On Notions of Distortion and an Almost Minimum Spanning Tree with Constant Average Distortion

Yair Bartal1 \hspace{1cm} Arnold Filtser2 \hspace{1cm} Ofer Neiman2

1 Hebrew University of Jerusalem
2 Ben-Gurion University of the Negev

January 11, 2016
Warning

The talk is about an improved version of the paper.
Warning

The talk is about an improved version of the paper.

For details: www.cs.bgu.ac.il/~arnoldf/
Embedding

Let $\mathcal{X} = (X, d_X)$, $\mathcal{Y} = (Y, d_Y)$ be metric spaces. A function $f : \mathcal{X} \rightarrow \mathcal{Y}$ is called an embedding if for every $x, y \in X$,

$$d_X(x, y) \leq d_Y(f(x), f(y)) \leq t \cdot d_X(x, y)$$

where t is a constant called the distortion of the embedding f. The average distortion of f is defined as

$$\frac{1}{|X|^2} \sum_{u, v \in X} d_Y(f(u), f(v)) d_X(u, v).$$

Y. Bartal, A. Filtser, O. Neiman
Embedding

\((X, d_X), (Y, d_Y)\) metric spaces.
\(f : (X, d_X) \rightarrow (Y, d_Y)\) is called an embedding.

Distortion

\(f\) has distortion \(t\) if for every \(x, y \in X\),

\[
d_X(x, y) \leq d_Y(f(x), f(y)) \leq t \cdot d_X(x, y).
\]
Embedding

\((X, d_X), (Y, d_Y)\) metric spaces.

\(f : (X, d_X) \rightarrow (Y, d_Y)\) is called an embedding.

Distortion

\(f\) has distortion \(t\) if for every \(x, y \in X\),

\[
d_X(x, y) \leq d_Y(f(x), f(y)) \leq t \cdot d_X(x, y)
\]

Average distortion

\[
\frac{1}{\binom{|X|}{2}} \cdot \sum_{v, u \in X} \frac{d_Y(f(v), f(u))}{d_X(v, u)}
\]
Graph spanner

Given a weighted graph $G = (V, E, w)$, a subgraph $H = (V, E_H, w)$ of G is a spanner of G with distortion t if

$$\forall u, v \in V, \quad d_H(u, v) \leq t \cdot d_G(u, v)$$
Graph spanner

Given a weighted graph $G = (V, E, w)$, a subgraph $H = (V, E_H, w)$ of G is a spanner of G with distortion t if

$$\forall u, v \in V, \quad d_H(u, v) \leq t \cdot d_G(u, v)$$

The lightness of a H is

$$\Psi(H) = \frac{\sum_{e \in E_H} w(e)}{w(MST)}.$$
Given a weighted graph \(G = (V, E, w) \), a subgraph \(H = (V, E_H, w) \) of \(G \) is a spanner of \(G \) with distortion \(t \) if
\[
\forall u, v \in V, \quad d_H(u, v) \leq t \cdot d_G(u, v)
\]
The lightness of a \(H \) is
\[
\Psi(H) = \frac{\sum_{e \in E_H} w(e)}{w(MST)}.
\]
Lightness vs Average Distortion in Trees

$G = (V, E, w)$ is a weighted graph.
Lightness vs Average Distortion in Trees

\[G = (V, E, w) \] is a weighted graph.

The **MST** has **lightness** 1!
Lightness vs Average Distortion in Trees

$G = (V, E, w)$ is a weighted graph.

The MST has **lightness** 1!

But unbounded **average distortion**...
$G = (V, E, w)$ is a weighted graph.

The MST has **lightness** 1!
But unbounded **average distortion**...

Theorem (Abraham, Bartal and Neiman 2006)

Every weighted graph contains a spanning tree with $O(1)$ average distortion.
$G = (V, E, w)$ is a weighted graph.

The MST has **lightness** 1!
But unbounded **average distortion**...

