Voronoi
Set = 1/20mk and p = £.

Set Rj + (1+9)%, where g; ~ Geo(p).
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Noisy Voronoi
Set § = 1/20mk and p = %
Set Rj «+ (1+10)%, where g; ~ Geo(p).
Note that
= O(log k) (whp) = Ry=0(1).

If v joins V;, the cluster of t;, then
d(v.t) < R - D(v) = O(D(v))

Lemma
The Noisy Voronot algorithm
creates a terminal partition.
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The Seed of Evil (distortion)

t,t' € K, Py is a shortest path in G.
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t,t' € K, Py is a shortest path in G.
vy, is arbitrary vertex on P, covered by t,.
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The Seed of Evil (distortion)
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The Seed of Evil (distortion)
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Analyzing > . dg(t;, v;) directly will be tricky,
as dg(t;, v;) depends on Vi,..., V3.
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Partition of P, 4 to Intervals
Q is a interval of P; p.

Q

val Ivb
t [ [ v
G
L(Q) = dg(ve, vp) Interval lenght
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Partition of P, 4 to Intervals
Q is a interval of P; p.

t]‘\D(Q) = O(logk) - L(Q)
e L

t | t
L(Q) = dg(va, vp) Interval lenght

Partition P; . into Q, s.t. for each Q € O

L(Q) = e(@) D(Q)
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Partition of P, 4 to Intervals
Q is a interval of P; p.

L(Q) = dg(ve, v) Interval lenght

Partition P; . into Q, s.t. for each Q € O

1
L(Q) = 6(@) -D(Q)
Once t; covered some v; € Q, w.p 1 — p it covers all of Q. J
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Active vertices
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Active vertices

At the beginning all vertices are active.
tj”

a’j” bj//

Terminal t; grows cluster V.

aj (resp. b;) is the leftmost (resp. rightmost) active covered vertex.
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Charges

Rj = <1 + 5>g5

Detour D; will be charged upon a single interval.

v is the “first active” covered vertex by t; in Py .

Q; € Q (vj € Q)) is charged upon D;.

Xg is the current number of detours the interval @ is charged for.

Every detour Dj; which is contained in D; erased,
and its charge re-funded!



Charges

Xq; increases by at most 1.



Charges

Xq; increases by at most 1.

For every @ # Q;, Xq can only decrease.



Slices: “The Potential to be Charged”

Within interval Q € O,
maximal sub-interval of active vertices is called a slice.

Sl Sz SS

+-—  —>
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Slices: “The Potential to be Charged”

Within interval Q € O,
maximal sub-interval of active vertices is called a slice.

Sl SQ SS

+—>

ST

We denote by #S(Q) the current number of slices in Q.

At the start, #S5(Q) = 1. At the end, #S(Q) = 0.
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Change in Number of Slices

Let S; C Q; be the slice containing v;. Consider Q.
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Change in Number of Slices

Let S; C Q; be the slice containing v;. Consider Q.

#5(Qj) can increase by 1.

Sl 82 =5;
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=Q 171

! —
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Change in Number of Slices
Let S; C Q; be the slice containing v;. Consider Q.

#5(Qj) can increase by 1.

g1 S2 = S]- S3 g1 g4 g5 S3
= gt <t -—> b B
oS o o T
Qj ! Qj !
i~ i~
D, D,
#5(Q)) can decrease.
g1 S92 = S]- S3 g5 g6
= gt = = =
ST e T
Q ' Q '
S — S —
D/ D/
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Change in Number of Slices
Let S; C Q; be the slice containing v;. Consider Q.

#5(Qj) can increase by 1.

g1 SQ:S]- S3 g1 g4 g5 S3
- - --—> - [ ] - --—>
el U nalialiiuee
Q; ! Q; !
— —
D, D,
#5(Q)) can decrease.
Sl SQ=S]- 93 g5 g6
- - --—> - --—>
T oy
Qj Qj
—_ —_
D, D,

#5(Qj) can stay unchanged.

1_ a. . .
St = S] SZ Sg SG SZ S3
= gt = - gt
1Y ] |:> - vj
I
Qj Q
p p
D, D,

Arnold Filtser Steiner Point Removal April 26, 2018

18 / 37



Change in Number of Slices

Let S; C Q; be the slice containing v;. Consider Q.
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Change in Number of Slices
Let S; C Q; be the slice containing v;. Consider Q.

