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Graph Minor
H is a minor of G = (V ,E ) if H can be formed from G by:

Deleting edges.

Deleting vertices.

Contracting edges.
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Steiner Point removal problem
G = (V ,E ,w) - a weighted graph.
K ⊆ V - a terminal set of size k .

Construct a new graph M = (K ,E ′,wM) such that:

M has small distortion:

∀t, t ′ ∈ K , dG (t, t ′) ≤ dM(t, t ′) ≤ α · dG (t, t ′) .

M is a graph minor of G .

G,K M
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The distortion is: dM(t,t′)
dG (t,t′)

= 4
2

= 2
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Terminal Partitions and Induced Minor

Partition {V1, . . . ,Vk} of V is called a terminal partition if for all i ,

ti ∈ Vi . Vi is connected.

Given a terminal partition P = {V1, . . . ,Vk}, the induced minor M
is obtained by contracting all the internal edges in each Vi .

The weight of {t, t ′} (if exist) is simply dG (t, t ′).
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The distortion is:
dM(t1,t3)
dG (t1,t3) =

12
4 = 3.



Induced Minor by Voronoi Cells
Natural candidate:
Let Vj be the Voronoi cell of tj (breaking ties arbitrarily).

Vj = {v ∈ V | ∀i 6= j dG (tj , v) ≤ dG (ti , v)}

t1 tkt2 t3 t4 tk−1tk−2

1 1 1 1 1 1 1

ε ε ε ε ε
v2 v3 v4 vk−1vk−2 vkv1

Distortion:
dM(t1,tk)
dG (t1,tk) =

2+2(k−2)+(k−1)ε
2+(k−1)ε −→

ε→0
Ω(k).
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History

1 Gupta (2001) showed upper bound of 8 for trees.

2 Chan, Xia, Konjevod, and Richa (2006) showed:
lower bound of 8 for trees.

Best known lower bound for general graphs!

3 Basu and Gupta (2008) showed
upper bound of O(1) for outerplanar graphs.

4 Kamma, Krauthgamer and Nguyen (2014) showed
upper bound of O(log6 k) for general graphs.

Using the Ball growing algorithm.

5 Kamma, Krauthgamer and Nguyen (2015)
improved analysis to O(log5 k) (same alg).

6 Cheung (2018) improved analysis to O(log2 k) (same alg).
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Results

Obtain improved the analysis of the
Ball Growing algorithm to O(log k).

(Appeared in SODA 18)

Introduce a new algorithm: The Noisy Voronoi algorithm.

Also induce distortion of O(log k).

Simpler analysis.

Can be implemented in almost linear time! (O(m log n)).

8
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The Noisy Voronoi Algorithm

Arnold Filtser Steiner Point Removal April 26, 2018 8 / 37



Arbitrary order of the terminals



R = 1.53

Distribution to be specified later

R = O(1) w.h.p
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Noisy Voronoi

Set δ = 1/20 ln k and p = 1
5 .

Set Rj ← (1 + δ)gj , where gj ∼ Geo(p).

Note that

gj = O(log k) (w.h.p) ⇒ Rj = O(1).

If v joins Vj , the cluster of tj , then
d(v , tj) ≤ Rj · D(v) = O(D(v)).

Lemma
The Noisy Voronoi algorithm

creates a terminal partition.
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The Seed of Evil (distortion)

t, t ′ ∈ K , Pt,t′ is a shortest path in G .
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The Seed of Evil (distortion)

t, t ′ ∈ K , Pt,t′ is a shortest path in G .
v`i is the “first” vertex on Pt,t′ covered by t`i .

Pt,t′

t t′v1 v2 v3 vLvi
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The Seed of Evil (distortion)

Pt,t′

t

t`1

t`2

t`3

t′

t`4

v`1

v`2
v`3

v`4

dM(t, t
′) ≤ dG(t, t

′) + 2
∑
i

dG(t`i , v`i)

Analyze
∑

i dG (t`i , v`i )!
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Analyzing
∑

i dG (ti , vi) directly will be tricky,
as dG (ti , vi) depends on V1, . . . ,Vi−1.