Theorem (Abraham, Bartal and Neiman 2006)

Every weighted graph contains a **spanning tree** with $O(1)$ **average distortion**.
But unbounded **lightness**...
Main result

Theorem (Constant lightness and average distortion (This work))

For any parameter $0 < \rho < 1$, every weighted graph contains a spanning tree with $O\left(\frac{1}{\rho}\right)$ average distortion.
Main result

Theorem (Constant lightness and average distortion (This work))

For any parameter $0 < \rho < 1$, every weighted graph contains a spanning tree with

- $1 + \rho$ lightness.
Main result

Theorem (Constant lightness and average distortion (This work))

For any parameter $0 < \rho < 1$, every weighted graph contains a spanning tree with

- $1 + \rho$ *lightness*.
- $O(1/\rho)$ *average distortion*.

Y.Bartal, A.Filtser, O.Neiman

On Notions of Distortion

January 11, 2016
Main result

Theorem (Constant lightness and average distortion (This work))

For any parameter $0 < \rho < 1$, every weighted graph contains a spanning tree with

- $1 + \rho$ lightness.
- $O(1/\rho)$ average distortion.

Tight!
Prioritized Distortion

\[f : (X, d_X) \to (Y, d_Y). \text{ The Distortion of } f \text{ is } \max_{x,y} \frac{d_Y(f(x),f(y))}{d_X(x,y)}. \]
Prioritized Distortion

\(f : (X, d_X) \rightarrow (Y, d_Y) \). The **Distortion** of \(f \) is \(\max_{x,y} \frac{d_Y(f(x), f(y))}{d_X(x, y)} \).

Given a monotone increasing function \(\alpha : \mathbb{N} \rightarrow \mathbb{R}_+ \)
Prioritized Distortion

\[f : (X, d_X) \rightarrow (Y, d_Y). \text{ The Distortion of } f \text{ is } \max_{x,y} \frac{d_Y(f(x), f(y))}{d_X(x,y)}. \]

Given a monotone increasing function \(\alpha : \mathbb{N} \rightarrow \mathbb{R}_+ \)
Priority \(\pi = (x_1, \ldots, x_n) \).
Prioritized Distortion

\[f : (X, d_X) \rightarrow (Y, d_Y). \] The **Distortion** of \(f \) is \(\max_{x,y} \frac{d_Y(f(x), f(y))}{d_X(x, y)} \).

Given a monotone increasing function \(\alpha : \mathbb{N} \rightarrow \mathbb{R}_+ \)
Priority \(\pi = (x_1, \ldots, x_n) \).

Priority Distortion

\(f : X \rightarrow Y \) has **priority distortion** \(\alpha \) w.r.t. \(\pi \) if

\[\forall x_j, y \in X \quad d_X(x_j, y) \leq d_Y(f(x_j), f(y)) \leq \alpha(j) \cdot d_X(x_j, y) \]
Prioritized Distortion

\[f : (X, d_X) \rightarrow (Y, d_Y). \text{ The Distortion of } f \text{ is } \max_{x,y} \frac{d_Y(f(x), f(y))}{d_X(x, y)}. \]

Given a monotone increasing function \(\alpha : \mathbb{N} \rightarrow \mathbb{R}_+ \)
Priority \(\pi = (x_1, \ldots, x_n) \).

Priority Distortion

\[f : X \rightarrow Y \text{ has priority distortion } \alpha \text{ w.r.t. } \pi \text{ if } \]
\[\forall x_j, y \in X \quad d_X(x_j, y) \leq d_Y(f(x_j), f(y)) \leq \alpha(j) \cdot d_X(x_j, y) \]

Theorem (Prioritized Spanner (This work))

Given a graph \(G = (V, E) \), parameter \(0 < \rho < 1 \) and any priority ranking \(\pi \) of \(V \), there exists a spanner \(H \) with lightness \(1 + \rho \)
and prioritized distortion \(\tilde{O}(\log j) / \rho \).
Scaling Distortion

Embedding $f : X \to Y$ has scaling distortion $\beta : (0, 1) \to \mathbb{R}_+$ if

$\forall \epsilon \in (0, 1)$ at least $(1 - \epsilon)$-fraction of the pairs suffer distortion at most $\beta(\epsilon)$.
Scaling Distortion