In any case, #5(Q;) can increase by at most 1!

If #5(Q)) is decreased, we call it a success.
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Change in Number of Slices

Let S5; C Q; be the slice containing v;. Consider Q;.

In any case, #5(Q;) can increase by at most 1!

If #5(Q)) is decreased, we call it a success.

Otherwise, we call it a failure.
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Change in Number of Slices
Let S; C Q; be the slice containing v;. Consider Q # Q.
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Change in Number of Slices
Let S; C Q; be the slice containing v;. Consider Q # Q.

#5(Q) can decrease.

St S2 53 g2 53
> > -—> - -—>
e O -
Q Q
_— _—
D, D,
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Change in Number of Slices

Let S; C Q; be the slice containing v;. Consider Q # Q.

#5(Q) can decrease.

St S2 53 g2 53
- > > - >
iy e O -
Q Q
_— _—
, B

D
#5(Q) can stay unchanged.

St S? 53 90 S? 53
> —> -—> <> —> -—>
Vi vj
. .
D/ D/
Arnold Filtser Steiner Point Removal April 26, 2018

20 / 37



Change in Number of Slices
Let S; C Q; be the slice containing v;. Consider Q # Q.

#5(Q) can decrease.

Sl 52 S3 S4 SS
- > > - >
s —- > -
Q Q
e | e |
D, D,

#5(Q) can stay unchanged.

Sl S2 53 SG 52 53
> > - > > -
oy |:> e
T = - =
Q ‘0
— —
D D

In any case, #S5(Q) cannot increase!
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Lemma (Success probability)
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the probability of success is at least 1 — p.
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Lemma (Success probability)

Assuming at least one active vertex joins V;,
the probability of success is at least 1 — p.

¢+ D(Q) = ©(logk) - L(Q;)
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vveV, = R >d(v,t)/D(v). Forall z € §;,
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56 < Dhafra) < Bt (L k)
Recall that R; = (1 + §)&, where gj ~ Geo(p). WP.1-p
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f=0H070) = D)




Lemma (Success probability)

Assuming at least one active vertex joins V;,
the probability of success is at least 1 — p.

t'* D(Q) = O(logk) - L(Q;)
S

,,,,,, { : “L’ o
@ Success
L(Q;)
tj
vveV, = R >d(v,t)/D(v). Forall z € §;,

d(z.t) - d(v,t)+L(Q) - d(v;t) o(1)
DG = Dlv)-HQ) = Dl (LT Togk)
Recall that R; = (1 + §)&, where gj ~ Geo(p). W.P. 1—p.
d(vj’ tj) > d(Z, tj)
D(v) — D(z2)

R > (14 0)




Lemma (Success probability)

Assuming at least one active vertex joins V;,
the probability of success is at least 1 — p.

t'* D(Q) = O(logk) - L(Q;)

o < s 1
QI z vj | .
' Success
L(Q;)
4
vveV, = R >d(v,t)/D(v). Forall z € §;,
Recall that R; = (14 6)&, where g; ~ Geo(p). W.P.1—p.
d(v, t;) _ d(z,t)
R > (1+ 06— > =
=070, = o)

In fact, the success probability is either 1 or 1 — p. J




Corollary (Expected Charge)
For all Q € Q, E[Xg] = O(1). J
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For all Q € Q, E[Xg] = O(1).

Proof.
E[Xol <1+p-2E[Xq] = E[Xq] < 5 = O(1). O
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Corollary (Expected Charge)
For all Q € Q, E[Xg] = O(1).

Proof.
E[Xol <1+p-2E[Xq] = E[Xq] < 5 = O(1). O

Corollary (High Probability Charge Bound)
With high probability, for all Q € Q, Xq = O(log k).
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Corollary (Expected Charge)
For all Q € Q, E[Xg] = O(1).

Proof.
E[Xol <1+p-2E[Xq] = E[Xq] < 5 = O(1). O

Corollary (High Probability Charge Bound)
With high probability, for all Q € Q, Xq = O(log k).