We will partition Pt,t ′ into intervals, and charge the
interval starting the detour instead of the terminal!
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Partition of Pt,t ′ to Intervals
Q is a interval of Pt,t′ .

t t′
va

Q

L(Q) = dG(va, vb)

vb

Interval lenght
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vb

tj
D(Q) = Θ(log k) · L(Q)

Interval lenght

Partition Pt,t into Q, s.t. for each Q ∈ Q

L(Q) = Θ(
1

log k
) · D(Q)
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Partition of Pt,t ′ to Intervals
Q is a interval of Pt,t′ .

t t′
va

Q

L(Q) = dG(va, vb)

vb

tj
D(Q) = Θ(log k) · L(Q)

Interval lenght

Partition Pt,t into Q, s.t. for each Q ∈ Q

L(Q) = Θ(
1

log k
) · D(Q)

Once tj covered some vj ∈ Q, w.p 1− p it covers all of Q.
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Active vertices

At the beginning all vertices are active.

Terminal tj grows cluster Vj .
aj (resp. bj) is the leftmost (resp. rightmost) active covered vertex.
Dj = {aj , . . . , bj} ⊆ Pt,t′ is called a detour.
All the vertices in Dj become inactive.

Arnold Filtser Steiner Point Removal April 26, 2018 15 / 37



Active vertices

At the beginning all vertices are active.

tj

Dj

aj bj

Terminal tj grows cluster Vj .

aj (resp. bj) is the leftmost (resp. rightmost) active covered vertex.
Dj = {aj , . . . , bj} ⊆ Pt,t′ is called a detour.
All the vertices in Dj become inactive.

Arnold Filtser Steiner Point Removal April 26, 2018 15 / 37



Active vertices

At the beginning all vertices are active.

tj

Dj

aj bj

Terminal tj grows cluster Vj .
aj (resp. bj) is the leftmost (resp. rightmost) active covered vertex.

Dj = {aj , . . . , bj} ⊆ Pt,t′ is called a detour.
All the vertices in Dj become inactive.

Arnold Filtser Steiner Point Removal April 26, 2018 15 / 37



Active vertices

At the beginning all vertices are active.

tj

Dj

aj bj

Terminal tj grows cluster Vj .
aj (resp. bj) is the leftmost (resp. rightmost) active covered vertex.
Dj = {aj , . . . , bj} ⊆ Pt,t′ is called a detour.

All the vertices in Dj become inactive.

Arnold Filtser Steiner Point Removal April 26, 2018 15 / 37



Active vertices

At the beginning all vertices are active.

tj

Dj

aj bj

Terminal tj grows cluster Vj .
aj (resp. bj) is the leftmost (resp. rightmost) active covered vertex.
Dj = {aj , . . . , bj} ⊆ Pt,t′ is called a detour.
All the vertices in Dj become inactive.

Arnold Filtser Steiner Point Removal April 26, 2018 15 / 37



Active vertices

At the beginning all vertices are active.

tj tj′

Dj

Dj′

aj bj aj′ bj′

Terminal tj grows cluster Vj .
aj (resp. bj) is the leftmost (resp. rightmost) active covered vertex.
Dj = {aj , . . . , bj} ⊆ Pt,t′ is called a detour.
All the vertices in Dj become inactive.

Arnold Filtser Steiner Point Removal April 26, 2018 15 / 37



Active vertices

At the beginning all vertices are active.

tj tj′

Dj

Dj′

aj bj aj′ bj′

tj′′

bj′′aj′′

Dj′′

Terminal tj grows cluster Vj .
aj (resp. bj) is the leftmost (resp. rightmost) active covered vertex.
Dj = {aj , . . . , bj} ⊆ Pt,t′ is called a detour.
All the vertices in Dj become inactive.

Arnold Filtser Steiner Point Removal April 26, 2018 15 / 37



Charges

Rj = (1 + δ)g1

Detour Dj will be charged upon a single interval.
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Detour Dj will be charged upon a single interval.



Charges

vj

Rj = (1 + δ)g3

Detour Dj will be charged upon a single interval.

vj is the “first active” covered vertex by tj in Pt,t′ .
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vj is the “first active” covered vertex by tj in Pt,t′ .