Embedding $f : X \rightarrow Y$ has scaling distortion $\beta : (0, 1) \rightarrow \mathbb{R}_+$ if

$$\forall \epsilon \in (0, 1) \text{ at least } (1 - \epsilon)\text{-fraction of the pairs suffer distortion at most } \beta(\epsilon).$$

Theorem (Abraham, Bartal and Neiman 2006)

Every weighted graph contains a spanning tree with scaling distortion $O(1/\sqrt{\epsilon}).$
Scaling Distortion

Embedding $f : X \to Y$ has scaling distortion $\beta : (0, 1) \to \mathbb{R}^+$ if
$$\forall \epsilon \in (0, 1) \text{ at least } (1 - \epsilon)\text{-fraction of the pairs suffer distortion at most } \beta(\epsilon).$$

Theorem (Abraham, Bartal and Neiman 2006)

Every weighted graph contains a spanning tree with scaling distortion $O(1/\sqrt{\epsilon}).$

Scaling Distortion implies constant average distortion

If f has scaling distortion $O\left(\frac{1}{\epsilon^{1-\delta}}\right)$ for $\delta > 0$ then
$$\text{Average Distortion } = O(1).$$
Theorem (Priority implies scaling)

Given a metric space \((X, d_X)\), there exists a priority ranking \(\pi = (x_1, \ldots, x_n)\) s.t. every embedding with priority distortion \(\alpha\) w.r.t \(\pi\) into \((Y, d_Y)\) has scaling distortion \(O(\alpha (4/\epsilon))\).
Theorem (Priority implies scaling)

Given a metric space \((X, d_X)\), there exists a priority ranking \(\pi = (x_1, \ldots, x_n)\) such that every embedding with priority distortion \(\alpha\) w.r.t \(\pi\) into \((Y, d_Y)\) has scaling distortion \(O(\alpha^{4/\epsilon})\).
Theorem (Priority implies scaling)

Given a metric space \((X, d_X)\),
there exists a priority ranking \(\pi = (x_1, \ldots, x_n)\)
s.t. every embedding with priority distortion \(\alpha\) w.r.t \(\pi\) into \((Y, d_Y)\) has scaling distortion \(O(\alpha(4/\epsilon))\).
Theorem (Priority implies scaling)

Given a metric space \((X, d_X) \), there exists a priority ranking \(\pi = (x_1, \ldots, x_n) \) s.t. every embedding with priority distortion \(\alpha \) w.r.t \(\pi \) into \((Y, d_Y) \) has scaling distortion \(O(\alpha(4/\epsilon)) \).
Theorem (Priority implies scaling)

Given a metric space \((X, d_X)\),
there exists a priority ranking \(\pi = (x_1, \ldots, x_n)\)
s.t. every embedding with priority distortion \(\alpha\) w.r.t \(\pi\) into \((Y, d_Y)\)
has scaling distortion \(O(\alpha(4/\epsilon))\).

Scaling also implies priority!
Theorem (Prioritized Spanner)

Spanner with **lightness** $1 + \rho$ and **prioritized distortion** $\tilde{O}(\log j) / \rho$.
Scaling Light Spanner

Theorem (Prioritized Spanner)

Spanner with lightness $1 + \rho$ and prioritized distortion $\tilde{O}(\log j) / \rho$.

Theorem (Priority implies Scaling)

Priority distortion α w.r.t π implies scaling distortion $O(\alpha(4/\epsilon))$.
Theorem (Prioritized Spanner)

Spanner with **lightness** $1 + \rho$ and **prioritized distortion** $\tilde{O}(\log j) / \rho$.

Theorem (Priority implies Scaling)

Priority distortion α w.r.t π implies scaling distortion $O(\alpha(4/\epsilon))$.

Theorem (Scaling Spanner)

Spanner with **lightness** $1 + \rho$ and **scaling distortion** $\tilde{O}(\log (1/\epsilon)) / \rho$.
Theorem (Scaling Spanner)

Spanner with lightness $1 + \rho$ and scaling distortion $\tilde{O}(\log(1/\epsilon))/\rho$.
Theorem (Scaling Spanner)

Spanner with lightness $1 + \rho$ and scaling distortion $\tilde{O} \left(\log \left(\frac{1}{\epsilon} \right) \right) / \rho$.