Proof.
Chernoff. (]
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Definition (Charge Function)
f(x1, X0,y Xp) = > xi - L(Q) hereg0=|Q|.J
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Definition (Charge Function)
f(x1, X0,y Xp) = > xi - L(Q) hereg0=|Q|J

f is linear and monotonically increasing.
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Definition (Charge Function)
f(x, %2,y Xo) = D% - L(Q) hereg0:|Q|J

du(t, t') < da(t,t') +2  da(t;,v)

J
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Definition (Charge Function)
f(x, %2,y Xo) = D% - L(Q) hereg0:|Q|J

du(t, t') < dg(t, t) +2ZdG V)

dg(t.t') + O(1) ZD(VJ

Recall R; = O(1), thus dg(t;, v;) < R; - D(v;) = O(D(v))). ]
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Definition (Charge Function)
f(x, %2,y Xo) = D% - L(Q) here<p:|Q|}

du(t, t') < de(t,t') +2>  da(t;, v;)

= dg(t,t)+ O(1)- Y _ D(v)
= dg(t, ')+ O(log k) - Y~ L(Q)

i

tf\ D(Q) O(logk) - L(Q)
\‘|\ Q
t [ v

=da (L(, vy) Interval lenght
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Definition (Charge Function)
f(x, %2,y Xo) = D% - L(Q) hereg0:|Q|J

du(t, t') < de(t,t') +2>  da(t;, v;)
= de(t,t') + O(1)- > D(v)

= dg(t, ')+ O(log k) - Y~ L(Q)

J

= dg(t,t') + O(logk) - ¥ Xo - L(Q)
Q0
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Definition (Charge Function)
f(x, %2,y Xo) = D% - L(Q) here<p:|Q|}

du(t, t') < de(t,t') +2>  da(t;, v;)
= de(t,t') + O(1)- > D(v)

= dg(t, ')+ O(log k) - Y~ L(Q)

J

= dg(t,t') + O(logk) - ¥ Xo - L(Q)
QeQ
= dg(t, t/) + O(log k) - f (XQI, oo, Xoe)

Arnold Filtser Steiner Point Removal April 26, 2018 23 /37



Definition (Charge Function)
f(x1, %, ... %) = > xi - L(Q) herewz\QLJ

du(t,t') = dg(t,t') + O(log k) - f (Xq1, ..., Xqe)
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Definition (Charge Function)
f(x1, %, ... %) = > xi - L(Q) herego=|Q|}

du(t,t') = dg(t,t') + O(log k) - f (Xq1, ..., Xqe)

E[f(Xgr, .- Xoe)l = Y E[Xo] - L(Q)

QeQ
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Definition (Charge Function)
f(x1, %, ... %) = > xi - L(Q) herego=|Q|}

du(t,t') = dg(t,t') + O(log k) - f (Xq1, ..., Xqe)

E[f(Xgr, .- Xoe)l = Y E[Xo] - L(Q)

QeQ

1)) L(Q)=0(1)ds(t,t)

QeQ
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Definition (Charge Function)
f(x1, %, ... %) = > xi - L(Q) here p = |Q].

du(t,t') = dg(t,t') + O(log k) - f (Xq1, ..., Xqe)

E[f(Xgr, .- Xoe)l = Y E[Xo] - L(Q)
Qe

1)) L(Q)=0(1)ds(t,t)

QeQ

Theorem

The expected distortion of the minor M
returned by the Noisy Voronoi algorithm is O(log k).

Arnold Filtser Steiner Point Removal April 26, 2018 24 / 37



Definition (Charge Function)
f(x, %2,y %) = D% - L(Q) hereg0:|Q|.J

du(t,t') = dg(t,t') + O(log k) - f (Xg1, - .., Xge)

Moreover, with high probability
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Definition (Charge Function)
f(x, %2,y %) = D% - L(Q) hereg0:|Q|}

du(t,t') = dg(t,t') + O(log k) - f (Xg1, - .., Xge)
Moreover, with high probability

f(XQl’ < 7XQ¢) = Z XQ ' L(Q)
QeQ
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Definition (Charge Function)
f(x, %2,y %) = D% - L(Q) hereg0:|Q|J

du(t,t') = dg(t,t') + O(log k) - f (Xqu, ..., Xqgv)
Moreover, with high probability

F(Xor: - Xo,) = Y Xo-L(Q
Qe

= O(logk) - > L(Q) = O(log k) - ds(t, t')
QeQ
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Definition (Charge Function)
f(x, %2,y %) = D% - L(Q) here<p:|Q|}

du(t,t') = dg(t,t') + O(log k) - f (Xg1, - .., Xge)
Moreover, with high probability

F(Xor: - Xo,) = Y Xo-L(Q
Qe

= O(logk) - > L(Q) = O(log k) - ds(t, t')
QeQ

Theorem
With high probability, the Noisy Voronos algorithm
returns a minor M with distortion O(log? k).