Charges

Rj = (1 + δ)g5

vj

Detour Dj will be charged upon a single interval.

vj is the “first active” covered vertex by tj in Pt,t′ .



Charges

Rj = (1 + δ)g5

vj

Q1 Q2 = Qj Q3 Q4

Detour Dj will be charged upon a single interval.
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Qj ∈ Q (vj ∈ Qj) is charged upon Dj .
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XQ2
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XQ3
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Q2 = Qj
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Detour Dj will be charged upon a single interval.

vj is the “first active” covered vertex by tj in Pt,t′ .

Qj ∈ Q (vj ∈ Qj) is charged upon Dj .

XQ is the current number of detours the interval Q is charged for.

Every detour Dj ′ which is contained in Dj erased,
and its charge re-funded!



Charges

Rj = (1 + δ)g5

vj

Q1 Q3 Q4

XQ1
= 0

XQ2
= 1

XQ3
= 0

XQ4
= 1

Q2 = Qj

XQj
increases by at most 1.



Charges

Rj = (1 + δ)g5

vj

Q1 Q3 Q4

XQ1
= 0

XQ2
= 1

XQ3
= 0

XQ4
= 1

Q2 = Qj

XQj
increases by at most 1.

For every Q 6= Qj , XQ can only decrease.



Slices: “The Potential to be Charged”

Within interval Q ∈ Q,
maximal sub-interval of active vertices is called a slice.

Q

S1 S2 S3

We denote by #S(Q) the current number of slices in Q.

At the start, #S(Q) = 1. At the end, #S(Q) = 0.
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Change in Number of Slices
Let Sj ⊆ Qj be the slice containing vj . Consider Qj .

#S(Qj) can increase by 1.

Qj

S1 S2 = Sj S3

Dj

Qj

S1 S4 S3

Dj

S5

vj vj

#S(Qj) can decrease.

Qj

S1 S2 = Sj S3

Dj

Qj

S5 S6

Dj

vj vj

#S(Qj) can stay unchanged.

Qj

S1 = Sj S2 S3

Dj

Qj

S6 S2 S3

Dj

vj vj
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Change in Number of Slices
Let Sj ⊆ Qj be the slice containing vj . Consider Qj .

In any case, #S(Qj) can increase by at most 1!

If #S(Qj) is decreased, we call it a success.

Otherwise, we call it a failure.
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Change in Number of Slices
Let Sj ⊆ Qj be the slice containing vj . Consider Q 6= Qj .

#S(Q) can decrease.

Q

S1 S2 S3

Dj

Q

S4 S3

vj vj

Dj

#S(Q) can stay unchanged.

Q

S1 S2 S3

Dj

Q

S6 S2 S3

Dj

vj vj

In any case, #S(Q) cannot increase!
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Lemma (Success probability)

Assuming at least one active vertex joins Vj ,
the probability of success is at least 1− p.
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Sj
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vj ∈ Vj ⇒ Rj ≥ d(vj , tj)/D(vj).
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z
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D(z) ≤
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D(vj)−L(Qj)

≤ d(vj ,tj)
D(vj)

(1 + O(1)
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Lemma (Success probability)

Assuming at least one active vertex joins Vj ,
the probability of success is at least 1− p.

t′ D(Q) = Θ(log k) · L(Qj)

Qj

Sj

vj

tj

z

Success
L(Qj)

vj ∈ Vj ⇒ Rj ≥ d(vj , tj)/D(vj). For all z ∈ Sj ,
Recall that Rj = (1 + δ)gj , where gj ∼ Geo(p). W.P. 1− p.

Rj ≥ (1 + δ)
d(vj , tj)

D(vj)
≥ d(z , tj)

D(z)

In fact, the success probability is either 1 or 1− p.



Corollary (Expected Charge)

For all Q ∈ Q, E[XQ ] = O(1).

Proof.
E[XQ ] ≤ 1 + p · 2E[XQ ] ⇒ E[XQ ] ≤ 1

1−2p = O(1).

Corollary (High Probability Charge Bound)

With high probability, for all Q ∈ Q, XQ = O(log k).