Theorem (Abraham, Bartal and Neiman 2006)

Any graph contains a spanning tree with scaling distortion $O \left(\frac{1}{\sqrt{\epsilon}} \right)$.
Theorem (Scaling Spanner)

Spanner with lightness $1 + \rho$ and scaling distortion $\tilde{O}(\log (1/\epsilon))/\rho$.

Theorem (Abraham, Bartal and Neiman 2006)

Any weighted graph contains a spanning tree with scaling distortion $O(1/\sqrt{\epsilon})$.

Lemma (Scaling embeddings Composition)

If $f : (X, d_X) \rightarrow (Y, d_Y)$ (respectively, $g : (Y, d_Y) \rightarrow (Z, d_Z)$) has scaling distortion α (resp., β). Then $f \circ g$ has scaling distortion $\alpha(\epsilon/2) \cdot \beta(\epsilon/2)$.
Theorem (Scaling Spanner)

Spanner with lightness $1 + \rho$ and scaling distortion $\tilde{O}\left(\log\left(\frac{1}{\epsilon}\right)/\rho\right)$.

Theorem (Abraham, Bartal and Neiman 2006)

Any w.graph contains a spanning tree with scaling distortion $O(1/\sqrt{\epsilon})$.

Lemma (Scaling embeddings Composition)

If $f : (X, d_X) \rightarrow (Y, d_Y)$ (respectively, $g : (Y, d_Y) \rightarrow (Z, d_Z)$) has scaling distortion α (resp., β). Then $f \circ g$ has scaling distortion $\alpha(\epsilon/2) \cdot \beta(\epsilon/2)$.

Theorem

Spanning tree with lightness $1 + \rho$ and scaling distortion $\tilde{O}(\sqrt{1/\epsilon})/\rho$.
Theorem

Spanning tree with lightness $1 + \rho$ and scaling distortion $\tilde{O}(\sqrt{1/\epsilon})/\rho$.

Corollary (Main result)

Spanning tree with lightness $1 + \rho$ and average distortion $O(1/\rho)$.

Y. Bartal, A. Filtser, O. Neiman
Light Tree with Constant Average Distortion

Theorem

Spanning tree with lightness $1 + \rho$ and scaling distortion $\tilde{O}(\sqrt{1/\epsilon})/\rho$.

Corollary (Main result)

Scaling distortion $O(\frac{1}{\epsilon^{1-\delta}})$ implies $O(1)$ average distortion.
Theorem

Spanning tree with lightness $1 + \rho$ and scaling distortion $\tilde{O}(\sqrt{1/\epsilon})/\rho$.

Scaling distortion $O(\frac{1}{\epsilon^{1-\delta}})$ implies $O(1)$ average distortion.

Corollary (Main result)

Spanning tree with lightness $1 + \rho$ and average distortion $O(1/\rho)$.
BRACE YOURSELVES

TECHNICAL DETAILS ARE COMING
Theorem (Priority implies scaling)

Given a metric space \((X, d_X)\), there exists a priority ranking \(\pi = (x_1, \ldots, x_n)\) s.t. every embedding with priority distortion \(\alpha\) w.r.t \(\pi\) into \((Y, d_Y)\) has scaling distortion \(O(\alpha(4/\epsilon))\).
Given $x \in X$ and $\epsilon \in (0, 1)$, $R(x, \epsilon)$ is the minimal radius r such that

$$|B_X (x, r)| \geq \epsilon \cdot n$$
Given \(x \in X \) and \(\epsilon \in (0, 1) \), \(R(x, \epsilon) \) is the \textbf{minimal} radius \(r \) such that

\[
|B_X (x, r)| \geq \epsilon \cdot n
\]
ε-Density Net is a subset $N \subseteq X$ such that:

- $\forall x \in X$ there exists $y \in N$ such that $d_X(x, y) \leq 2R(x, \epsilon)$.
- $|N| \leq 1/\epsilon$.