Arnold Filtser Steiner Point Removal April 26, 2018 25 / 37




But you promised distortion O(log k)!
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Analyze f(Xq1, ..., Xqe) = > 0co X - L(Q) better.
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Analyze f(Xq1, ..., Xqe) = > 0co X - L(Q) better.
But Xg1,..., Xq- are dependent.
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Analyze f(Xq1, ..., Xqe) = > 0co X - L(Q) better.
But Xg, ..., Xge are dependent. What can we do?
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Analyze f(Xq1, ..., Xqe) = > 0co X - L(Q) better.
But Xg, ..., Xge are dependent. What can we do?

\

W
-

——

/
~

/

(««g/\,

They maybe dependent, but in a “positive” way!
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Idea

We will introduce new series of independent random variables and
show that they dominate Xq1, ..., Xge.
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Idea

We will introduce new series of independent random variables and
show that they dominate Xq1, ..., Xge.

< Active < [nactive




We will introduce new series of independent random variables and

Idea
show that they dominate Xq1, ..., Xge. I

< Active < Inactive




Denote by A(B) the number of active Coins in the bucket B.
Denote by IN(B) the number of inactive Coins in the bucket B.



Coupling
#S(QY) =1 #S(Q) =1 #5(@Q)=1 #5(Q*") =1 e
Xo =0 X1 =0 Xgi=0 Xgin =0 Xo- =0
| : | 1 1 | | - | : :
QH—I QVO

—
=/

B;_1

—
=/

B;

—
=/

B 1



Coupling

#5(Q") =1 #5Q7) =1 #5Q)=1 #5@Q")=1
X =0 Xo-1=0 X =0 KXo =0
N — } | | - { | - |

Ql Qi—l Qz

g’ ............ g’g’

B, Bi 1 B;

Bi, ..., B, are independent buckets.



Coupling

#5(Q') =1 #S(Q) =1 #5(Q)=1 #S(Q"") =
Xgn =0 Xg=0  Xg=0 Xgi =0
|—| ........... : - : : - : : - : ...........

Ql Q/L—l Q/L QH—I

Bi,...,B, are independent buckets.
We execute Noisy Voronoi algorithm

and use it in order to determine IN(B,), ...,

#5(Q%) =1
Xge =0
| —

IN(B,).



Coupling

#5(Q') =
Xgn =0

#S(Q) =1 #S(Q) =1 #5(Q"") =

Xg1=0 Xo =0 Xginn =0

: . : : . | : - : ...........
Qz—l Qz Q1+1



Coupling
Maintain, for all i,  Xo < IN(B;) & #S(Q') < A(B))
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Coupling

Maintain, for all i, Xo < IN(B;) & #S(Q') < A(B;)
Suppose t; grows cluster V;.
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Coupling

Maintain, for all i, Xo < IN(B;) & #S(Q') < A(B;)
Suppose t; grows cluster V;.

@ If no active vertex joins V;. Nothing change.
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Coupling
Maintain, for all i, Xo < IN(B;) & #S(Q') < A(B;)
Suppose t; grows cluster V;.

@ If no active vertex joins V;. Nothing change.

Else, v; € 5; C Q; is the first vertex to join V.
Bjy is the corresponding bucket to Q;.
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Coupling
Maintain, for all i, Xo < IN(B;) & #S(Q') < A(B;)
Suppose t; grows cluster V;.

@ If no active vertex joins V;. Nothing change.

Else, v; € S; C Q; is the first vertex to join V.
Bjy is the corresponding bucket to Q;.
Let p’ be the probability that not all of S; joins V;. Recall p" < p.
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Coupling
Maintain, for all i, Xo < IN(B;) & #S(Q') < A(B;)
Suppose t; grows cluster V;.

@ If no active vertex joins V;. Nothing change.

Else, v; € S; C Q; is the first vertex to join V.
Bjy is the corresponding bucket to Q;.
Let p’ be the probability that not all of S; joins V;. Recall p" < p.

@ If not all of S; joins V;: Fail in both processes.
Add two active coins.
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Coupling

Maintain, for all i, Xo < IN(B;) & #S(Q') < A(B;)
Suppose t; grows cluster V;.