Proof.
Chernoff.
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Definition (Charge Function)

f (x1, x2, . . . , xϕ) =
∑

i xi · L(Q i) , here ϕ = |Q|.

dM(t, t ′) ≤ dG (t, t ′) + 2
∑
j

dG (tj , vj)

= dG (t, t ′) + O(1) ·
∑
j

D(vj)

= dG (t, t ′) + O(log k) ·
∑
j

L(Qj)

= dG (t, t ′) + O(log k) ·
∑
Q∈Q

XQ · L(Q)

= dG (t, t ′) + O(log k) · f (XQ1 , . . . ,XQϕ)
Recall Rj = O(1), thus dG (tj , vj) ≤ Rj · D(vj) = O(D(vj)).t t′

va
Q

L(Q) = dG(va, vb)

vb

tj
D(Q) = Θ(log k) · L(Q)

Interval lenght
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Definition (Charge Function)

f (x1, x2, . . . , xϕ) =
∑

i xi · L(Q i) , here ϕ = |Q|.

dM(t, t ′) = dG (t, t ′) + O(log k) · f (XQ1 , . . . ,XQϕ)

E [f (XQ1 , . . . ,XQϕ)] =
∑
Q∈Q

E [XQ ] · L(Q)

= O(1) ·
∑
Q∈Q

L(Q) = O (1) · dG (t, t ′)

Theorem
The expected distortion of the minor M

returned by the Noisy Voronoi algorithm is O(log k).
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i xi · L(Q i) , here ϕ = |Q|.

dM(t, t ′) = dG (t, t ′) + O(log k) · f (XQ1 , . . . ,XQϕ)

Moreover, with high probability

f (XQ1 , . . . ,XQϕ) =
∑
Q∈Q

XQ · L(Q)

= O(log k) ·
∑
Q∈Q

L(Q) = O(log k) · dG (t, t ′)

Theorem
With high probability, the Noisy Voronoi algorithm

returns a minor M with distortion O(log2 k).

Arnold Filtser Steiner Point Removal April 26, 2018 25 / 37



Definition (Charge Function)

f (x1, x2, . . . , xϕ) =
∑

i xi · L(Q i) , here ϕ = |Q|.

dM(t, t ′) = dG (t, t ′) + O(log k) · f (XQ1 , . . . ,XQϕ)

Moreover, with high probability

f (XQ1 , . . . ,XQϕ) =
∑
Q∈Q

XQ · L(Q)

= O(log k) ·
∑
Q∈Q

L(Q) = O(log k) · dG (t, t ′)

Theorem
With high probability, the Noisy Voronoi algorithm

returns a minor M with distortion O(log2 k).

Arnold Filtser Steiner Point Removal April 26, 2018 25 / 37



Definition (Charge Function)

f (x1, x2, . . . , xϕ) =
∑

i xi · L(Q i) , here ϕ = |Q|.

dM(t, t ′) = dG (t, t ′) + O(log k) · f (XQ1 , . . . ,XQϕ)

Moreover, with high probability

f (XQ1 , . . . ,XQϕ) =
∑
Q∈Q

XQ · L(Q)

= O(log k) ·
∑
Q∈Q

L(Q) = O(log k) · dG (t, t ′)

Theorem
With high probability, the Noisy Voronoi algorithm

returns a minor M with distortion O(log2 k).

Arnold Filtser Steiner Point Removal April 26, 2018 25 / 37



Definition (Charge Function)

f (x1, x2, . . . , xϕ) =
∑

i xi · L(Q i) , here ϕ = |Q|.

dM(t, t ′) = dG (t, t ′) + O(log k) · f (XQ1 , . . . ,XQϕ)

Moreover, with high probability

f (XQ1 , . . . ,XQϕ) =
∑
Q∈Q

XQ · L(Q)

= O(log k) ·
∑
Q∈Q

L(Q) = O(log k) · dG (t, t ′)

Theorem
With high probability, the Noisy Voronoi algorithm

returns a minor M with distortion O(log2 k).

Arnold Filtser Steiner Point Removal April 26, 2018 25 / 37



But you promised distortion O(log k)!
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Analyze f (XQ1 , . . . ,XQϕ) =
∑

Q∈Q XQ · L(Q) better.