Theorem (H. Chan, M. Dinitz and A. Gupta 2006) For every metric space and $\epsilon \in (0, 1)$ there exists an ϵ-density-net.
ε-Density Net is a subset $N \subseteq X$ such that:

- $\forall x \in X$ there exists $y \in N$ such that $d_X(x, y) \leq 2R(x, \epsilon)$.
- $|N| \leq 1/\epsilon$.

Theorem (H. Chan, M. Dinitz and A. Gupta 2006)

For every metric space and $\epsilon \in (0, 1)$ there exists an ε-density-net.
\(\varepsilon\)-Density Net is a subset \(N \subseteq X\) such that:

- \(\forall x \in X\) there exists \(y \in N\) such that \(d_X(x, y) \leq 2R(x, \varepsilon)\).
- \(|N| \leq 1/\varepsilon\).

\textbf{Theorem (H.Chan, M.Dinitz and A.Gupta 2006)}

For every metric space and \(\varepsilon \in (0, 1)\) there exists an \(\varepsilon\)-density-net.
Priority implies Scaling - Proof

For $1 \leq i \leq \lceil \log n \rceil$ set $\epsilon_i = 2^{-i}$. Let N_i be an ϵ_i-density net.
For $1 \leq i \leq \lceil \log n \rceil$ set $\epsilon_i = 2^{-i}$. Let N_i be an ϵ_i-density net.
For $1 \leq i \leq \lceil \log n \rceil$ set $\epsilon_i = 2^{-i}$. Let N_i be an ϵ_i-density net.

Permutation selection:

\[
\begin{array}{cccccccccccc}
 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & \cdots & x_{14} & x_{2^1-1} & \cdots & x_{2^5-2} & x_{2^5-1} & \cdots \\
N_1 & N_2 & N_3 & N_4 & & & & & & & & & & \\
\end{array}
\]
Theorem (Prioritized Spanner)

Given a graph \(G = (V, E) \), parameter \(0 < \rho < 1 \) and any priority ranking \(\pi \) of \(V \), there exists a spanner \(H \) with lightness \(1 + \rho \) and prioritized distortion \(\tilde{O}(\log j) / \rho \).
Prioritized Light Spanner

Theorem (Prioritized Spanner)

Given a graph $G = (V, E)$, parameter $0 < \rho < 1$ and any priority ranking π of V, there exists a spanner H with lightness $1 + \rho$ and prioritized distortion $\tilde{O}(\log j) / \rho$.

Lemma (Terminal light spanner)

Given a graph $G = (V, E)$, a subset $K \subseteq V$ of terminals of size k, and a parameter $0 < \delta < 1$, there exists a spanner H that:

1. Contains the MST of G.
2. Has lightness $1 + \delta$.
3. Every pair in $K \times V$ has distortion $O(\log k \delta)$.
Theorem (Prioritized Spanner)

Given a graph $G = (V, E)$, parameter $0 < \rho < 1$ and any priority ranking π of V, there exists a spanner H with lightness $1 + \rho$

and prioritized distortion $\tilde{O}(\log j) / \rho$.

Lemma (Terminal light spanner)

Given a graph $G = (V, E)$, a subset $K \subseteq V$ of terminals of size k, and a parameter $0 < \delta < 1$, there exists a spanner H that:

1) Contains the MST of G.

Y. Bartal, A. Filtser, O. Neiman

On Notions of Distortion

January 11, 2016 18 / 21
Theorem (Prioritized Spanner)

Given a graph $G = (V, E)$, parameter $0 < \rho < 1$ and any priority ranking π of V, there exists a spanner H with lightness $1 + \rho$ and prioritized distortion $\tilde{O}(\log j) / \rho$.

Lemma (Terminal light spanner)

Given a graph $G = (V, E)$, a subset $K \subseteq V$ of terminals of size k, and a parameter $0 < \delta < 1$, there exists a spanner H that:
1) Contains the MST of G.
2) Has lightness $1 + \delta$.
Theorem (Prioritized Spanner)

Given a graph $G = (V, E)$, parameter $0 < \rho < 1$ and any priority ranking π of V, there exists a spanner H with lightness $1 + \rho$ and prioritized distortion $\tilde{O}(\log J) / \rho$.