@ If no active vertex joins V;. Nothing change.

Else, v; € S; C Q; is the first vertex to join V.
Bjy is the corresponding bucket to Q;.
Let p’ be the probability that not all of S; joins V;. Recall p" < p.
@ If not all of S; joins V;: Fail in both processes.
Add two active coins.
> A(BU)) < A(B(J-)) +1, IN(BU)) — /N(B(J-)) + 1.
For i # (j), A(Bi), IN(B;) unchanged.
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Coupling

Maintain, for all i, Xo < IN(B;) & #S(Q') < A(B;)
Suppose t; grows cluster V;.

@ If no active vertex joins V;. Nothing change.

Else, v; € S; C Q; is the first vertex to join V.
Bjy is the corresponding bucket to Q;.
Let p’ be the probability that not all of S; joins V;. Recall p" < p.

@ If not all of S; joins V;: Fail in both processes.
Add two active coins.
> A(BU)) < A(B(J-)) +1, IN(BU)) — /N(B(J-)) + 1.
For i # (j), A(Bi), IN(B;) unchanged.

> #5(Q) S #5(Q) + 1, Xo < Xg, + 1.
For i # j, #5(Qj), Xg, might only decrease.
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Coupling
Maintain, for all i,  Xo < IN(B;) & #S(Qi) < A(B))
Suppose t; grows cluster V;.
@ If no active vertex joins V;. Nothing change.
Else, v; € 5; C Q; is the first vertex to join V;.

Bjy is the corresponding bucket to Q;.
Let p’ be the probability that not all of S; joins V;. Recall p’ < p.
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Coupling

Maintain, for all i,  Xo < IN(B;) & #S(Qi) < A(B))
Suppose t; grows cluster V;.
@ If no active vertex joins V;. Nothing change.
Else, v; € 5; C Q; is the first vertex to join V;.
Bjy is the corresponding bucket to Q;.
Let p’ be the probability that not all of S; joins V;. Recall p’ < p.
e If all of S joins V;: Success in alg.
With probability ’1’:—5, add two active coins (fail in buckets).
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Coupling

Maintain, for all i,  Xo < IN(B;) & #S(Qi) < A(B))
Suppose t; grows cluster V;.

@ If no active vertex joins V;. Nothing change.
Else, v; € 5; C Q; is the first vertex to join V;.
Bjy is the corresponding bucket to Q;.
Let p’ be the probability that not all of S; joins V;. Recall p’ < p.

o If all of 5; joins V;: Success in alg.

With probability £=%;, add two active coins (fail in buckets).
> A(B(J)) > A(B(J)) -1, /N(BO)) — /N(B(J)) + 1.
For i # (j), A(Bi), IN(B;) unchanged.
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Coupling

Maintain, for all i,  Xo < IN(B;) & #S(Qi) < A(B))
Suppose t; grows cluster V;.
@ If no active vertex joins V;. Nothing change.
Else, v; € 5; C Q; is the first vertex to join V;.
Bjy is the corresponding bucket to Q;.
Let p’ be the probability that not all of S; joins V;. Recall p’ < p.
o If all of 5; joins V;: Success in alg.
With probability £=%;, add two active coins (fail in buckets).
> A(B(J)) > A(B(J)) -1, /N(BO)) — /N(B(J)) + 1.
For i # (j), A(Bi), IN(B;) unchanged.
> #S(Q) < #5(Q) — 1, Xg < Xg +1.
For i # j, #5(Qj), Xg, might only decrease.
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Coupling

Maintain, for all i,  Xo < IN(B;) & #S(Qi) < A(B))
Suppose t; grows cluster V;.
@ If no active vertex joins V;. Nothing change.
Else, v; € 5; C Q; is the first vertex to join V;.
Bjy is the corresponding bucket to Q;.
Let p’ be the probability that not all of S; joins V;. Recall p’ < p.
o If all of 5; joins V;: Success in alg.
With probability £=%;, add two active coins (fail in buckets).
> A(B(J)) > A(B(J)) -1, /N(BO)) — /N(B(J)) + 1.
For i # (j), A(Bi), IN(B;) unchanged.
> #S(Q) < #5(Q) — 1, Xg < Xg +1.
For i # j, #5(Qj), Xg, might only decrease.