They maybe dependent, but in a positive way!
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Idea
We will introduce new series of independent random variables and
show that they dominate XQ1 , . . . ,XQϕ .
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Active Inactive

W.P. 1− p

W.P. p

Denote by A(B) the number of active Coins in the bucket B .
Denote by IN(B) the number of inactive Coins in the bucket B .



Coupling

Q1 Qi−1 Qi Qi+1 Qϕ

XQ1 = 0
#S(Q1) = 1
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#S(Qϕ) = 1

B1 Bi−1 Bi Bi+1 Bϕ
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Coupling

Q1 Qi−1 Qi Qi+1 Qϕ

XQ1 = 0
#S(Q1) = 1

XQi−1 = 0
#S(Qi−1) = 1

XQi = 0
#S(Qi) = 1

XQi+1 = 0
#S(Qi+1) = 1

XQϕ = 0
#S(Qϕ) = 1

B1 Bi−1 Bi Bi+1 Bϕ
B1, . . . ,Bϕ are independent buckets.
We execute Noisy Voronoi algorithm

and use it in order to determine IN(B1), . . . , IN(Bϕ).



Coupling

Q1 Qi−1 Qi Qi+1 Qϕ

XQ1 = 0
#S(Q1) = 1

XQi−1 = 0
#S(Qi−1) = 1

XQi = 0
#S(Qi) = 1

XQi+1 = 0
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Coupling

Maintain, for all i , XQ i ≤ IN(Bi) & #S(Q i) ≤ A(Bi)

Suppose tj grows cluster Vj .

If no active vertex joins Vj . Nothing change.

Else, vj ∈ Sj ⊆ Qj is the first vertex to join Vj .
B(j) is the corresponding bucket to Qj .
Let p′ be the probability that not all of Sj joins Vj . Recall p′ ≤ p.

If not all of Sj joins Vj : Fail in both processes.
Add two active coins.

I A(B(j))← A(B(j)) + 1, IN(B(j))← IN(B(j)) + 1.
For i 6= (j), A(Bi ), IN(Bi ) unchanged.

I #S(Qj) ≤ #S(Qj) + 1, XQj
≤ XQj

+ 1.
For i 6= j , #S(Qi ), XQi

might only decrease.
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Coupling

Maintain, for all i , XQi
≤ IN(Bi) & #S(Qi) ≤ A(Bi)

Suppose tj grows cluster Vj .

If no active vertex joins Vj . Nothing change.

Else, vj ∈ Sj ⊆ Qj is the first vertex to join Vj .
B(j) is the corresponding bucket to Qj .
Let p′ be the probability that not all of Sj joins Vj . Recall p′ ≤ p.

If all of Sj joins Vj : Success in alg.

With probability p−p′
1−p′ , add two active coins (fail in buckets).

I A(B(j)) ≥ A(B(j))− 1, IN(B(j))← IN(B(j)) + 1.
For i 6= (j), A(Bi ), IN(Bi ) unchanged.

I #S(Qj) ≤ #S(Qj)− 1, XQj
≤ XQj

+ 1.
For i 6= j , #S(Qi ), XQi

might only decrease.

The probability of failure in the bucket is: p′ + (1− p′) · p−p′
1−p′ = p

The marginal distribution on the buckets is correct!
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For i 6= (j), A(Bi ), IN(Bi ) unchanged.

I #S(Qj) ≤ #S(Qj)− 1, XQj
≤ XQj

+ 1.
For i 6= j , #S(Qi ), XQi

might only decrease.

The probability of failure in the bucket is: p′ + (1− p′) · p−p′
1−p′ = p

The marginal distribution on the buckets is correct!
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While the processes remain coupled, we maintained for all i ,

XQ i ≤ IN(Bi) & #S(Q i) ≤ A(Bi)

At end, if active coins remain, just flip them regularly.
IN(B) can only grow!