Lemma (Terminal light spanner)

Given a graph $G = (V, E)$, a subset $K \subseteq V$ of terminals of size k, and a parameter $0 < \delta < 1$, there exists a spanner H that:

1) Contains the MST of G.
2) Has lightness $1 + \delta$.
3) Every pair in $K \times V$ has distortion $O\left(\frac{\log k}{\delta}\right)$.
Theorem (Chechik and Wulff-Nilsen (SODA 16), following Chandra et.al and Elkin et.al.)

For every weighted n-vertex graph G and parameters $t > 1, \epsilon > 0$ there exist a $(2t - 1)(1 + \epsilon)$ spanner of lightness $O_\epsilon(n^{1/t})$.
Theorem (Chechik and Wulff-Nilsen (SODA 16), following Chandra et.al and Elkin et.al.)

For every weighted n-vertex graph G and parameters $t > 1$, $\epsilon > 0$ there exist a $(2t - 1)(1 + \epsilon)$ spanner of lightness $O_\epsilon(n^{1/t})$.

For $t = \log n$ and $\epsilon = 1$, they get $O(\log n)$-spanner with lightness $O(1)$.
Theorem (Light spanners reduction)

Suppose that for every n vertex graph G there is a spanner H that:

1. Has lightness ℓ.
2. Has distortion t.

Then, for every n vertex graph G and parameter $0 < \delta < 1$, there is a spanner H that:

1. Has lightness $1 + \delta \ell$.
2. Has distortion t/δ.
3. Contains the MST.
Theorem (Light spanners reduction)

Suppose that for every n vertex graph G there is a spanner H that:

1. Has lightness ℓ.
2. Has distortion t.

Then, for every n vertex graph G and parameter $0 < \delta < 1$, there is a spanner H that:

- Has lightness $1 + \delta \ell$.
- Has distortion t / δ.
- Contains the MST.
Theorem (Light spanners reduction)

Suppose that for every n vertex graph G there is a spanner H that:

1. Has lightness ℓ.
2. Has distortion t.

Then, for every n vertex graph G and parameter $0 < \delta < 1$, there is a spanner H that:

1. Has lightness $1 + \delta \ell$.
2. Has distortion t/δ.
3. Contains the MST.
General reduction to light spanners

Theorem (Light spanners reduction)

Suppose that for every n vertex graph G there is a spanner H that:

1. Has lightness ℓ. \(O(1)\)
2. Has distortion t. \(O(\log n)\)

Then, for every n vertex graph G and parameter $0 < \delta < 1$, there is a spanner H that:

1. Has lightness $1 + \delta \ell$.
2. Has distortion t / δ.
3. Contains the MST.
General reduction to light spanners

Theorem (Light spanners reduction)

Suppose that for every n vertex graph G there is a spanner H that:

1. Has lightness ℓ. \(O(1)\)
2. Has distortion t. \(O(\log n)\)

Then, for every n vertex graph G and parameter $0 < \delta < 1$, there is a spanner H that:

1. Has lightness $1 + \delta \ell$. $1 + \delta$
2. Has distortion t/δ. \(O(\log n)/\delta\)
3. Contains the MST.
Theorem (Prioritized Spanner)

Spanner with lightness $1 + \rho$ and prioritized distortion $\tilde{O}(\log j) / \rho$.

Is it possible to get prioritized distortion $O(\log j) / \rho$?

Efficient implementation

While the current implementation is polynomial, it is still far from practical.
Theorem (Prioritized Spanner)

Spanner with lightness $1 + \rho$ and prioritized distortion $\tilde{O}(\log j) / \rho$.

Is it possible to get prioritized distortion $O(\log j) / \rho$?
Open Problems

Theorem (Prioritized Spanner)

Spanner with lightness $1 + \rho$ *and prioritized distortion* $\tilde{O}(\log j)/\rho$.

Is it possible to get prioritized distortion $O(\log j)/\rho$?

Efficient implementation

While the current implementation is polynomial, it is still far from practical.