/

The probability of failure in the bucket is:  p'+ (1 — p') - I=5; = pJ
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Coupling

Maintain, for all i,  Xo < IN(B;) & #S(Qi) < A(B))
Suppose t; grows cluster V;.
@ If no active vertex joins V;. Nothing change.
Else, v; € 5; C Q; is the first vertex to join V;.
Bjy is the corresponding bucket to Q;.
Let p’ be the probability that not all of S; joins V;. Recall p’ < p.
o If all of 5; joins V;: Success in alg.
With probability £=%;, add two active coins (fail in buckets).
> A(B(J)) > A(B(J)) -1, /N(BO)) — /N(B(J)) + 1.
For i # (j), A(Bi), IN(B;) unchanged.
> #S(Q) < #5(Q) — 1, Xg < Xg +1.
For i # j, #5(Qj), Xg, might only decrease.

The probability of failure in the bucket is:  p/ + (1 — p') - =& ::: =p
The marginal distribution on the buckets is correct!
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While the processes remain coupled, we maintained for all /,

Xo < IN(B;) & #S(Q) < ABy)
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While the processes remain coupled, we maintained for all /,

Xo < IN(B;) & #S(Q) < ABy)

At end, if active coins remain, just flip them regularly.
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While the processes remain coupled, we maintained for all /,

Xo < IN(B;) & #S(Q) < ABy)

At end, if active coins remain, just flip them regularly.
IN(B) can only grow!
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While the processes remain coupled, we maintained for all /,

Xo < IN(B;) & #S(Q) < ABy)

At end, if active coins remain, just flip them regularly.
IN(B) can only grow!

Thus,  (Xgt,...,Xqe) < (IN(B1),...,IN(B,)) coordinatewise
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While the processes remain coupled, we maintained for all /,

Xo < IN(B;) & #S(Q) < ABy)

At end, if active coins remain, just flip them regularly.
IN(B) can only grow!

Thus,  (Xgt,...,Xqe) < (IN(B1),...,IN(B,)) coordinatewise

Corollary (The buckets dominate the detour charges)
For all o« > 0,

Prif (Xg1,..., Xor) > o] < Pr[f (IN(By), ..., IN(B,)) >
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Lemma (Exponential Distribution Dominates Bucket)
For all o > 0,

Pr{IN(B) > o] < Pr[Exp(10) + 1 > o]




Lemma (Exponential Distribution Dominates Bucket)
For all o > 0,

Pr{IN(B) > o] < Pr[Exp(10) + 1 > o]

Proof.
Meh. Too Technical.




Lemma (Exponential Distribution Dominates Bucket)
For all o > 0,

Pr{IN(B) > o] < Pr[Exp(10) + 1 > o]

Corollary (Series of Exponential Dominates the Buckets)

Foralla >0,  Pr[f(IN(B.),...,IN(B,)) > o]
< Pr[f (Exp(10) + 1, ..., Exp(10) + 1) > ]




Lemma (Exponential Distribution Dominates Bucket)
For all o > 0,

Pr{IN(B) > o] < Pr[Exp(10) + 1 > o]

Corollary (Series of Exponential Dominates the Buckets)

Foralla >0,  Pr[f(IN(B.),...,IN(B,)) > o]
< Pr[f (Exp(10) + 1, ..., Exp(10) + 1) > ]

Proof.

You know the drill... (f is linear and monotone coordinatewise.) [

y




Lemma (Exponential Distribution Dominates Bucket)
For all o > 0,

Pr{IN(B) > o] < Pr[Exp(10) + 1 > o]

Corollary (Series of Exponential Dominates the Buckets)

Foralla >0,  Pr[f(IN(B.),...,IN(B,)) > o]
< Pr[f (Exp(10) + 1, ..., Exp(10) + 1) > ]

Note that

f (Exp(10) +1,...,Exp(10) + 1) = f (Exp(10), ..., Exp(10))
+Of(L,...,1)



Lemma (Exponential Distribution Dominates Bucket)
For all o > 0,

Pr{IN(B) > o] < Pr[Exp(10) +1 > o]

Corollary (Series of Exponential Dominates the Buckets)

Foralla >0,  Pr[f(IN(B.),...,IN(B,)) > o]
< Pr[f (Exp(10) + 1, ..., Exp(10) + 1) > ]

Thus, in order to bound f (Xg,, ..., Xq,) it will be enough to bound
f (Exp(10),..., Exp(10)) ZEXp (10)