Thus, (XQ1 , . . . ,XQϕ) ≤ (IN(B1), . . . , IN(Bϕ)) coordinatewise

Corollary (The buckets dominate the detour charges)

For all α ≥ 0,

Pr [f (XQ1 , . . . ,XQϕ) ≥ α] ≤ Pr [f (IN(B1), . . . , IN(Bϕ)) ≥ α]
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Proof.
Meh. Too Technical.
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For all α ≥ 0, Pr [f (IN(B1), . . . , IN(Bϕ)) ≥ α]

≤ Pr [f (Exp(10) + 1, . . . ,Exp(10) + 1) ≥ α]

Proof.
You know the drill... (f is linear and monotone coordinatewise.)



Lemma (Exponential Distribution Dominates Bucket)

For all α ≥ 0,

Pr [IN(B) ≥ α] ≤ Pr [Exp(10) + 1 ≥ α]

Corollary (Series of Exponential Dominates the Buckets)

For all α ≥ 0, Pr [f (IN(B1), . . . , IN(Bϕ)) ≥ α]

≤ Pr [f (Exp(10) + 1, . . . ,Exp(10) + 1) ≥ α]

Note that

f (Exp(10) + 1, . . . ,Exp(10) + 1) = f (Exp(10), . . . ,Exp(10))

+ f (1, . . . , 1)



Lemma (Exponential Distribution Dominates Bucket)

For all α ≥ 0,

Pr [IN(B) ≥ α] ≤ Pr [Exp(10) + 1 ≥ α]

Corollary (Series of Exponential Dominates the Buckets)

For all α ≥ 0, Pr [f (IN(B1), . . . , IN(Bϕ)) ≥ α]

≤ Pr [f (Exp(10) + 1, . . . ,Exp(10) + 1) ≥ α]

Thus, in order to bound f
(
XQ1 , . . . ,XQϕ

)
it will be enough to bound

f (Exp(10), . . . ,Exp(10)) =

ϕ∑
i=1

Exp(10) · L(Qi)

=

ϕ∑
i=1

Exp (10 · L(Qi))



Goal: bound
∑ϕ

i=1 Exp (10 · L(Qi)).

Lemma (Concentration Bound for Exp)

X1, . . . ,Xn are i.r.v, where Xi ∼ Exp(λi).
Set: X =

∑
i Xi , λM = maxi λi , µ = E [X ] =

∑
i λi .

For a ≥ 2µ Pr [X ≥ a] ≤ exp

(
− 1

2λM
(a − 2µ)

)
In our case, Xi ∼ Exp (10 · L(Qi)). X =

∑
i Xi . 1

µ = E [X ] = E

[∑
i

Xi

]
=
∑
i

E [Xi ] =
∑
i

10 · L(Qi) ≤ 10 · dG (t, t ′)

λM = max
i
{10 · L(Qi)} = max

i

{
O

(
D(Qi)

log k

)}
= O

(
dG (t, t ′)

log k

)
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µ ≤ 10 · dG (t, t ′) λM = O
(

dG (t,t
′)

log k

)
Thus for a = 30 · dG (t, t ′)

Pr [X ≥ a] ≤ exp

(
− 1

2λM
(a − 2µ)

)
=

exp (Ω (log k)) =
1

k3

We conclude

Pr
[
f
(
XQ1 , . . . ,XQϕ

)
≥ O(dG (t, t ′))

]
≤ Pr [f (IN(B1), . . . , IN(Bϕ)) ≥ O(dG (t, t ′))]

≤ Pr [f (Exp(10), . . . ,Exp(10)) ≥ O(dG (t, t ′))]

= Pr [X ≥ a] ≤ 1

k3

If this event indeed occurs

dM(t, t ′) ≤ dG (t, t ′) + O(log k) · f
(
XQ1 , . . . ,XQϕ

)
= O(log k) · dG (t, t ′)
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By union bound, w.h.p for all t, t ′, dM(t, t ′) = O(log k) · dG (t, t ′).



By union bound, w.h.p for all t, t ′, dM(t, t ′) = O(log k) · dG (t, t ′).



Open Question

Close the gap between 8 to log k!

Thank You!
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We can assume that edges has infinitesimally small weights.
Otherwise we simply subdivide. 34

The set of minors and the geometry of the terminals remain the same!



Ball Growing Algorithm [KKN14]
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Growing
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