= ZEXp(lO - L(Q)

i=1



Goal: bound Y2 Exp(10- L(Q)))- |
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Goal: bound Y2 Exp(10- L(Q)))- |

Lemma (Concentration Bound for Exp)

Xi1,..., X, are i.r.v, where X; ~ Exp()\;).
Set: X = Zi X,', )\M = max; )\,', M= E [X] = Zi )\,‘.
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Goal: bound Y2 Exp(10- L(Q)))- |

Lemma (Concentration Bound for Exp)

Xi1,..., X, are i.r.v, where X; ~ Exp()\;).
Set: X = Zi X,', )\M = maxX; )\,‘, on = E [X] = Zi )\,‘.

1
For a>2u Pr[X > a] <exp (—m (a — 2u)>
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Goal: bound Y2 Exp(10- L(Q)))-

Lemma (Concentration Bound for Exp)
Xi1,..., X, are i.r.v, where X; ~ Exp()\;).

Set: X=X AM = max; A;, p=EX]=2 A

1
For a>2u Pr[X > a] <exp (—m (a — 2u)>

In our case, X; ~ Exp (10 - L(Q))). X =>_. X..
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Goal: bound Y2 Exp(10- L(Q)))-

Lemma (Concentration Bound for Exp)

Xi1,..., X, are i.r.v, where X; ~ Exp()\;).
Set: X = Zi X,', )\M = maxX; )\;, on = E [X] = Zi>\,‘.

1
For a>2u Pr[X > a] <exp (—m (a — 2u)>

In our case, X; ~ Exp (10 - L(Q))). X =>_. X..

2%

p=E[X]=E
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Goal: bound Y2 Exp(10- L(Q)))- )

Lemma (Concentration Bound for Exp)

Xi1,..., X, are i.r.v, where X; ~ Exp()\;).
Set: X = Zi X,', )\M = maxX; )\;, on = E [X] = Zi)\,'.

1
For a>2u Pr[X > a] <exp (—m (a — 2u)>

In our case, X; ~ Exp (10 - L(Q))). X =>_. X..
2%

Aw = max {10 L(Q)} = m,.aX{O (M)} =0 (M>

log k log k

p=E[X]=E

=> E[X]=) 10-L(Q) < 10-ds(t, 1)
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p <10 dg(t, ) M = 0 (48)
Thus for a =30 dg(t, t')

Pr[X > a] < exp <—ﬁ (a— 2,u)) —
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1% S 10 - d(;(t, t/) )\I\/I =0 (—dfcfgt’:))
Thus for a =30 dg(t, t')

PriX > a] < exp <—ﬁ (a— 2u)) = exp (Q(log k) = %
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1% S 10 - dG(t, 1.'/) )\I\/I =0 (—dfcfgt’:))
Thus for a =30 dg(t, t')

PriX > a] < exp <—ﬁ (a— 2u)) = exp (Q(log k) = %

We conclude

Pr{f (Xo.---,Xaq,) = O(dg(t,t))]
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1% S 10 - dG(l’7 1.'/) )\I\/I =0 <—dfcfgt’:)>
Thus for a =30 dg(t, t')

PriX > a] < exp <—ﬁ (a— 2u)) = exp (Q(log k) = %

We conclude

Pr{f (Xo.---,Xaq,) = O(dg(t,t))]
< Pr[f (IN(By), ..., IN(B,)) > O(dg(t, t))]
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p<10-dg(t, t') Am =0 <%>
Thus for a = 30 - dg(t, t')
1 1
PriX > a] < exp <—m (a— 2u)) = exp(Q(logk)) = 13
We conclude
Pr[f (Xa., -+, Xq,) > O(ds(t, )]
< Pr[f (IN(By), ..., IN(B,)) > O(ds(t, t'))]
< Pr[f (Exp(10),...,Exp(10)) > O(ds(t, t'))]

Arnold Filtser Steiner Point Removal April 26, 2018 35 /37



<10 de(t, t) Ay = O (L)
Thus for a =30 dg(t, t')

PriX > a] < exp <_2A1M (a— 2u)) = exp (Q(log k) = %

We conclude

Pr[f (Xa., -+, Xq,) > O(ds(t, )]

< Pr[f (IN(By), ..., IN(B,)) > O(ds(t, t'))]
< Pr[f (Exp(10),...,Exp(10)) > O(dq(t, t'))]
=Pr[X >a] < %
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p<10-dg(t,t') Am =0 <—df§gt’:)>
Thus for a =30 dg(t, t')

PriX > a] <exp <—ﬁ (a— 2,u)) = exp (Q(log k)) = %
We conclude
Prf (Xo.:---,Xq,) = O(dg(t,t'))]
< Pr[f (IN(B1),...,IN(B,)) > O(ds(t,t"))]
< Pr[f (Exp(10).... Exp(10)) > O(d(t, )]
=Pr[X >a] < %

If this event indeed occurs
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1< 10 dg(t,t') Am =0 <%>
Thus for a =30 dg(t, t')
PrX > 4] <e L o ow)) = exp(Q(log k) = —
= al < exp Py )] = €xp g ~ 3

We conclude

Prf (Xo.:---,Xq,) = O(dg(t,t'))]

< Pr[f (IN(By), ..., IN(B,)) > O(ds(t, t))]
< Pr[f (Exp(lO), ..., Exp(10)) > O(dg(t,t))]
=Pr[X >a] < %

If this event indeed occurs

du(t,t') < dg(t, t') + O(log k) - f (Xq,, - - -, Xq,)
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p<10-dg(t,t') Am =0 <—df§gtf)>
Thus for a =30 dg(t, t')

PriX > a] <exp <—ﬁ (a— 2,u)) = exp (Q(log k)) = %
We conclude
Prf (Xo.:---,Xq,) = O(dg(t,t'))]
< Pr[f (IN(B1),...,IN(B,)) > O(ds(t,t"))]
< Pr[f (Exp(10).... Exp(10)) > O(d(t, )]
=Pr[X >a] < %

If this event indeed occurs

du(t,t') < dg(t, t') + O(log k) - f (Xq,, - - -, Xq,)
= O(log k) - dg(t,t")
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By union bound, w.h.p for all t,t", dy(t,t') = O(log k) - dg(t, t').



By union bound, w.h.p for all t,t', dy(t,t') = O(log k) - d¢(t,t').




Open Question

Close the gap between 8 to log k!
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Open Question

Close the gap between 8 to log k!

Thank You!
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We can assume that edges has infinitesimally small weights.
Otherwise we simply subdivide.

|
L

Soa s

;-

---%

The set of minors and the geometry of the terminals remain the same!



Ball Growing Algorithm [KKN14]

Algorithm 1 M = Ball-Growing(G = (V, E).w, K = {t1,...,tx})
L: Set r + 1+4d/Ink, where § = 1/30.
2: Set D« %
3: For each j € [k], set V; <« {t;}, and set R; « 0.
4 Set Vi « V\ (u];:lvj).

5. Set £+ 0.
6
it
8
9

. while (u;v:lvj) #+ V do
for j from 1 to k& do
Choose independently at random qf distributed according to Exp(D - ).
Set Rj +— Ri+ 4.
10: Set 1/;, — BG[VLUV]'] (tj,Rj)‘
e Set Vi« V(UL 1;).
12:  end for
13: £ +— £41.
14: end while
15: return the terminal-centered minor M of GG induced by Vi,..., V.
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Ball
Growing

Algorithm

Arbitrary
order.

Expand
cluster in
every round.

R; =5.5
=6
R; =4.9
R, =45

=51

7



Noisy Voronoi

Algorithm 2 M = Noisy-Voronoi(G = (V,E,w), K = {t1,...,tx})

: Set § = L/20Ink andp:%.
cSet V)« V\K.
: for j from 1 to k do

Choose independently at random g; distributed according to Geo(p).

Set V; <+ Create-Cluster(G,VL1,t;, R;).

1

2

3

4

5 Set Rj < (149)%.
6

7 Remove all the vertices in Vj; from V.
8

9

. end for
: return the terminal-centered minor M of G induced by V4,..., Vi.
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Noisy Voronoi

Algorithm 2 M = Noisy-Voronoi(G = (V, E,w), K = {t1,...,t})
1:| Set ¢ = 1/20mk and p = %l
2 St Vi« VK.

3: for j from 1 to k do

4: | Choose independently at random g; distributed according to Geo(p)

5 |Set R; « (1+9)%.

6: Set V; < Create-Cluster(G, V., t;, R;).

7

8

9

Remove all the vertices in V; from V.
. end for
: return the terminal-centered minor M of G induced by Vi,..., V.
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